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LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE

OVER THE SEMI-SIMPLE PART

VOLODYMYR MAZORCHUK AND RAFAEL MRD̄EN

Abstract. For a finite-dimensional Lie algebra L over C with a fixed Levi de-
composition L = g ⋉ r where g is semi-simple, we investigate L-modules which
decompose, as g-modules, into a direct sum of simple finite-dimensional g-modules
with finite multiplicities. We call such modules g-Harish-Chandra modules. We
give a complete classification of simple g-Harish-Chandra modules for the Takiff
Lie algebra associated to g = sl2, and for the Schrödinger Lie algebra, and obtain
some partial results in other cases. An adapted version of Enright’s and Arkhipov’s
completion functors plays a crucial role in our arguments. Moreover, we calculate
the first extension groups of infinite-dimensional simple g-Harish-Chandra modules
and their annihilators in the universal enveloping algebra, for the Takiff sl2 and
the Schrödinger Lie algebra. In the general case, we give a sufficient condition for
the existence of infinite-dimensional simple g-Harish-Chandra modules.
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1. Introduction and description of the results

Construction and classification of modules are two fundamental problems in representa-
tion theory. In most of the cases, the problem of classification of all modules is known
to be very hard (i.e. wild), so one is naturally forced to consider special classes of mod-
ules, for example, simple modules. Classification of simple modules is also quite hard
in most of the cases. For example, for complex semi-simple Lie algebras, classification
of all simple modules is only known, in some sense, for the algebra sl2, see [Blo]. At
the same time, numerous families of simple modules for semi-simple Lie algebras are
very well understood, for example, simple highest weight modules, see [Ve, Hum08],
Whittaker modules, see [Kos78, BM], weight modules with finite-dimensional weight
spaces, see [Mat00], and Gelfand-Zeitlin modules, see [DOF, EMV, Web] and references
therein.

There are two natural generalizations of semi-simple Lie algebras: semi-simple Lie
superalgebras and non-semi-simple Lie algebras. For semi-simple Lie superalgebras, a
significant progress in classification of simple modules was recently made in [CM, CCM].
Basically, for a large class of Lie superalgebras, the results of [CM, CCM] reduce the
problem of classification of simple modules to a similar problem for the even part of the
superalgebra, which is a reductive Lie algebra. In contrast to this situation, for non-
semi-simple Lie algebras, very little is know. Apart from the main result of [Blo], which,
in addition to sl2, classifies simple modules over the Borel subalgebra of sl2, several
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special classes of simple modules were studied for various specific non-semi-simple Lie
algebras, see e.g. [DLMZ14, Wil11, CCS14, CC17, Lau18, BL17, BL18, MS19] and
references therein. We will now look at some of these and some other results in more
detail.

It seems that the so called current Lie algebras are the ones which are most studied and
best understood. These are defined as tensor product of a reductive Lie algebra with a
commutative unital associate algebra. For current Lie algebras, there is a full classifica-
tion of simple weight modules with finite-dimensional weight spaces, see [Lau18]. Also,
the highest weight theory for the truncated polynomial version of these Lie algebras is
developed in [Wil11]. Moreover, the center of the universal enveloping algebras of such
Lie algebras whose semi-simple part is of type A is described explicitly in [Mol].

A special family of truncated current Lie algebras is formed by the so called Takiff Lie
algebras, studied originally in [Tak71], which correspond to the case when one tensors
a reductive Lie algebra with the associative algebra of dual numbers. The Takiff sl2 is
also known as the complexification of the Lie algebra of the Euclidean group E(3), the
Lie group of orientation-preserving isometries of the three-dimensional Euclidean space.
It belongs to the family of conformal Galilei algebras, see e.g. [LMZ14]. Category O
for Takiff sl2 was recently studied in [MS19] and simple weight modules were classified
in [BL17].

The Schrödinger Lie algebra, see Section 5, is also an important and intensively stud-
ied example of a non-reductive Lie algebra. Its category O was studied in detail in
[DLMZ14], lowest weight modules were classified in [DDM97], and simple weight mod-
ules were classified in [Dub14, BL18].

A slight modification of the Schrödinger Lie algebra, called the centerless Schrödinger
Lie algebra belongs to the family of conformal Galilei algebras, see Section 7. As
their names suggest, the Schrödinger Lie algebra and conformal Galilei algebras are
of great importance in theoretical physics and seem to have originated from there.
For example, the Schrödinger Lie algebra comes from the Schrödinger Lie group, the
group of symmetries of the free particle Schrödinger equation, see [DDM97, Per77].
Conformal Galilei algebras are related to the non-relativistic version of the AdS/CFT
correspondence, see [BG09].

Several papers studied a generalization of Whittaker modules (originally defined in
[Kos78] for semi-simple Lie algebras), in the setup of conformal Galilei algebras and the
Schrödinger Lie algebra, see [CCS14, CSZ16, LMZ14, CC17]. Quasi-Whittaker modules
are modules on which the radical of the Lie algebra acts locally finitely.

In the present paper we initiate the study of modules over (non-semi-simple) Lie algebras
on which the action of the semi-simple part of the Lie algebra is locally finite, that is,
which are locally finite over the semi-simple part. This condition is, in a sense, the
opposite to the condition defining quasi-Whittaker modules. The obvious examples of
modules that are locally finite over the semi-simple part are simple finite-dimensional
modules over the semi-simple part on which the radical of our Lie algebra acts trivially.
However, we observe that, for many Lie algebras, there exist simple infinite-dimensional
modules that are locally finite over the semi-simple part. This motivates the problem
of classification of such modules, and we show that this problem can be completely
answered for the Takiff Lie algebra of sl2 and for the Schrödinger Lie algebra. Moreover,
the answer is both non-trivial and interesting. To our best knowledge, such modules
have not been studied before in the general case (however, for the Schrödinger Lie
algebra and the Takiff sl2, they belongs to a larger family of weight modules studied
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in detail in [BL17, BL18]). Let us now describe the content of the paper in more
detail.

If L is any finite-dimensional Lie algebra and g ⊆ L its semi-simple Levi subalgebra,
we study L-modules whose restriction to g decomposes into a direct sum of simple
finite-dimensional g-modules with finite multiplicities, and call them g-Harish-Chandra
modules. To justify the name, we note that there is an obvious analogy with the classical
theory of (g,K)-modules as in [Vog81], coming from the setup of real reductive Lie
groups. In the classical theory, any (g,K)-module splits as a direct sum of finite-
dimensional modules over the compact group K, and moreover, the multiplicities are
finite if the corresponding group representation is irreducible and unitary (a result by
Harish-Chandra). In our setup there is no such automatic splitting, so we “pretend”
that g is compact, i.e., we consider only those L-modules that split as g-modules into
a direct sum of finite-dimensional g-modules with finite multiplicities. Hopefully, this
analogy could be used to transfer parts of the Langlands classification, or the theory of
minimal K-types into our non-reductive algebraic setup. There is another analogy of
our setup with integrable modules over a Kac-Moody algebra, see [Kac90].

In Section 2, we introduce the basic setup that we work in. In Section 3, we roughly
describe “universal” g-Harish-Chandra modules for Takiff Lie algebras. In particular,
we show that such Lie algebras do indeed always have simple infinite-dimensional g-
Harish-Chandra modules, see Corollary 8.

In Sections 4 and 5 we prove our most concrete results: Theorem 30 provides a complete
classification of simple g-Harish-Chandra modules for the Takiff sl2, and Theorem 53
gives such a classification for the Schrödinger Lie algebra. These two answers have both
clear similarities and differences. In both cases we crucially use the highest weight the-
ory for corresponding algebras and appropriate analogues of completions functors. Also,
in both cases, we can consider semi-simple g-Harish-Chandra modules as a monoidal
representation of the monoidal category of finite-dimensional sl2-modules. We found
it surprizing that the combinatorial properties of the corresponding monoidal represen-
tation in the Takiff sl2 and the Schrödinger cases are rather different.

