Hidrauličke karakteristike kišnog preljeva U oblika

Lončar, Goran; Andročec, Vladimir; Gjetvaj, Goran

Source / Izvornik: Građevinar, 2005, 57, 237 - 245

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:237:073241

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-28

Repository / Repozitorij:

Repository of the Faculty of Civil Engineering, University of Zagreb

Hidrauličke karakteristike kišnog preljeva U oblika

G. Lončar, V. Andročec, G. Gjetvaj

Goran Lončar, Vladimir Andročec, Goran Gjetvaj

Ključne riječi

preljev, kišni preljev U oblika, hidrauličke karakteristike, fizikalni model, koeficijent prelijevanja, optimizacija i

Key words

overflow, U-shaped stormwater overflow, hydraulic properties, physical model, overflow coefficient, optimisation

Mots clés

déversoir, déversoir d'orage en forme de U, propriétés hydrauliques, modèle physique, coefficient de déversement, optimisation

Ключевые слова

перелив, дождевой перелив U формы, гидравлические характеристики, физическая модель, коэффициент переливания, оптимизация

Schlüsselworte

Überlauf, Regenüberlauf in U Form, hydraulische Kennzeichen, physikalisches Modell, Überlaufskennziffer, Optimierung

Hidrauličke karakteristike kišnog preljeva U oblika

Opisuju se hidrauličke karakteristike kišnog preljeva U oblika, alternativnog rješenja kojim se omogućuje smanjenje ukupne duljine preljevne građevine. Prikazani su rezultati hidrauličkih ispitivanja koja su provedena zbog toga što su nedostajali podaci o svojstvima preljeva toga oblika. Ispitivanje na fizikalnom modelu poslužilo je i za optimizaciju preljeva koja je provedena u dva koraka. Opisane su i odgovarajuće numeričke analize radi usporedbe s rezultatima na modelu.

G. Lončar, V. Andročec, G. Gjetvaj

Hydraulic properties of U-shaped stormwater overflows

Authors describe hydraulic properties of the U-shaped stormwater overflows, which constitute an alternative solution for reducing an overall length of traditional stormwater overflow facilities. Results of hydraulic tests conducted to obtain additional data about properties of such overflows are presented. Physical model tests were also conducted to optimise overflow facilities using a two-step process. Appropriate numerical analyses are also given to enable comparison with scale model results.

G. Lončar, V. Andročec, G. Gjetvaj

Caractéristiques hydrauliques des déversoirs d'orage en forme de U

Les auteurs décrivent les propriétés hydrauliques des déversoirs d'orage en forme de la lettre U, qui sont en fait une solution alternative visant à réduire la longueur totale des déversoirs traditionnels. Les résultats des essais hydrauliques conduits afin d'obtenir les données additionnelles sur les propriétés de ces déversoirs sont présentés. Les essais physiques sur modèle ont également été conduits dans le but d'optimiser les déversoirs d'orage en utilisant un procédé à deux étapes. Les analyses numériques appropriées sont également présentées afin de permettre une comparaison avec les résultats obtenus sur modèle.

Г. Лончар, В. Андрочец, Г. Джетвай

Предварительное сообщение

Гидравлические характеристики дождевого перелива U формы

В работе описываются гидравлические характеристики дождевого перелива U формы, альтернативного решения, обеспечивающего уменьшение общей длины переливного сооружения. Показаны результаты гидравлических испытаний, проведённых из-за недостатка данных о свойствах перелива такой формы. Испытание на физической модели послужило для оптимизации, проведённые двумя шагами. Показаны и соответствующие численные анализы ради сравнения с результатами на модели.

G. Lončar, V. Andročec, G. Gjetvaj

Vorherige Mitteilung

Hydraulische Kennzeichen des Regenüberlaufs in U Form

Beschrieben sind hydraulische Kennzeichen des Regenüberlaufs in U Form, einer alternativen Lösung mit der eine Verminderung der Gesamtlänge des Überlaufbauwerks ermöglicht wird. Dargestellt sind die Ergebnisse der hydraulischen Untersuchungen die durchgeführt wurden weil keine Angaben über die Eigenschaften derart geformter Überläufe vorhanden sind. Die Untersuchung am physikalischen Modell diente auch für die Optimierung des Überlaufs, die in zwei Schritten durchgeführt wurde. Dargestellt sind auch die entsprechenden numerischen Analysen zum Vergleich mit den Ergebnissen am Modell.

Autori: Mr. sc. Goran Lončar, dipl. ing. građ.; prof. dr. sc. Vladimir Andročec, dipl. ing. brod.; prof. dr. sc.
 Goran Gjetvaj, dipl. ing. građ.; Sveučilište u Zagrebu Građevinski fakultet, Zavod za hidrotehniku – Hidrotehnički laboratorij, Kačićeva 26, Zagreb

Prethodno priopćenje

Preliminary note

Note préliminarie

Kišni preljev rasteretna građevina kanalizacijskog sustava koji u razdoblju intenzivnih oborina razdvaja otpadne vode na dio koji ide na uređaj za pročišćavanje otpadnih voda i na dio koji se preko evakuacijskih organa kišnog preljeva ispušta u preljevni kanal kojim se prihvaćaju i nizvodni utoci te se zajedno ispuštaju u recipijent. Istraživanjima na fizikalnom modelu trima varijantnim rješenjima i usporedbom s numeričkim modelom bočnog preljeva te rezultatima istraživanja pojedinih autora na preljevima sličnih geometrijskih oblika (kutni preljev) želi se postići niz poboljšanja dimenzija i detalja izvedbe objekta preljeva te postići optimalne uvjete njegova rada.

Postavljanje preljeva U oblika u razdjelnu građevinu zasigurno jest inovativno rješenje zbog čega su se autori susreli s nedostatkom ispitivanja takvih preljeva u svijetu i kod nas. U svjetskoj hidrauličkoj istraživačkoj praksi postoje međutim ispitivanja «kutnih» preljeva koji po svojem obliku nalikuju U preljevu. Na slici 1. shematski je prikaz simetričnoga oštrobridnoga kutnog preljeva i ostvarenim na području dvodimenzionalnog strujanja C_d (slike 1. i 2.). Usporedbom tih dvaju koeficijenata dobiven je odnos lokalnog faktora poremećaja C(l) definiranog kao:

$$C(l) = C_d(l)/C_d \tag{1}$$

Zbog kontinuiteta toka mora postojati i kontinuitet faktora poremećaja C(l) a njegova vrijednost na mjestu tranzicije u dvodimenzionalno strujanje poprima vrijednost $C(l_d/2) = 1$ (slika 1.). Prema tome srednja vrijednost faktora poremećaja C_{sr} na području trodimenzionalnog strujanja jest:

$$C_{sr} = \frac{2}{l_d} \int_{0}^{l_d/2} C(l) dl$$
 (2)

a ukupni preljevni protok preko «kutnog» preljeva izražen je preko modificirane Polenijeve jednadžbe [1]:

$$Q_{prelijevanja} = \frac{2}{3} C_d \sqrt{2g} h_{preljevanja}^{3/2} \left[l_c - (1 - C_{sr}) l_d \right]$$
(3)

gdje je:

 $h_{prelijevanja}$ – visina prelijevanja pri dvodimenzionalnom strujanju vezanom uz koeficijent prelijevanja C_d

 l_c

Slika 1. Shematski prikaz simetričnoga kutnoga oštrobridnog preljeva i U preljeva s okomitim bočnim zidovima [1]

U preljeva s okomitim bočnim zidovima.

Slika 2.

Slika strujanja na modelu simetričnoga oštrobridnoga kutnog preljeva i podjela na zone dvodimenzionalnog i trodimenzionalnog strujanja [1]

Modelska istraživanja [1] strujanja na simetričnom kutnom oštrobridnom preljevu pokazala su da se strujanje preko takvih preljeva može podijeliti na dva dijela, s različitim karakteristikama. Na području u blizini čela preljeva ostvaruje se trodimenzionalna slika strujanja, a u području na određenoj udaljenosti od čela preljeva strujanje se može usvojiti kao dvodimenzionalno. Na duljini l_d s trodimenzionalnim strujanjem koeficijent prelijevanja $C_d(l)$ manji je od koeficijenta prelijevanja ukupna duljina preljeva

Na temelju detaljnih modelskih istraživanja [1] definirani su funkcijski odnosi između kuta α , vrijednosti duljina trodimenzionalnog strujanja l_d i pripadnih srednjih faktora poremećaja C_{sr} . Time je uz poznatu vrijednost preljevnog protoka omogućen i direktni izračun vrijednosti koeficijenta prelijevanja C_d za pojedini oštrobridni kutni preljev s okomitim bočnim zidovima.