In case of the Takiff sl2, we obtain a family of modules V (n, χ) which are naturally
parameterized by n ∈ Z and χ ∈ C \ {0}. However, we show that this family has a
redundancy via non-trivial isomorphisms V (n, χ) ∼= V (−n,−χ). Roughly speaking, |n|
is the minimal g-type, and χ2 is the “purely radical part” of the central character. This
classifies all simple infinite-dimensional g-Harish-Chandra modules.

In case of the Schrödinger Lie algebra, we obtain a similar family of modules V (n, χ)
parameterized by n ∈ Z≥0 and χ ∈ C \ {0}, However, in contrast to the Takiff case,
this family is irredundant.

The modules mentioned above are very explicitly described. In both cases, we, more-
over, show that all groups of first self extensions of these modules are one-dimensional,
see Theorems 31 and 55. Additionally, we prove that the annihilators of all the above
modules in the universal enveloping algebra are centrally generated, see Theorems 37
and Corollary 57. Classification results in Sections 4 and 5 are deducible (with non-trivial
effort) from more general results of [BL17, BL18], however, we provide a completely
different, less computational and more conceptual approach.

For comparison, it is easy too see that the centerless Schrödinger Lie algebra does
not admit simple infinite-dimensional g-Harish-Chandra modules. Roughly speaking,
because its purely radical part of the center is trivial, see Remark 54 for details.
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We would like to point out that the methods we utilize for our classification go far
beyond direct calculations. We use various functorial constructions, which include,
in particular, an appropriate adjustment of Enright’s completion functor (based on
Arkhipov’s twisting functor), [Enr79, Deo80, KM02, AS03, Ark04, KM05]. Further
development of both, highest weight theory and properties of various Lie theoretic
functors as in [MSt07], for non-semi-simple Lie algebras, should provide an opportunity
for generalization of the results of this paper to, in the first step, other Takiff Lie
algebras and, further, general finite-dimensional Lie algebras.

In the most general case of an arbitrary finite-dimensional complex Lie algebra L and a
non-trivial Levi subalgebra g, it is clear that simple g-Harish-Chandra modules always
exist. Namely, the finite-dimensional L-modules are, of course, g-Harish-Chandra mod-
ules. In Theorem 60 of Section 6 we give a general sufficient condition for existence
of infinite-dimensional simple g-Harish-Chandra modules. The sufficient condition, as
we formulate it, requires that the nilradical of L intersects the centralizer in L of the
Cartan subalgebra of g. In this case we manage to use highest weight theory for L,
combined with various versions of twisting functors, to construct infinite-dimensional
simple g-Harish-Chandra modules. We also provide an example showing that our suf-
ficient condition is not necessary, in general: the semi-direct product of sl2 and its
4-dimensional simple module does not satisfy our sufficient condition and has trivial
highest weight theory in the sense that its simple highest weight modules coincide
with simple highest weight sl2-modules. However, using various combinatorial tricks
from [HHLS18], we show that this Lie algebra does admit simple infinite-dimensional
g-Harish-Chandra modules. This result can be found in Subsection 7.2.

Finally, in Subsection 7.3, in particular Theorem 67, we classify a class of sl2-Harish-
Chandra modules that are connected to highest weight modules, for the semi-direct
product of sl2 with its simple 5-dimensional module. The corresponding category
of semi-simple g-Harish-Chandra modules is, again, a monoidal representation of the
monoidal category of finite-dimensional sl2-modules. But the combinatorics of this
monoidal representation is completely different from the ones which we get in the Tak-
iff and the Schrödinger cases, see Remark 74. In particular, contrary to the previous
cases, in this case we obtain an example of two simple g-Harish-Chandra modules with
different sets of g-types, but with the same minimal g-type.

Comparison of the results of [Han19] with Lemmata 10 and 40 suggests a possibility of
an interesting connection between g-Harish-Chandra modules and higher-spin algebras
from [PRS90].

Acknowledgments. This research was partially supported by the Swedish Research
Council, Göran Gustafsson Stiftelse and Vergstiftelsen. R. M. was also partially sup-
ported by the QuantiXLie Center of Excellence grant no. KK.01.1.1.01.0004 funded by
the European Regional Development Fund.

2. Notation and preliminaries

We work over the complex numbers C. For a Lie algebra a, we denote by U(a) the
universal enveloping algebra of a.

Fix a finite-dimensional Lie algebra L over C, and fix its Levi decomposition L ∼= g⋉ r.
This is a semi-direct product, where g is a maximal semi-simple Lie subalgebra, unique
up to conjugation, and r = RadL is the radical of L , i.e., the unique maximal solvable
ideal.
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Definition 1. An L-module V is called g-Harish-Chandra module, if the restriction
of V to g decomposes as a direct sum of simple finite-dimensional g-modules, and
moreover, each isomorphism class of simple finite-dimensional g-modules occurs with a
finite multiplicity in V .

A simple g-submodule of a g-Harish-Chandra module V is called a g-type of V . The
sum of all g-submodules of V isomorphic to a given g-type is called the g-isotypic
component of V determined by this g-type.

Fix a Cartan subalgebra h ⊆ g. Every g-Harish-Chandra module is a weight module
with respect to h. However, infinite-dimensional g-Harish-Chandra modules might have
infinite-dimensional weight spaces.

Remark 2. Note that the notion of a g-Harish-Chandra module is different from the
notion of Harish-Chandra module from [Lau18]. In the latter paper, Harish-Chandra
modules are weight modules with finite-dimensional weight spaces. It would be natural
to call the modules from [Lau18] h-Harish-Chandra modules.

Denote by Nrad(L) the nilradical of L, by which we mean the intersection of kernels
of all finite-dimensional simple modules of L. It is a nilpotent ideal, but not necessarily
equal to the maximal nilpotent ideal. It is well known that Nrad(L) = [L,L]∩r = [L, r],
and L is reductive if and only if Nrad(L) = 0. Moreover, Nrad(L) is the minimal ideal
in L for which the quotient L

/

Nrad(L) is reductive. For proofs, see e.g. [Bou89,

Chapter I, §5.3.].

Example 3. If L = g ⋉ r is a reductive Lie algebra, then r is precisely the center of
L. If V is a simple g-Harish-Chandra module for L, then, by Schur’s lemma, r acts by
scalars on V . It follows that V is just a simple finite-dimensional L-module. So, the
notion of g-Harish-Chandra modules in not very interesting for reductive Lie algebras.

Fix a positive part ∆+(g, h) in the root system ∆(g, h), and a non-degenerate invariant
symmetric bilinear form 〈−,−〉 on h∗. We have the classical triangular decomposition
g = n−⊕h⊕n+. Further, fix a weight δ ∈ h∗ such that 〈δ, α〉 > 0 for all α ∈ ∆+(g, h)
and such that 〈δ, α〉 = 0, for an integral weight α, implies α = 0. Since L is a finite-
dimensional g-module with respect to the adjoint action, it decomposes as a direct sum
of its weight spaces Lµ, where µ varies over the set of integral weights in h∗. Consider
the following Lie subalgebras of L:

(1) ñ− :=
⊕

〈µ,δ〉<0

Lµ, h̃ :=
⊕

〈µ,δ〉=0

Lµ ñ+ :=
⊕

〈µ,δ〉>0

Lµ.

Note that this decomposition heavily depends on the choice of δ and not only on the
choice of ∆+(g, h). However, for example, for truncated current Lie algebras (which
include Takiff Lie algebras), the Schrödinger Lie algebra and conformal Galilei algebras,
the decomposition (1) only depends on the choice of ∆+(g, h). From the construction,

it is clear that ñ±∩g = n±, and h̃∩g = h. Moreover, from the condition prescribed on δ,

it follows that h̃ is precisely the centralizer of h in L. The decomposition L = ñ−⊕h̃⊕ñ+
does not satisfy, in general, all the axioms in [Wil11, Section 2], since we do not require
existence of any analogue of Chevalley involution (and even the dimensions of ñ− and
ñ+ might be different). However, it is good enough to define Verma modules with
reasonable properties.