Budući da je forma analizirane preljevne građevine s U preljevom u ovome radu geometrijski znatno složenija (slike 3. i 4.), slika strujanja neće imati područja na kojima strujanje postaje izrazito dvodimenzionalno. Nadalje, pogledom na presjek preljevne građevine (slike 3., 4. i 5.) može se utvrditi da preljevna građevina na dijelu lijeve i desne grane ima oblik sličan bočnom preljevu sa složenijim rubnim uvjetima.

Zbog toga je izrađen i algoritam za numeričko rješavanje razina, brzina i preljevnih protoka u lijevoj i desnoj grani preljevne građevine promatranih kao dva bočna preljeva. Vrijednosti hidrauličkih parametara dobivenih na temelju ovakve numeričke analize uspoređeni su s vrijednostima dobivenim mjerenjem na fizikalnom modelu.

2 Fizikalni model

Modelska istraživanja koja su ovdje prikazana odnose se zapravo na varijantna rješenja fizikalnog modela (mjerila 1:16,7) razdjelne građevine sa U preljevom, dovodnog kanala, bučnice i odvodnog kanala u rijeku Savu te kanala odvoda na uređaj za pročišćavanje grada Zagreba. Model je izgrađen u prostorijama Hidrotehničkog laboratorija Građevinskog fakulteta u Zagrebu. Na slici 3. su fotografije početnoga varijantnog rješenja 0. Na slici 4. prikazan je horizontalni presjek i dimenzije modela preljevne građevine s dovodnim i odvodnim kanalima varijantnog rješenja 0. Shematski je prikaz varijantnih rješecm [2, 3, 4]). Mjerenje brzina obavljeno je mjernim krilom proizvođača SEBA i propelerom br. 050-088, promjera 30 mm. Razina je mjerena mjernim iglama s mogućnošću očitanja 0,1 mm. Mjerenje protoka ostvareno je očitanjem na preljevima s mogućnošću pogreške < 1%. Svi mjerni elementi priključeni su na sustav za elektronsku akviziciju ADAM-5000 kojom se omogućuje skeniranje podataka u obliku električne veličine te njezinu kontrolu i daljnju aplikaciju. Ovaj sustav za višekanalsku konverziju električnih veličina sastavljen je od 4 I/O slota koji predstavljaju konvertere signala (A/D, D/A, F/C, C/F) a kontroliraju se glavnim računalom uz pomoć skupine komanda. Prijenos u mrežu ostvaruje se sa RS-485, a modularno projektiranje omogućuje fleksibilnost u sistemu konfiguracije.

Slika 3. Prvobitno varijantno rješenje 0 preljevne građevine: s U preljevom (lijevo)i s dovodnim i odvodnim kanalima (desno)

Slika 4. Horizontalni presjek i dimenzije modela preljevne građevine s dovodnim i odvodnim kanalima varijantnog rješenja 0 (dimenzije u cm) nja 0,1 i 2 na slici 5.

Pri ispitivanom rasponu preljevnih protoka iznad krune preljeva ostvaruju se preljevne visine dovoljne da se utjecaj površinske napetosti može zanemariti ($h_{prelijevanja}$ >3

Slika 5. Shematski prikaz varijantnih rješenja 0, 1 i 2

3 Numerički model

Cilj provedbe ove numeričke analize jest provjera sličnosti strujanja na području lijeve i desne grane preljevne građevine s tečenjem u kanalima s bočnim preljevima (slike 3., 4. i 5.). Ako ta sličnost postoji, moguće je korištenjem istim jednostavnim numeričkim algoritmom (za prelijevanje preko bočnih preljeva) odrediti promjenu koeficijenta prelijevanja U preljeva zbog izmjene geometrije elemenata preljevne građevine.

Analitičko rješenje strujanja u kanalima s bočnim preljevom dao je De Marchi (1934.), no zbog niza pretpostavki i pojednostavljenja direktna primjena u praktičnim slučajevima sa složenijom geometrijom bočnog preljeva i preljevnog kanala nije moguća. Međutim, upotrebom računala mogu se jednostavno numerički riješiti osnovne diferencijalne jednadžbe kojima se opisuje strujanje na području bočnih preljeva. Smith [5] postavio je algoritam za numeričko rješavanje strujanja preko bočnog preljeva na temelju tradicionalne pretpostavke konstantne mehaničke energije (osim gubitaka uzrokovanih trenjem) na cijelom području strujanja kroz preljevni kanal na cijeloj duljini bočnog preljeva. Naknadnom analizom strujanja na fizikalnim modelima bočnih preljava ipak se registrirao znatno strmiji pad energetske linije od onog koji bi trebao biti posljedica trenja s krutim granicama, pa je isti autor dodatni gubitak energije protumačio sa intenzivnim sekundarnim strujanjem u preljevnom kanalu ostvarenim na području bočnog preljeva. Mjerenje intenziteta sekundarnog strujanja na fizikalnim modelima [5], međutim, pokazalo je da to strujanje ima samo mali doprinos u gubitku energije koji nije usporediv s ukupnim padom energetske linije.

Osnovna ideja konstantne energije strujanja (izuzev gubitaka trenja) kroz preljevni kanal uzduž bočnog preljeva zapravo je posljedica pretpostavke jednakosti između srednje brzine V u proticajnim profilima preljevnog kanala i uzdužne komponente preljevne brzine U (u smjeru srednjeg strujanja V u preljevnom kanalu (slika 6.)) preko bočnog preljeva. Izvod jednadžbe strujanja s takvim energetskim pristupom dan je u poglavlju 4.1.

Mjerenja brzina U i V na bočnim preljevima pokazala su da to nije točno te da su uzdužne brzine U znatno veće od srednjih brzina u preljevnom kanalu V [5]. Ako se strujanje analizira količinom gibanja, moguće je usvajanje te pretpostavke. Izvod jednadžbe strujanja sa takvim pristupom dan je u poglavlju 4.2. Na temelju mjerenja Khashaba [6] dobiven je i generalni uvid u vrijednosti pojedinih hidrauličkih parametara potrebnih za numeričko rješavanje jednadžbe strujanja dobivene na temelju analize količine gibanja u bliskim protjecajnim profilima preljevnog kanala.

U sklopu ovog rada primijenjeno je numeričko rješavanje diferencijalne jednadžbe razine vodnog lica u preljevnom kanalu dobiveno na temelju analize količine gibanja. Također se pretpostavlja da je strujanje u preljevnom kanalu pretežito dvodimenzionalno i da je distribucija tlakova po vertikali hidrostatska usprkos zakrivljenosti vodnog lica.

4.1 Energetski pristup

Posljedica je pretpostavljene jednakosti U = V da ukupna energija jedinične mase tekućine koja protječe kroz preljevni kanal, ne preljevajući se preko bočnog preljeva, ostaje neizmijenjena (osim gubitaka trenja).

Slijedeći nomenklaturne oznake sa slike 6. ukupna energija u bilo kojem presjeku izražena je kao:

$$E = z + h + \alpha \frac{Q^2}{2gA} \tag{4}$$

gdje je:

E - ukupna energija

- vertikalna udaljenost između točke na dnu preljevnog kanala i referentne geodetske ravnine
- α Koriollisov koeficijent kinetičke energije proticajnog presjeka
- *h* dubina

Slika 6. Shematski prikaz vodnog lica u preljevnom kanalu na položaju bočnog preljeva (mirno strujanje; lijevo-presjek; desno-tlocrt)

Q - protok u proticajnom presjeku preljevnog kanala površine A

Promjena ukupne energije uzduž bočnog preljeva definirana je kao:

$$\frac{dE}{dx} = \frac{dz}{dx} + \frac{dh}{dx} + \frac{\boldsymbol{\alpha}}{2g} \left(\frac{2Q}{A^2} \frac{dQ}{dx} - \frac{2Q^2}{A^3} \frac{dA}{dx} \right)$$
(5)

Usvajanjem oznaka za nagib energetske linije zbog trenja sa krutim granicama preljevnog kanala $S_f = - dE/dx$, nagiba dna preljevnog kanala $S_0 = - dz/dx$ i konstantne širine protjecajnog presjeka preljevnog kanala dA/dx = B dh/dx, te njihovom supstitucijom i sređivanjem, dobiva se sljedeći izraz:

$$\frac{dh}{dx} = \frac{S_0 - S_f - \alpha \frac{Q}{gA^2} \frac{dQ}{dx}}{1 - \alpha \frac{Q^2 B}{gA^3}}$$
(6)

4.1 Pristup analizom količine gibanja

Ovim pristupom uzima se u obzir razlika između V i U a primjenom zakona o očuvanju količine gibanja u uzdužnom smjeru paralelno s ravninom dna kanala (smjer vektora V i U) između dvaju protjecajnih presjeka na međusobnoj udaljenosti Δx (slika 6.) dobiva se sljedeća jednakost:

$$\boldsymbol{\beta}\boldsymbol{\rho}(Q + \Delta Q)(V + \Delta V) - \boldsymbol{\rho}\frac{dQ}{dQ}\Delta xU - \boldsymbol{\beta}\boldsymbol{\rho}QV =$$