For an element λ ∈ h̃∗, denote the one-dimensional b̃ := h̃⊕ ñ+-module where h̃ acts
as λ and ñ+ acts trivially, by Cλ. The Verma module with highest weight λ is defined
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as

(2) ∆(λ) := IndL
b̃
Cλ = U(L) ⊗

U(b̃)

Cλ
∼= U(ñ−)⊗

C

Cλ.

Let ∆±(L, h) denote the set of all µ such that Lµ 6= 0 and ±〈µ, δ〉 > 0. We also set
Γ± = Z≥0∆

±(L, h). Recall that the support of a weight module is the set of all weights
for which the corresponding weight spaces are non-zero. By the standard arguments
using PBW theorem (cf. [Hum08]), we have:

Proposition 4. The Verma module ∆(λ) is an h-weight module, whose h-support is
λ|h + Γ−. The λ|h-weight space is one-dimensional, and ∆(λ) is generated by this
weight vector, so any non-trivial quotient of ∆(λ) also has one-dimensional λ|h-weight
space. Moreover, ∆(λ) has a unique simple quotient, which we denote by L(λ).

For λ ∈ h∗, we denote by ∆g(λ) the classical Verma module for g with highest weight
λ with respect to ∆+(g, h), and by L(λ) the unique simple quotient of ∆g(λ).

3. g-Harish-Chandra modules for Takiff Lie algebras

3.1. Setup. Fix a finite-dimensional semi-simple Lie algebra g over C. Define the
associated Takiff Lie algebra T as

T := g⊗ D,

where D = C[x]/(x2) is the algebra of dual numbers. The Lie bracket of T is defined
in the following way:

[v ⊗ xi, w ⊗ xj ] := [v, w]⊗ xi+j .

We identify g with the subalgebra g⊗ 1 ⊆ T, and denote by ḡ = g⊗ x ⊆ T. Then ḡ is
a commutative ideal in T, and T ∼= g⋉ ḡ (the semi-direct product given by the adjoint
action of g on ḡ). For v ∈ g, we denote by v̄ = v ⊗ x ∈ ḡ.

Observe that the nilradical of T is Nrad(T) = [T, ḡ] = ḡ. This means that ḡ must
necessarily annihilate any simple finite-dimensional T-module.

In the triangular decomposition (1) for T, we have h̃ = h⊕ h̄ and ñ± = n± ⊕ n̄±. We
want to note that this is also a triangular decomposition in the sense of [Wil11]. A sim-
plicity criterion for Verma modules over T can be found in [Wil11, Theorem 7.1].

3.2. Purely Takiff part of the center. The universal enveloping algebra U(T) is free
as a module over its center Z(T), see [Geo94, Geo95, FO05]. In case g is of type A,
algebraically independent generators of the center are given explicitly in [Mol].

Proposition 5. There is an isomorphism of algebras

(3) Z(g) ∼= Z(T) ∩ U(ḡ).

Proof. This is clear since U(g) ∼= U(ḡ) as g-modules with respect to the adjoint action.
By taking g-invariants, we get (3). �

It is easy to see that the isomorphism can be obtained by putting bars on all Lie algebra
elements that appear in an expression in a fixed PBW-basis of elements from Z(g).

Hence we denote the right-hand side of (3) by Z(g). This will be referred to as the
purely Takiff part of the center Z(T). The full center Z(T) is in general bigger than

Z(g), see [Mol].
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3.3. Universal modules. Assume that the simple g-module L(λ) is finite-dimensional,
that is λ ∈ h∗ is integral, dominant and regular. Define

Q(λ) := IndTg L(λ) = U(T) ⊗
U(g)

L(λ) ∼= U(ḡ)⊗
C

L(λ).

Note that we have (see e.g. [Kna88, Proposition 6.5.])

(4) Q(λ) ∼= Q(0)⊗ L(λ),

where we consider L(λ) as a T-module with the trivial ḡ-action.

Proposition 6. We have the following isomorphism of algebras:

End(Q(0)) ∼= Z(g).

Proof. The module Q(0) is generated by 1⊗1 by construction, so any endomorphism of
Q(0) is uniquely determined by the image of 1⊗1. Denote this image by u⊗1, for some
u ∈ U(ḡ). The element u⊗1 generates the trivial g-submodule (since 1⊗1 does), so u

must commute with g. Of course, u commutes with ḡ. Hence u ∈ Z(T)∩U(ḡ) = Z(g).

Conversely, any u ∈ Z(g), being central, defines an endomorphism of Q(0). This
endomorphism maps 1⊗ 1 to u⊗ 1. The claim follows. �

For an algebra homomorphism χ : Z(g) → C, consider the corresponding universal
module

Q(λ, χ) := Q(λ)
/

mχQ(λ) ,

where mχ is the maximal ideal in Z(g) corresponding to χ. On Q(λ, χ), the purely
Takiff part of the center acts via the scalars prescribed by χ. Observe that from (4)
and the right-exactness of tensor product we have

(5) Q(λ, χ) ∼= Q(0, χ)⊗ L(λ).

For finite-dimensional simple g-modules L(µ), L(ν) and L(λ), denote by lµν,λ the

Littlewood-Richardson coefficient, i.e., the multiplicity of L(µ) in L(ν)⊗L(λ).

Proposition 7. (a) Let λ, χ be as before. The module Q(λ, χ) is a g-Harish-Chandra
module, and the multiplicities are given as follows:

(6) [Q(λ, χ) : L(µ)] =
∑

ν

dimL(ν)0 · l
µ
ν,λ < ∞.

(b) Let V be any simple T-module that has some finite-dimensional L(λ) as a simple
g-submodule. Then V is a quotient of Q(λ, χ) for a unique χ. In particular, V is
a g-Harish-Chandra module, and (6) gives an upper bound for the multiplicities of
its g-types.

Proof. (a) Suppose first that λ = 0. Then, as a g-module, Q(0) is isomorphic to
U(g) with respect to the adjoint action. Taking the χ-component of Q(0) cor-
responds to factoring U(g) by the ideal generated by the corresponding central
character of Z(g). From Kostant’s theorem (see [Jan83, Section 3.1]), it follows
that Q(0) decomposes as direct sum of finite-dimensional g-submodules, and that
[Q(0, χ) : L(µ)] = dimL(µ)0. The general statement now follows from (5).

Note that the value in (6) is finite, since, for fixed µ and λ, the value lµν,λ is non-zero
only for finitely many ν.

(b) This follows from Schur’s Lemma by adjunction. �
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Corollary 8. Given χ, there exists a unique simple T-module V which contains L(0) as
a g-submodule and has the Takiff part of the central character equal to χ. Moreover,
V is a g-Harish-Chandra module.

Furthermore, if χ does not correspond to the trivial T-module, then V is infinite-
dimensional.

Proof. By Proposition 7, the module Q(0, χ) has a unique occurrence of L(0), and
is generated by it. Therefore, the sum all its submodules not containing L(0) as a
composition factor is the unique maximal submodule; denote it by N . It follows that
V := Q(0, χ)/N is the unique simple quotient of Q(0, χ).

Suppose now that V is finite-dimensional. The nilradical ḡ must act trivially on it.
Because of simplicity, we must have V = L(0), which is a contradiction. �

Conjecture 9. For a “generic” χ, the module Q(0, χ) is simple.

We will prove this conjecture for the Takiff sl2 case in Section 4. We will also prove it
for the Schrödinger Lie algebra in Section 5 (but, strictly speaking, it is not a special
instance of the above conjecture). This is the starting point in our classification of
g-Harish-Chandra modules for these Lie algebras.

4. sl2-Harish-Chandra modules for the Takiff sl2

4.1. Setup. For this section, we fix the Takiff Lie algebra associated to g := sl2:

T = sl2 ⊗ D = sl2 ⋉ sl2.

We use the usual notation f, h, e for the standard basis elements of sl2, and f̄ , h̄, ē for
their counterparts in the ideal sl2.

Our classification of simple g-Harish-Chandra modules for the Takiff sl2 should be, of
course, deducible from the classification of all simple weight modules given in [BL17].
However, our approach is completely different and, unlike the approach of [BL17], has
clear potential for generalization to other Lie algebras. Also, our description of simple g-
Harish-Chandra modules is much more explicit, and it provides a connection to highest
weight theory for T and utilizes the use of analogues of projective functors for T.

The center Z(T) is a polynomial algebra generated by two algebraically independent
elements (see [Mol]):

C = h̄h+ 2f̄e+ 2ēf,(7)

C̄ = h̄2 + 4f̄ ē.

The purely Takiff part of the center is, of course, Z(g) = C[C̄]. So, a homomorphism

χ : Z(g) → C is uniquely determined by the value χ(C̄), which can be an arbitrary
complex number. In the remainder, we write χ for χ(C̄), for the sake of brevity.

4.2. Universal modules. We can describe Q(0, χ) very explicitly.

Lemma 10. (a) As T-modules, we have Q(0) ∼= U(ḡ) and Q(0, χ) ∼= U(ḡ)
/

(C̄ − χ) ,
where g acts by the adjoint action, and ḡ by the left multiplication.

(b) The set
{
f̄ ih̄ǫēj : i, j ≥ 0, ǫ ∈ {0, 1}

}
is a basis for Q(0, χ).

(c) As a g-module, Q(0, χ) ∼=
⊕

k≥0 L(2k). Moreover, ēk is the highest weight vector

in L(2k).
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(d) C acts as zero on Q(0) and on every Q(0, χ).

Proof. The first claim is clear. The second one follows from the PBW basis in U(g)
and the relation h̄2 = −4f̄ ē+ χ in the quotient.

The decomposition in the third claim is given by Kostant’s theorem, see [Jan83, Sec-
tion 3.1]. Since ēk is of weight 2k and annihilated by e, it must be highest weight vector
of a g-submodule isomorphic to L(2k), which, we know, occurs uniquely in Q(0, χ).

The last claim follows from the definitions by a direct calculation. �

The action of T on U(ḡ) and its quotients will be denoted by ◦, in order not to confuse
it with the multiplication · in the enveloping algebra. These coincide for ḡ but not for g,
where the action is adjoint. Note that U(ḡ) is not closed under the left multiplication
with the whole T.

Theorem 11. The module Q(0, χ) is simple if and only if χ 6= 0.

The module Q(0, 0) has infinite length, and a T-filtration whose composition factors
are L(0), L(2), L(4) . . . with the trivial action of ḡ.

Proof. Assume χ 6= 0, and let V ⊆ Q(0, χ) be non-zero submodule. Take k to be the
smallest non-negative integer such that L(2k) ⊆ V . If k = 0, then V = Q(0, χ) since
L(0) generates Q(0, χ), and we are done. So, let us assume now k ≥ 1. We have
ēk ∈ V , so if we find an element from U(T) that maps ēk ∈ V to ēk−1, we will get a
contradiction. That element can be taken as 1

kχ
(4kf̄ − h̄f), namely:

(4kf̄ − h̄f) ◦ ēk = 4kf̄ēk − h̄[f, ēk]

= 4kf̄ēk + kh̄2ēk−1

= 4kf̄ēk + k(−4f̄ ē+ χ)ēk−1

= kχēk−1.

We conclude that Q(0, χ) is simple.

For the converse, assume χ = 0. We will show that for any k ≥ 0, the subspace
Qk := ⊕t≥kL(2t) is a submodule. From this, the theorem will follow.

Let us first prove that L(2k) is equal to the span of
{
f̄ ih̄ǫēj : ǫ ∈ {0, 1}, i+ ǫ+ j = k

}
.

This set contains ēk, so it is enough to see that it is stable under f . We calculate the
two cases whether ǫ is 0 or 1 separately:

f ◦ f̄ iēj = f̄ i[f, ēj ] = −jf̄ ih̄ēj−1,

f ◦ f̄ ih̄ēj = f̄ i[f, h̄]ēj + f̄ ih̄[f, ēj ]

= 2f̄ i+1ēj − jf̄ ih̄2ēj−1

= 2f̄ i+1ēj + 4jf̄ i+1ēj

= (4j + 2)f̄ i+1ēj .

From this description of L(2k), one easily checks that f̄ , h̄, ē map L(2k) to L(2k+2).
From this, it follows that Qk is a submodule. �

Remark 12 (A sketch of an alternative proof of simplicity of Q(0, χ) for χ 6= 0).
Suppose V is a T-submodule of Q(0, χ) containing L(2k), with k > 0 minimal. By
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applying ē, we see that, as a g-module, V ∼= L(2k) ⊕ L(2k + 2) ⊕ . . .. This implies
that the quotient

Q(0, χ)/V ∼= L(0)⊕ L(2)⊕ . . .⊕ L(2k − 2)

is simple as a T-module and is finite-dimensional. Since C̄ consists of elements from
the nilradical of T, it must act as zero on this quotient. This is a contradiction with
χ 6= 0.

To classify simple g-Harish-Chandra modules, by (5) and Proposition 7(b) we should
find all simple quotients of all tensor products of Q(0, χ) with finite-dimensional g-
modules. It is not easy to do this directly, so we establish a connection with Verma
modules, and perform calculations there.

4.3. Verma modules. Verma modules for the Takiff sl2 are studied in detail in [MS19].

Recall (2) and Proposition 4. Also recall that h̃ = h ⊕ h̄ and ñ± = n± ⊕ n̄±. For a

weight λ ∈ h̃∗ = h∗ ⊕ h̄∗, we denote λ1 := λ(h) and λ2 := λ(h̄).

Proposition 13 ([MS19, Proposition 1] or [Wil11, Theorem 7.1]). The Verma module
∆(λ) is simple if and only if λ2 6= 0.

The generators of the center C and C̄ act on the Verma module ∆(λ) as the scalars
λ2(λ1+2) and λ2

2 respectively, see (7). Therefore, with our convection, χ = λ2
2.

Lemma 14. Non-isomorphic Verma modules ∆(λ) and ∆(λ′) have the same central
character if and only if either λ′

2 = λ2 = 0, or λ′
2 = −λ2 6= 0 and λ′

1 = −λ1 − 4.

Proof. From the explicit description of generators of the center, we get a system of
equations

{

λ2(λ1 + 2) = λ′
2(λ

′
1 + 2)

λ2
2 = (λ′

2)
2

.

which is easily solved. �

Denote by ∆g(µ) = U(g) ⊗U(b) Cµ the classical Verma module for g with highest
weight µ ∈ C, and by P g(µ) its indecomposable projective cover in the category O
for g. Recall that, if µ ∈ Z≥0, P g(−µ − 2) is the unique non-trivial extension of
∆g(−µ − 2) by ∆g(µ), and that there are no extensions between other ∆g’s (inside
category O).

Lemma 15. As a g-module, ∆(λ) has a filtration with subquotients isomorphic to
∆g(λ1 − 2k), k = 0, 1, 2, . . ..

If λ2 = 0 or λ1 6∈ Z≥0, then, as a g-module, we have

∆(λ) ∼=
⊕

k≥0

∆g(λ1 − 2k).

Otherwise (i.e. if λ2 6= 0 and λ1 ∈ Z≥0), we have, as g-modules,

∆(λ) ∼=







λ1
2
+1

⊕

k=1

P g(−2k)⊕
⊕

k≥2

∆g(−λ1 − 2k) : λ1 even,

∆g(−1)⊕

λ1+1

2⊕

k=1

P g(−2k − 1)⊕
⊕

k≥2

∆g(−λ1 − 2k) : λ1 odd.
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Proof. Denote by vλ a basis element of Cλ. Then ∆(λ) has a basis of weight vectors
{f if̄ jvλ : i, j ≥ 0}. A direct computation (with help of [Hum72, Lemma 21.2] and its
Takiff analogue, alternatively use [CSZ16, Lemma 2.1]) shows that

e · f if̄ jvλ = [e, f i]f̄ jvλ + f i[e, f̄ j]vλ(8)

= i(λ1 − i− 2j + 1)f i−1f̄ jvλ + jλ2f
if̄ j−1vλ.

This implies that the required filtration is given by the degree of f̄ . The subquotients
are given by the span of {f if̄kvλ : i ≥ 0}, which is clearly isomorphic to ∆g(λ1 − 2k).