= $P_a - P_b + G\sin\Theta - F_f$ (7)

gdje je:

 P_a - sila hidrostatskog tlaka u presjeku a

- *Pb* sila hidrostatskog tlaka u presjeku b
- G težina vode u promatranom kontrolnom volumenu duljine Δx
- Θ nagib dna preljevnog kanala
- GRAĐEVINAR 57 (2005) 4, 237-245

- ρ gustoća protjecajne tekućine
- *Ff* sila trenja po površini promatranoga kontrolnog volumena
- β Bousinesqov koeficijent količine gibanja
- $\Delta Q, \Delta V$ razlike protoka i brzina u protjecajnim presjecima udaljenim za Δx

Koeficijent količine gibanja β za V pretpostavlja se konstantnim po duljini Δx a za U uzima se sa vrijednosti jedan. Smisaonost ovih pretpostavki potvrđena je i u okviru istraživanja na fizikalnim modelima [6].

Za male vrijednosti Δx , $Pa - Pb = -\rho gAS0\Delta x$ i $Ff = \rho gASf\Delta x$. Zanemarivanjem članova višeg reda $\Delta V\Delta Q$ dobiva se:

$$\frac{1}{g} \left[\boldsymbol{\beta} \left(V \Delta V + \frac{V}{A} \Delta Q \right) - \frac{U}{A} \frac{dQ}{dx} \Delta x \right] = -\Delta h + S_0 \Delta x - S_f \Delta x \tag{8}$$

Dijeljenjem sa Δx i $\Delta x \rightarrow 0$ slijedi:

$$\frac{dh}{dx} + \boldsymbol{\beta} \frac{V}{g} \frac{dV}{dx} = S_0 - S_f - \boldsymbol{\beta} \frac{V}{gA} \frac{dQ}{dx} + \frac{U}{gA} \frac{dQ}{dx}$$
(9)

Razvojem drugog člana desne strane izraza (9) dobiva se:

$$\frac{dQ}{dx} = \frac{d(AV)}{dx} = V\frac{dA}{dx} + A\frac{dV}{dx}$$
(10)

zbog čega:

$$\frac{V}{g}\frac{dV}{dx} = \frac{V}{gA}\left(\frac{dQ}{dx} - V\frac{dA}{dx}\right)$$
(11)

Ukoliko vrijedi dA/dx = B dh/dx:

$$\frac{V}{g}\frac{dV}{dx} = \frac{V}{gA}\left(\frac{dQ}{dx} - \frac{Q}{A}B\frac{dh}{dx}\right)$$
(12)

odnosno

$$\boldsymbol{\beta} \frac{V}{g} \frac{dV}{dx} = \boldsymbol{\beta} \frac{V}{gA} \frac{dQ}{dx} - \boldsymbol{\beta} \frac{Q^2 B}{gA^3} \frac{dh}{dx}$$
(13)

Iz jednadžbe (9) i (13), te sređivanjem izraza, dobiva se diferencijalna jednadžba promjene dubine h u preljevnom kanalu na dionici bočnog preljeva:

$$\frac{dh}{dx} = \frac{S_0 - S_f - \frac{1}{gA} (2\beta V - U) \frac{dQ}{dx}}{1 - \beta \frac{Q^2 B}{gA^3}}$$
(14)

Može se uočiti da jednadžba (6) i (14) imaju sličnu formu pa ako se postavi uvjet U = V i α , $\beta = 1$ jednadžbe postaju identične. Na temelju modelskih istraživanja [6] dobiven je uvid u prirast vrijednosti popravnog koeficijenta količine gibanja β uzduž preljevnog kanala kao i u linearan odnos U i V dan u obliku:

$$V_1/U = 1,08 * (h - c) / (h_1 - c)$$
(15)

a gdje je:

- h dubina vode u nekom poprečnom presjeku preljevnog kanala na području bočnog preljeva
- *h*₁ dubina vode u poprečnom presjeku preljevnog kanala na početku bočnog preljeva (slika 6.)
- V₁ srednja brzina u mjernoj vertikali protjecajnog presjeka preljevnog kanala na početku bočnog preljeva (slika 6.)
- c visina krune preljeva od dna preljevnog kanala

Na temelju jednadžbe 14 postavljen je jednostavan numerički model centralnih konačnih diferencija s odabranim prostornim korakom $\Delta x = 0,1$ m kojim se omogućuje iterativni proračun promjene dubina $\Delta h/\Delta x$ u lijevom i desnom kraku preljevne građevine.

Slika 7. Shematski prikaz područja položaja mjernih točaka (registracija razina vodnog lica i brzina) na fizikalnom modelu i područje $0,17 < x_r/L < 0,83$ na kojem se uspoređuju rezultati numeričke analize strujanja (promatranog kao strujanje u kanalu s bočnim preljevom) i mjerenja na modelu

Budući da postoje mjerenja na fizikalnom modelu, kao rubni uvjet numeričkog modela postavlja se razina vodnog lica izmjerena na bočnom zidu preljevne građevine (slika 7.). Na temelju ostalih izmjerenih vrijednosti razina vodnih lica na fizikalnom modelu moguće je "popravljati" rezultate numeričkog modela putem prilagodbe konstantnog koeficijenta prelijevanja C_d i varijabilnog koeficijenata količine gibanja β u svakom promatranom presjeku.

Zbog uvjeta pristrujavanja na *U* preljev u razdjelnoj građevini, u okolini kružnog čela preljeva dolazi do formiranja izrazito trodimenzionalne slike strujanja. Na području utjecaja tog poremećaja, kao i u neposrednoj blizini zidova na kraju krakova preljevne građevine, nije smisaona upotreba algoritma koji se odnosi na bočne preljeve (slika 7.).

4 Usporedba rezultata mjerenja i numeričkog modela

Na svim varijantnim rješenjima fizikalnog modela uočilo se da duljina poremećaja završava na udaljenosti $l_d/L \approx 0,17$ (slika 7.). Vrijednosti duljine poremećaja za kutni preljev s okomitim bočnim zidovima i kutem čela $\alpha = 26^0$ jest $l_d/L = 0,2$ [1]. Manje vrijednosti duljine poremećaja l_d izmjerene na fizikalnom modelu posljedica su zaobljenja čela U preljeva. Zbog toga se usporedba rezultata numeričke analize strujanje (promatranog kao strujanja u kanalu s bočnim preljevom) i mjerenja na modelu kroz lijevu i desnu granu preljevne građevine daje na dionici $0,17 < x_t/L < 0,83$ (slika 7.)

Potrebno je upozoriti da optimalizacija U preljeva ne može biti sadržana samo u maksimalizaciji koeficijenta prelijevanja C_d , budući da se u razdjelnoj građevini također treba onemogućiti zadržavanje vode u razdoblju «suhih» dotoka i pojava vrtloga sa znatnim smanjenjem brzina na čijem mjestu bi dolazilo do intenzivnijeg taloženja krute tvari.

Na prvobitnom varijantnom rješenju primijećena je pojava intenzivnog vrtloženja na području bočnih zidova neposredno nakon ulaza u preljevnu građevinu. Nadalje, mjerenjem razina vodnog lica u protjecajnim presjecima lijeve i desne grane konstatirala se horizontalnost razina vodnog lica na udaljenosti $\approx 3c_0$ od preljevnog zida do bočnog zida preljevne građevine. Zbog toga su se u varijantnom rješenju 1 smanjile udaljenosti bočnih zidova preljevne građevine prema zidu preljeva upravo na udaljenost 3c₀ od preljevnog zida (slika 4.). Potom, ispitivanje strujanja na varijantnom modelskom rješenju 1 pokazalo je intenzivno prestrujavanje preko oštrih rubova dovodnih kanala u područje podesta lijevog kraka preljevne građevine. Kako bi se poboljšala strujna slika odnosno smanjile zone intenzivnog vrtloženja na modelu varijantnog rješenja 2 zaobljeni su ti oštri rubovi (slika 8.). Na varijantnom rješenju 2 izvedeno je i povećanje nagiba

G. Lončar i drugi

Slika 8. Preinake za poboljšanje slike strujanja: varijantno rješenje 1 (lijevo), varijantno rješenje 2 (desno)

dna lijevog kraka s 1% na 3%, kako bi se smanjila mogućnost zadržavanja nanosa u tom području preljevne građevine nakon smanjenja preljevnih protoka.

Na slici 9. prikazane su izmjerene i izračunane promjene vrijednosti bezdimenzionalnih razina vodnog lica $(h_i+z_i)/c_0$ $(h_i$ – dubina u protjecajnom presjeku ; z_i – kota dna ; c_0 – visina preljevnog zida) u ovisnosti o bezdimenzionalnoj udaljenosti x_i/L od čela preljeva za lijevu granu. Na slici 10. prikazan je isti sadržaj za desnu granu.