If λ2 = 0, it is clear that the span of {f if̄kvλ : i ≥ 0}, k fixed, is a g-submodule.
If λ1 6∈ Z≥0, then there are no possible non-trivial extensions between ∆g(λ1 − 2k),
k ≥ 0, hence ∆(λ) splits into as a direct sum of these.

Suppose now λ2 6= 0 and λ1 ∈ Z≥0. Fix µ ∈ {0, 1, . . . , λ1} of the same parity as λ1.
It is enough to show that ∆g(−µ− 2) is not a g-submodule of ∆(λ). Suppose it is. Its
highest weight vector v−µ−2 must be a non-trivial linear combination of f if̄ jvλ with

i+ j = λ1+µ
2 + 1 =: t, with a non-zero coefficient by f̄ tvλ.

From (8) it follows that the matrix of e in bases f if̄ t−ivλ, i = 0, . . . , t, and f if̄ t−1−ivλ,
i = 0, . . . , t− 1, has the form













∗ ∗ 0 . . . 0 0 0
0 ∗ ∗ . . . 0 0 0

0 0 ∗
. . .

...
...

...
...

...
...

. . . ∗ 0 0
0 0 0 . . . ∗ ∗ 0
0 0 0 . . . 0 ∗ ∗













,

with all ∗ non-zero, except the one on the position (µ+ 1, µ+ 2), where we have zero

(because the bracket in (8) is zero for fµ+1f̄(
λ1−µ

2 )vλ). From this, it follows that e
cannot annihilate v−µ−2, a contradiction. �

Lemma 16. For λ2 6= 0 and µ ∈ Z≥0 there is an isomorphism of T-modules

∆(λ)⊗ L(µ) ∼= ∆(λ1 + µ, λ2)⊕∆(λ1 + µ− 2, λ2)⊕ . . .⊕∆(λ1 − µ, λ2).

Proof. In the same way as for the semi-simple case, see e.g. [Hum08, 6.3.] one sees
that the left-hand side has a filtration with subquotients equal to the summands on the
right-hand side. But these subquotients have different central characters, which follows
from Lemma 14, so they split. �

4.4. Enright-Arkhipov completion. Here we show that g-Harish-Chandra modules
naturally occur in a certain completion (or localization) of Verma modules. We consider
a combination of two of such constructions, originally given by Enright in [Enr79], and
Arkhipov in [Ark04]. See also [Deo80, AS03, KM02, KM05]. To ease the notation a
little bit, we will write U instead of U(T) for the rest of this section.

Fix an ad-nilpotent element x ∈ T (for example f , e, or ē, which we will use), and
denote by U(x) the localization of the algebra U by the multiplicative set generated by
x. This localization satisfies the Ore conditions by [Mat00, Lemma 4.2.], but this is
also visible from the proof of Lemma 32. Since U has no zero-divisors, the canonical
map U → U(x) is injective. Hence we may consider the U -U -bimodule

Sx := U(x)/U .
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Lemma 17. (a) Suppose {x, x1, . . . , x5} is a basis for T. The set of all monomials

{xkxk1

1 . . . xk5

5 : k ∈ Z, k1, . . . , k5 ∈ Z≥0} is a basis for U(x).

(b) The analogous set, but with k ∈ Z<0, is a basis for the quotient Sx.

Proof. The set in the first claim is a generating set for U(x), which follows from PBW
and the properties of Ore localization. But this set is also linearly independent, since for
its any finite subset, the multiplication from the left by xm for some large m produces a
linearly independent set in U ≤ U(x). This proves the first claim and the second claim
follows from it. �

Denote by j : M → U(x)⊗U M the canonical map. By using the right exactness of the
tensor product, we can identify

(9) Sx ⊗
U
M ∼=

(

U(x) ⊗
U
M

)
/

j(M) .

Moreover, if M is a T-module on which x acts injectively, then the canonical map j is
injective. In particular, this is true if M is a Verma module ∆(λ) and x = f .

Lemma 18 ([Deo80, AS03]). Fix x ∈ {f, e, f̄ , ē}, let M be T-module, and L a finite-
dimensional T-module. Then there is a natural isomorphism of T-modules

Sx ⊗
U
(M ⊗ L) ∼=

(

Sx ⊗
U
M

)

⊗ L.

Proof. There is an isomorphism U(x) ⊗U (M ⊗ L) → (U(x) ⊗U M)⊗ L given by

x−n ⊗ (m⊗ v) 7→
∑

k≥0

(−1)k
(
n+ k − 1

k

)

(x−n−k ⊗m)⊗ xkv,

with the inverse given by (x−n ⊗ m) ⊗ v 7→ x−ar ⊗
∑

k≥0

(
ar
k

)
(xar−n−km ⊗ xkv),

where r, a ∈ Z>0 are chosen so that xr annihilates L and (r− 1)a ≥ n. This is proved
in [Deo80, Theorem 3.1] and [AS03, Theorem 3.2.] for the semi-simple case, but the
proof is analogous in general. In proving that these maps compose to the identity, the
following combinatorial formula is helpful:

∑n
k=0(−1)k

(
a

n−k

)(
b+k
k

)
=

(
a−b−1

n

)
.

One can check that these isomorphisms preserve the canonical images of M ⊗ L in
both sides, see (9), so they induce the required isomorphisms on the quotients. �

For a T-module M , we write xM for the set of all elements m ∈ M for which the action
of x is locally finite, in the sense that dimC[x]m < ∞. Note that this is a variant of
the Zuckerman functor.

Lemma 19. For a T-module M , xM is a T-submodule. Moreover, the assignment
M 7→ xM is a left-exact functor in the obvious way.

Proof. Since x is assumed to be ad-nilpotent, the claim follows from the formula in
[Hum72, Lemma 21.4.]. �

Definition 20. For a T-module M , define

(10) EA(M) :=
e(

Sf ⊗
U
M

)

.

This is a functor on the category of T-modules in the obvious way, which we call
Enright-Arkhipov’s completion functor.
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Proposition 21. The functor EA commutes with tensoring with a finite-dimensional
T-module. More precisely, let M be a T-module, and L a finite-dimensional T-module.
Then there is a natural isomorphism of T-modules

EA(M ⊗ L) ∼= EA(M)⊗ L.

Proof. Because of Lemma 18, it is enough to show that e(M ⊗ L) = (eM) ⊗ L for
g-modulesM and L with L = L(µ) simple finite-dimensional. This is proved in [Deo80,
Corollary 3.2], but we also give a proof for the sake of completeness.

The inclusion (eM) ⊗ L ⊆
e
(M ⊗ L) is trivial. For the converse, denote by v the

lowest weight vector of L. Then v, ev, . . . , eµv is a basis for L. Take a general element
m =

∑µ
i=0 mi ⊗ eiv ∈ e(M ⊗ L), and observe that for n > µ we have

en ·m =

µ
∑

i=0

µ−i
∑

j=0

(
n

j

)

en−jmi ⊗ ei+jv

=

µ
∑

i=0



enmi +
i−1∑

j=0

(
n

i− j

)

en+j−imj



⊗ eiv.

For a fixed i, the vectors inside the big brackets must span a finite-dimensional space
when n varies. From this, by an induction on i follows that enmi span a finite-
dimensional space, hence m ∈ (eM)⊗ L. �

Example 22. Let us consider ∆g(µ), with µ ∈ C. From Lemma 17 it follows that
the set {f−kvµ : k > 0} is a basis for Sf ⊗U M (and from an argument for linear
independence very similar to the one in the proof of Lemma 17). One can easily prove
by induction the following commutation relations (similar to [Maz10, 3.5]):

[h, f−k] = 2kf−k,(11)

[e, f−k] = −kf−k−1(h+ k + 1).

From this, it is not hard to see that

EA(∆g(µ)) ∼=

{

L(−µ− 2) : µ ∈ Z and µ ≤ −2,

0 : otherwise.

Similarly, one sees that EA(P g(µ)) = 0 for µ ∈ Z and µ ≤ −2. (Or using the fact
that big projective modules can be obtained by tensoring dominant Verma modules
with finite-dimensional modules, together with Proposition 21).

Recall that we use notation λ = (λ1, λ2) ∈ h̃∗, with λ1 = λ(h) and λ2 = λ(h̄).

Theorem 23. Take λ with λ1 ∈ Z and λ2 6= 0. Then EA(∆(λ)) is a simple g-Harish-
Chandra module. As a g-module, it decomposes as follows:

(12) EA(∆(λ)) ∼=
⊕

k≥0

L(|λ1 + 2|+ 2k).

Proof. Lemma 15, the fact that the functor EA commutes with the forgetful functor
from T-modules to g-modules, and Example 22 imply (12).

From Lemma 17 we have a basis for Sf ⊗U ∆(λ) consisting of f−if̄ jvλ, for i ≥ 1 and
j ≥ 0. Since the lowest weight vector of a g-type L(µ) (µ of the same parity as λ1)
inside EA(∆(λ)) must be annihilated by f , it must be (up to scalar) equal to f−1f̄ tvλ,

where t = µ+λ1

2 + 1.
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Now we will prove that EA(∆(λ)) is simple. Let V be its non-zero submodule, and
suppose it contains L(µ) for some µ from (12). By applying f̄ on f−1f̄ tvλ, we get
that L(µ+ 2k) ⊆ V for all k ≥ 0.

To prove that V = EA(∆(λ)), it is enough to assume µ > |λ1 + 2| and to find an
element in U(T) that maps f−1f̄ tvλ to f−1f̄ t−1vλ.

In addition to (11), we will use the following commutation relations, whose proofs are
analogous to the ones for (11):

[h̄, f−k] = 2kf−k−1f̄ ,(13)

[ē, f−k] = −kf−k−1h̄− k(k + 1)f−k−2f̄ .

From this, we have:

e · f−1f̄ tvλ = [e, f−1]f̄ tvλ + f−1[e, f̄ t]vλ

= −f−2(h+ 2)f̄ tvλ + tλ2f
−1f̄ t−1vλ

= µf−2f̄ tvλ + tλ2f
−1f̄ t−1vλ,

h̄e · f−1f̄ tvλ = µh̄f−2f̄ tvλ + tλ2h̄f
−1f̄ t−1vλ

= µ[h̄, f−2]f̄ tvλ + µλ2f
−2f̄ tvλ + tλ2[h̄, f

−1]f̄ t−1vλ + tλ2
2f

−1f̄ t−1vλ

= 4µf−3f̄ t+1vλ + (λ1 + 2µ+ 2)λ2f
−2f̄ tvλ + tλ2

2f
−1f̄ t−1vλ,

2µē · f−1f̄ tvλ = 2µ[ē, f−1]f̄ tvλ

= −4µf−3f̄ t+1vλ − 2µλ2f
−2f̄ tvλ.

From this it follows that

(h̄e− 2µē) · f−1f̄ tvλ = (λ1 + 2)λ2f
−2f̄ tvλ + tλ2

2f
−1f̄ t−1vλ.

Now we claim that a non-trivial linear combination of e and (h̄e − 2µē) will map
f−1f̄ tvλ to f−1f̄ t−1vλ. This is true, because the determinant

∣
∣
∣
∣

µ (λ1 + 2)λ2

tλ2 tλ2
2

∣
∣
∣
∣
= λ2

2(µ+ λ1 + 2)(µ− λ1 − 2) 6= 0.

This finishes the proof of simplicity. �

Remark 24 (A sketch of an alternative proof of simplicity of EA(∆(λ)) for λ1 ∈ Z

and λ2 6= 0). Suppose V is a submodule of EA(∆(λ)) having L(µ), µ > |λ1 + 2|
minimal. By applying f̄ , we see that as a g-module, V ∼= L(µ)⊕ L(µ+ 2)⊕ . . .. This
implies that the quotient EA(∆(λ))/V ∼= L(|λ1+2|)⊕L(|λ1+2|+2)⊕ . . .⊕L(µ−2)
is simple as a T-module and finite-dimensional. Since C̄ consists of elements from the
nilradical of T, it must act as zero on this quotient. But C̄ is central, so it still acts as
λ2
2 on the localization, a contradiction.

4.5. Classification. In this subsection, we use the relation with highest weight theory
established above to classify all simple g-Harish-Chandra modules for T. It will be more
convenient to shift the notation for the first parameter in our modules by −2.

Definition 25. For n ∈ Z and λ2 6= 0, denote

V (n, λ2) := EA(∆(n− 2, λ2)).

Corollary 26. The module V (n, λ2) is a simple g-Harish-Chandra module, it has g-
types L(|n|), L(|n|+ 2), L(|n|+ 4) . . . and each of these occurs with multiplicity one.

If V (n, λ2) ∼= V (n′, λ′
2), then (n′, λ′

2) = (n, λ2) or (−n,−λ2).
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Proof. The first statement follows from Theorem 23.

It is clear that the functor EA preserves central character. So, the generators of the
center C and C̄ act as the scalars nλ2 and λ2

2, respectively. From this the second
statement follows. �

We will see later in this subsection that the modules V (n, λ2) exhaust all infinite-
dimensional simple g-Harish-Chandra modules.

On Figure 1 to 4 we present several V (n, λ2)’s, and how they are constructed. The
gray area on the left hand-side is the Verma module, decomposed into rows according
to Lemma 15, and furthermore, into weight spaces. The remaining bullets represent Sf

tensored with the Verma module. The arrows represent non-zero action of e, and the
light-gray area on the right hand-side contains vectors not having a finite e-orbit. The
remaining (not shaded) part is our V (n, λ2), with its g-types clearly visible.

From Corollary 8, Theorem 11 and Corollary 26 we have the following consequence:

Corollary 27. For λ2 6= 0 we have V (0, λ2) ∼= V (0,−λ2) ∼= Q(0, λ2
2).

From Lemma 16, Proposition 21, and the definition of V (n, λ2), we have:

Proposition 28. For n ∈ Z, λ2 6= 0 and µ ∈ Z≥0, we have the following isomorphism
of T-modules:

V (n, λ2)⊗ L(µ) ∼= V (n+ µ, λ2)⊕ V (n+ µ− 2, λ2)⊕ . . .⊕ V (n− µ, λ2).

Now we can completely describe the universal modules:

Proposition 29. For n ∈ Z≥0 and χ 6= 0, choose any square root λ2 of χ. Then

Q(n, χ) ∼= V (n, λ2)⊕ V (n− 2, λ2)⊕ . . .⊕ V (−n, λ2).

Moreover, V (n, λ2) ∼= V (−n,−λ2).

Proof. The first claim follows from Proposition 28, Corollary 27 and (5). The second
claim follows from the first one by comparing both choices ±λ2 and central characters
of the summands. �

Theorem 30. Let V be a simple g-Harish-Chandra module for T. Denote by χ = χ(C̄)
the purely Takiff part of the central character, and suppose L(n), n ∈ Z≥0, is the
minimal g-type of V .

• If χ 6= 0, then V ∼= V (n, λ2), for a square root λ2 of χ.

• If χ = 0, then V ∼= L(n) with the trivial ḡ-action.

In other words, V (n, λ2), n ∈ Z, λ2 ∈ C\{0}, together with the finite-dimensional sim-
ple g-modules constitute a complete list of simple g-Harish-Chandra modules for T. The
only isomorphisms between different members of the list are V (n, λ2) ∼= V (−n,−λ2).

Proof. By Proposition 7(b), V is a quotient of Q(n, χ).

If χ 6= 0, from Proposition 29 and Corollary 26 we see that the only possible choices
with the correct minimal g-type are V (n, λ2) or V (n,−λ2).

If χ = 0, by the second part of Theorem 11, we see that the only possible simple
quotients of Q(n, 0) ∼= Q(0, 0) ⊗ L(n) are just finite-dimensional simple g-modules
with the trivial ḡ-action. �
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Figure 1. V (−1, λ2) = EA(∆(−3, λ2))

. . . . . .

. . . . . .

. . . . . .

. . .

−6 −4 −2 0 2 4 6

Figure 2. V (0, λ2) = EA(∆(−2, λ2))

. . . . . .