Slika 9. Usporedba izmjerene i izračunane promjene vrijednosti bezdimenzionalnih razina vodnog lica (h_i+z_i)/c_θ u ovisnosti o bezdimenzionalnoj udaljenosti x_i/L od čela preljeva lijeva grana

Slika 10. Usporedba izmjerene i izračunane promjene vrijednosti bezdimenzionalnih razina vodnog lica $(h_i+z_i)/c_{\theta}$ u

GRAĐEVINAR 57 (2005) 4, 237-245

ovisnosti o bezdimenzionalnoj udaljenosti x_i/L od čela preljeva – desna grana

Na slici 11. prikazane su izmjerene i izračunane promjene vrijednosti bezdimenzionalnih brzina V_i/V_0 (V_i – srednja brzina u proticajnom presjeku ; V_0 – brzina na udaljenosti $x_i/L = 0,17$) u ovisnosti o bezdimenzionalnoj udaljenosti x_i/L od čela preljeva za lijevu granu. Na slici 12. je prikaz istog sadržaja za desnu granu.

Slika 11. Usporedba izmjerene i izračunane promjene vrijednosti bezdimenzionalnih razina vodnog lica $(h_i+z_i)/c_0$ u ovisnosti o bezdimenzionalnoj udaljenosti x_i/L od čela preljeva - lijeva grana

Slika 12. Usporedba izmjerene i izračunane promjene vrijednosti bezdimenzionalnih razina vodnog lica $(h_i+z_i)/c_0$ u ovisnosti o bezdimenzionalnoj udaljenosti x_i/L od čela preljeva - desna grana

Na slici 13. je usporedba koeficijenata prelijevanja C_d lijevog i desnog kraka za varijantna rješenja 0, 1 i 2 dobivenih na temelju numeričkog rješavanja jednadžbe 14. Napominje se da vrijednosti koeficijenata nisu definirane za cijelo područje U preljeva, već samo za dionice lijevog i desnog kraka $0,17 < x_i/L < 0,83$. Ukupni dotok u razdjelnu građevinu dijeli se na preljevne protoke lijeve i desne grane te čela preljeva (zona poremećaja). Na tablici 1. prikazane su vrijednosti preljevnih protoka s obzirom na ukupni dotok u razdjelnu građevinu.

Varijantno lijeva desna čelo rješenje U preljeva grana grana 0 42% 47% 11% 36% 52% 12% 2 32% 55% 13% 0.80 0.75 🗆 Cd Lijevi krak 0.75 🔳 Cd Desni krak 0.7 0.70 0.66 0.65 0.63 0.6 0.59 0.60 0.55 0.50 VAR 0 VAR_1 VAR_2

Tablica 1. Vrijednosti preljevnih protoka

Slika 13. Usporedbe koeficijenata prelijevanja C_d lijevog i desnog kraka za varijantna rješenja 0, 1 i 2 dobivenih na temelju numeričkog rješavanja jednadžbe (14)

5 Usporedba koeficijenata prelijevanja s drugim rješenjima preljevnih zidova

Kako bi se omogućila komparacija koeficijenata prelijevanja s nekim drugim rješenjima preljevnih zidova, na tablici 2. prikazane su vrijednosti bezdimenzionalnih koeficijenata preljeva C_d/C_{d0} za pojedine slučajeve (slika 14.). Vrijednost $C_{d0} = 0,684$ usvojena je za slučaj kutnog preljeva duljine 64 m s okomitim bočnim zidovima i kutem $\alpha = 26^0$ [1] (slika 1. i jednadžba (3)).

Vrijednosti koeficijenata prelijevanja C_d za varijantna modelska rješenja s U preljevom definirane su jednadžbom:

$$C_{d} = \frac{3Q}{2b\sqrt{2g}H_{0}^{3/2}}$$
(16)

gdje je:

Q - ukupni preljevni protok preko U preljeva (57,8 m³/s)

- b duljina preljeva (65,8 m)
- H_0 srednja visina prelijevanja izmjerena u lijevom i desnom kraku na točkama H1-H11 (slika 7.)
- Tablica 2. Usporedba vrijednosti koeficijenata prelijevanja za različite tipove preljeva