. . . . . .

. . . . . .

. . .

−5 −3 −1 1 3 5

Figure 3. V (1, λ2) = EA(∆(−1, λ2))

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . .

−6 −4 −2 0 2 4 6

Figure 4. V (2, λ2) = EA(∆(0, λ2))

4.6. Extensions. Here we calculate the first extension groups of simple g-Harish-
Chandra modules, restricting to the infinite-dimensional cases, i.e., a non-trivial central
character. Since in that case non-isomorphic g-Harish-Chandra modules have different
central characters, there are no non-trivial extensions between them. So it only makes
sense to calculate the self-extensions.

Theorem 31. For an infinite-dimensional simple g-Harish-Chandra module V , we have

Ext1(V, V ) ∼= C.

Proof. Assume first that V = Q(0, χ) for χ 6= 0, and suppose we have a non-split

short exact sequence 0 → V
i
→֒ M

p
։ V → 0. Denote by 1 ∈ V the generator from
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L(0), set w = i(1) ∈ M and find v ∈ M such that p(v) = 1. Since the sequence must
split in the category of g-modules, v generates the trivial g-submodule in M . By the
universal property, there is a T-homomorphism f : Q(0) → M , and the triangle below
commutes:

Q(0)

f

�� !!❈
❈

❈

❈

❈

❈

❈

❈

0 // V �

�

// M // // V // 0.

The map f must be surjective, since otherwise its image would define a splitting of
the short exact sequence. So, there is an element in Q(0) that maps to w via f ;
by Lemma 10 and Proposition 6 such an element is necessarily of the form p(C̄) for
some polynomial p. Since the triangle above commutes, we must have p(χ) = 0.
Since [M : L(0)] = 2, we can take p(C̄) = C̄ − χ. From this one can see that Ker f

is generated by (C̄ − χ)2, i.e., M ∼= U(ḡ)
/

(C̄ − χ)2 . This uniquely determines M .
Conversely, one sees directly that such M defines a non-split self-extension of Q(0, χ).

The general statement is obtained from this by translation functors, i.e., tensoring
extensions of Q(0, χ) by L(n) and then taking the component with the correct cen-
tral character (see Proposition 28). This functor defines a homomorphism of abelian
groups Ext1(V (0, λ2), V (0, λ2)) → Ext1(V (n, λ2), V (n, λ2)). In the same way we get
a homomorphism in the other direction.

The fact that these homomorphisms compose to the identities on the Ext1 groups is
an easy application of the 5-lemma. �

4.7. Annihilators. We will prove here that the infinite-dimensional simple g-Harish-
Chandra modules have the same annihilators in U = U(T) as the corresponding Verma
modules. We start by showing that, in the cases we are interested in, the localization
does not decrease the annihilator. Then we construct a certain “inverse” of the functor
EA, which will produce Verma modules out of g-Harish-Chandra modules. This will
be given by the localization by ē, i.e. tensoring with Sē over U .

Lemma 32. Let x be an ad-nilpotent element in T, and M a T-module on which x
acts injectively. Then in U we have

Ann(M) = Ann

(

U(x) ⊗
U
M

)

⊆ Ann

(

Sx ⊗
U
M

)

.

Proof. The only non-obvious thing to prove is if u ∈ Ann(M), then ux−n ⊗m = 0,
for all n ≥ 1 and m ∈ M .

By assumption, for any u ∈ U there exists k1 > 0 such that

0 = (ad(x))
k1(u) =

k1∑

i=0

(−1)i
(
k1
i

)

xiuxk1−i,

so xk1u = u1x for u1 :=
∑k1−1

i=0 (−1)k1+i
(
k1

i

)
xiuxk1−i−1. If u ∈ Ann(M), then so

is u1 too, since Ann(M) is a two-sided ideal. We can inductively apply the same
procedure on u1 to get k2 such that xk2u1 = u2x, etc. Repeating this n times, we get
xknun−1 = un for some un ∈ Ann(M). From the construction it follows that

xkn+...+k1 · ux−n ⊗m = un ⊗m = 1⊗ unm = 0.

Since x acts injectively on M , the same is true for U(x) ⊗U M , so we conclude that

ux−n ⊗m = 0. �
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Proposition 33. Suppose n ∈ Z and λ2 6= 0.

(a) The element ē acts injectively on V (n, λ2).

(b) The module Sē ⊗U V (n, λ2) is isomorphic to the direct sum of Verma modules
∆(n− 2, λ2)⊕∆(−n− 2,−λ2).

Proof. The first claim follows from Lemma 10(b) for V (0, λ2) ∼= Q(0, λ2
2), and from

Proposition 29 for general V (n, λ2).

The second claim we also prove first for n = 0, and again translate the result to the
other cases. From Lemma 10(b), we get a basis for W := Sē⊗U Q(0, λ2

2) consisting of

(ē)−kf̄ lh̄ǫ, for k > 0, l ≥ 0, ǫ ∈ {0, 1},

where g acts by the adjoint action, and ḡ by the (commutative) multiplication. We
denote this action of T by ◦.

Consider the following two elements in W :

w± := (ē)−1 ±
1

λ2
(ē)−1h̄.

It is an easy calculation to see that e ◦ w± = ē ◦ w± = 0, h ◦ w± = −2w±, and
h̄ ◦ w± = ±λ2w±, from which it follows by the universal property of Verma modules
that each w± generates a copy of ∆(−2,±λ2) in W . Because of their simplicity, these
submodules can only intersect trivially. By comparing the dimensions of weight spaces,
we conclude that W cannot have any other composition factor, i.e.,

(14) W ∼= ∆(−2, λ2)⊕∆(−2,−λ2).

In general, we calculate Sē ⊗U Q(n, λ2
2) in two ways and compare the results:

Sē ⊗
U
Q(n, λ2

2)
∼= Sē ⊗

U

(

Q(0, λ2
2)⊗ L(n)

)

by (5),

∼=

(

Sē ⊗
U
Q(0, λ2

2)

)

⊗ L(n) by Lemma 18,

∼=
(
∆(−2, λ2)⊕∆(−2,−λ2)

)
⊗ L(n) by (14),

∼=

n⊕

k=0

∆(n− 2− 2k, λ2)⊕
n⊕

k=0

∆(n− 2− 2k,−λ2) by Lemma 16.(15)

On the other hand, by Proposition 29 we have

(16) Sē ⊗
U
Q(n, λ2

2)
∼=

n⊕

k=0

Sē ⊗
U
V (n− 2k, λ2).

By comparing the central characters (which are preserved under the localization) of the
direct summands in (15) and (16), the claim (b) follows. �

From Lemma 32, Proposition 33 and the definition of V (n, λ2) we have:

Corollary 34. Suppose n ∈ Z and λ2 6= 0. Then

Ann(V (n, λ2)) = Ann(∆(n− 2, λ2)) = Ann(∆(−n− 2,−λ2)).
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We want to prove that these annihilators are centrally generated. It is easier to do
this for Verma modules. This has already been proved in [BL17, Proposition 6.1]. We
present a different and a more direct proof, and along the way reveal some structure of
the quotients of U by the centrally generated ideals.

For this, we need to express elements of U modulo a maximal ideal in the center in a
convenient way. This we describe in the next two lemmas. We denote by U0 := U(T)0,
the zero-weight space of h in U .

Lemma 35. The subalgebra U0 of U is generated by S = {h, h̄, fe, f̄e, f ē, f̄ ē}.

Proof. We need to prove that any product x = x1x2 . . . xk, where each xi belongs to
the standard basis of T, with the property that the number of i’s for which xi ∈ {f, f̄}
is equal to the number of j’s for which xj ∈ {e, ē}, can be generated by elements in S.
We prove this by induction on k. If x1x2 . . . xk consists only of h and h̄, we are done.
If not, chose some xi ∈ {f, f̄} and xj ∈ {e, ē}, and assume without loss of generality
i < j. We commute them to the right-most place:

x = (x1 . . . x̂i . . . x̂j . . . xk
︸ ︷︷ ︸

x′

)(xixj
︸︷︷︸

∈S

) +
∑

t

yt,

where the factors with hat are omitted. It is clear from the commutation relations that
x′ and all yt are products of the basis elements with the same property, but shorter.
We are done by induction. �

Lemma 36. Fix an algebra homomorphism χ : Z(T) → C. For any u ∈ U0
/

U0 ·Kerχ
there exists n ∈ Z≥0 such that (f̄ ē)n · u is equal to a linear combination of monomials

of the form hk(f ē)
l(
h̄
)m

for k, l,m ∈ Z≥0, modulo U0 ·Kerχ.