Tip preljeva	<i>P (m)</i>	L(m)	C_d/C_{d0}	Lokacija
Kutni $\alpha = 26^0 **$	2,13	60	1,000	[1]
Jednostrani bočni	2,13	8	0,870	[7]
bez suženja **				
U preljev -	2,13	65	0,917	Zg-GOK
VAR_0 ***				[8]
U preljev -	2,13	65	0,891	Zg-GOK
VAR_1 ***				[8]
U preljev -	2,13	56	0,935	Zg-GOK
VAR_2 ***				[8]
Oštrobridni -	2,13	8	0,916	00
Bazin *				
Praktičnog profila	2,13	8	1,125	00
-Creager*				
Labirintni **	-	65	0,965	Belia, Zair
Dvostrani bočni	2,4	12,9	1,091	Split, HR
bez suženja **				
Jednostrani bočni	0,72	8	1,053	Trstenik,
sa suženjem ***				HR
P – visina preljevnog zida ;				

L - duljina preljevnog zida

 s okomitim pristrujavanjem na vertikalnu ravninu pregrade, horizontalno dno, konstantna visina preljevnog zida beskonačne širine

** ristrujavanje nije okomito, horizontalno dno, konstantna visina preljevnog zida

** dno u nagibu, promjenjiva visina preljevnog zida, smanjenje širine dovodnog kanala na preljev

Slika 14. Shematski prikaz pojedinog tipa preljeva

6 Zaključak

Na hidrauličkom fizikalnom modelu ispitivana su varijantna rješenja U preljeva s različitim geometrijama razdjelne građevine i preljevnih kanala. Na fizikalnom modelu određena je duljina zone poremećaja u okolini čela U preljeva s izrazito trodimenzionalnom slikom strujanja (\approx 17% ukupne duljine preljevnog zida). Ostvarena duljina poremećaja je nešto manja od rezultata istraživanja duljine poremećaja za kutne preljeve s okomitim bočnim zidovima i kutom $\alpha = 26^0$ između preljevnih zidova [1]. Rezultati brzina i razina vodnog lica dobiveni numeričkim rješenjem jednadžbe strujanja u kanalima s bočnim preljevima uspoređeni su s rezultatima izmjerenih brzina i razina ostvarenih u lijevoj i desnoj grani preljevne građevine s U preljevom. Područje na kojem je dana usporedba ograničeno je izvan zone poremećaja (0,17< $x_t/L < 0,83$). Na tom području strujanje se može aproksimirati sa strujanjem u kanalima s bočnim preljevom.

Praćenjem slike strujanja, mjerenjem hidrauličkih parametara razina vodnog lica i brzina na fizikalnom modelu te usporedbom s rezultatima numeričkog modela, dobivene su relevantne informacije o potrebnim geometrijskim

LITERATURA

- Indlekofer, H.: Discharge over Polygonal Weirs, Journal of Hydraulics Division (ASCE), vol. 101(1975), NO. HY3. MAR, pp. 385-401.
- [2] Kobus, H.: *Hydraulic Modelling*, 2d edn, German association for water resources and land improvement, Verlag Paul Parley, Berlin, 1980.
- [3] Novak, P.; Čabelka, J.: Models in Hydraulic Engineering, 1d edn, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1981.
- [4] Sarginson, E.: The influence of surface tension on weir flow, Journal of Hydraulic Research (IAHR), vol. 10(1974), NO.4, pp. 431-446.

izmjenama preljevne građevine pojedinog varijantnog rješenja za provedbu optimalizacije.

Na tri varijantna rješenja fizikalnog modela ispitani su utjecaj smanjenja dimenzija širine razdjelne građevine, povećanje nagiba dna lijevog kraka i zaobljenja rubova polukružnih kanala na koeficijent prelijevanja U preljeva. U konačnom varijantnom rješenju 2 koeficijent prelijevanja C_d povećan je 2% u odnosu na početno varijantno rješenje 0 i za 5% u odnosu na varijantno rješenje 1.

Strujna slika ostvarena na varijantnom rješenju 2 povoljnija je od strujne slike ostvarene na varijantnim rješenjima 0,1 i što se tiče sedimentacije nanosa u razdjelnoj građevini. Uspoređene su i vrijednosti koeficijenata prelijevanja U preljeva s nekim drugim rješenjima preljevnih zidova.

- [5] Smith, K.: Computer Programing for Flow Over Side Weirs, Journal of Hydraulics Division (ASCE) vol. 99(1973), NO. HY3. MAR, pp. 495-506.
- [6] Khasab, A.: Experimental investigatinon of Flow Over Side Weirs, Journal of Hydraulics Division (ASCE), vol. 102(1976), NO. HY9. SEPT, pp. 1255-1268.
- [7] Kremešecki, N.: Hidravlika, 2d edn, Moskva, 1980.
- [8] Andročec, V.; Lončar, G.: Hydraulic model investigation of «Radnička» overflow, Izvještaj 533, Zagreb, 2003.