Proof. In the quotient above, by using (7) we can express f̄ ē as a linear combination
of h̄2 and 1, and also f̄e as a linear combination of h̄h, h̄, f ē and 1. Using this with
Lemma 10, we see that the generators in the quotient are just h, h̄, fe and f ē.

First let us assume that u = x1x2 . . . xr, a product of these four generators in any
order. Since h commutes with everything here, we can ignore it. Denote by a = fe,
b = f ē, c = h̄, χ1 = χ(h) and χ2 = χ(h̄). One can check that we have the following
relations in the quotient:

[b, a] = ac− hb,(17)

[c, a] = 4b+ hc+ 2c− χ1,(18)

[c, b] =
1

2
c2 −

1

2
χ2,(19)

f̄ ē · a = −b2 − hc2 −
3

2
c2 − hbc− 2bc+

χ1

2
b+

χ1

2
c+

χ2

2
.(20)

Suppose that x1 6= a, but some xi = a, and assume i is minimal. Using the relations
(17) and (18), we commute xi−1xi = xixi−1 + [xi−1, xi]. This way u becomes a
sum of several monomials, each of which has either one a less, or have their most-left
a one place closer to the most left position. It follows that we can move this a to
the most left part in a finite number of steps, i.e., we can express u as a finite sum
u =

∑
ayt+

∑
wt, where yt is a finite product of a’s, b’s and c’s, but has at least one

a less than the original expression of u had, and wt is a finite product of b’s and c’s.

From (20) and the relation 4f̄ ē = χ2 − c2, it follows that f̄ ē · u is a finite sum
∑

zt,
where each zt is a product of a’s, b’s and c’s, but has at least one a less than the
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original expression of u had. By induction, for some k we get that (f̄ ē)k · u is a finite
sum of products of b’s and c’s.

Now observe that any product of b’s and c’s can be expressed as a linear combination of
standard monomials bicj , using the relation (19) and a very similar reasoning as before.
The point is that a does not appear in [c, b] in (19), so we will not end up in an infinite
loop.

Finally, note that the argument is essentially the same if we started from u equal to a
linear combination of products of the generators, instead of just one monomial. �

Theorem 37. Suppose n ∈ Z and λ2 6= 0. The annihilators in Corollary 34 are centrally
generated. More precisely, they are equal to the ideal U ·Kerχ, where

χ : Z(T) = C[C, C̄] → C

is a homomorphism of algebras defined on the generators by C 7→ nλ2 and C̄ 7→ λ2
2.

Proof. We prove this for the annihilator of the Verma module ∆ := ∆(n−2, λ2). This
is known from [BL17, Proposition 6.1], but we present here a different and a more
direct proof.

The inclusion U · Kerχ ⊆ Ann(∆) is trivial. For the converse, recall that Ann(∆) is
stable under the adjoint action, so it is generated by its U0 part. So, it is enough to
prove

U0 ∩ Ann(∆) ⊆ U0 ·Kerχ.

To prove this, for any non-zero element u ∈ U0
/

U0 ·Kerχ we want to find an element
from ∆ which is not annihilated by u. Because of Lemma 36, we can assume without
loss of generality that

u =
∑

k,l,m≥0

αklmhk(f ē)l
(
h̄
)m

,

with αklm ∈ C and only finitely many non-zero. Define a polynomial (with commutative
variables) by the same scalars: p(x, y, z) =

∑

k,l,m≥0 αklmxkylzm ∈ C[x, y, z].

Denote by v the highest weight vector in ∆, by ∆q the weight space in ∆ of weight
n− 2− 2q, q ≥ 0, and recall that it has basis f if̄ q−iv for i = 0, 1, . . . , q. Similarly to
(8), one can prove the following formulas for the action on ∆:

h · f if̄ q−iv = (n− 2− 2q)f if̄ q−iv,

f ē · f if̄ q−iv = iλ2f
if̄ q−iv − i(i− 1)f i−1f̄ q−i+1v,

h̄ · f if̄ q−iv = λ2f
if̄ q−iv − 2if i−1f̄ q−i+1v.(21)

It follows that in this basis of ∆q, the operator representing u is upper-triangular, with
the diagonal entries p(n− 2− 2q, iλ2, λ2), i = 0, . . . , q. We would like to find a basis
element f if̄ q−iv, for which p(n − 2 − 2q, iλ2, λ2) 6= 0. However, a problem arises if
p(x, y, z) is divisible by (z − λ2).

We claim that we can decompose

(22) p(x, y, z) = p̃(x, y, z) · (z − λ2)
r

for some r ≥ 0, such that p̃(n − 2 − 2q, iλ2, λ2) is not identically zero for (q, i) ∈ D,
where D ⊆ C2 is any Zariski dense subset.

To prove this claim, write p(x, y, z) =
∑m

j=0 pj(x, y)(z−λ2)
j . Suppose that this is zero

when evaluated onD×{λ2} for a Zariski dense setD ⊆ C2. It follows that p0(x, y) = 0
(on C2), so p(x, y, z) = p(1)(x, y, z)(z−λ2), for a polynomial p(1)(x, y, z) of a strictly
smaller total degree. If necessary, we continue to apply the same argument inductively
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on p(1)(x, y, z), etc., until we reach (22) with p̃(x, y, λ2) non-zero on some point in
(x, y) ∈ D. The number r is independent of D, since the set {(x, y) : p̃(x, y, λ2) 6= 0}
is non-empty and Zariski open, hence intersects any Zariski dense set in C2.

The claim is now proved, because the map (q, i) 7→ (n − 2 − 2q, iλ2) is an algebraic
isomorphism C2 → C2. Here it is crucial that λ2 6= 0.

Write p̃(x, y, z) =
∑

k,l,m≥0 α̃klmxkylzm, and define ũ =
∑

k,l,m≥0 α̃klmhk(f ē)
l(
h̄
)m

.
Then it is also true that

u = ũ · (h̄− λ2)
r,

since the monomials in u and ũ have h̄ on the most-right position, so no commuting
of the variables is necessary.

There exists a pair (q, i) from the cone {(q, i) ∈ Z×Z : q ≥ r, 0 ≤ i ≤ q−r} (which is
Zariski dense in C2), such that p̃(n−2−2q, iλ2, λ2) 6= 0. Put w := f i+r f̄ q−i−rv ∈ ∆q.
It follows from (21) that (h̄ − λ2)

r · w = c · f if̄ q−i, for some constant c 6= 0. From
this we have that

u · w = c · ũ · f if̄ q−iv

= c · p̃(n− 2− 2q, iλ2, λ2) · f
if̄ q−iv +

i−1∑

j=0

cjf
j f̄ q−jv 6= 0. �

4.8. The action of finite-dimensional sl2-modules. Denote by F the monoidal cat-
egory of finite-dimensional sl2-modules. For a fixed non-zero χ ∈ C, denote by Hχ the
category of semi-simple g-Harish-Chandra T-modules on which the action of the purely
Takiff part of the center is given by χ.

Proposition 38. For each non-zero χ, the category Hχ is a simple module category
over F .

Proof. The fact that Hχ is a module category over F follows directly from Propo-
sition 28. Since Hχ is semi-simple by definition, to show that it is a simple module
category over F it is enough to show that, staring from any simple object of Hχ and
tensoring it with finite-dimensional sl2-modules, we can obtain any other simple ob-
ject of Hχ as a direct summand, up to isomorphism. This claim follows by combining
Proposition 28 with Theorem 30. �

We note that, by Proposition 28, the combinatorics of the F -module categoryHχ does
not depend on χ.

5. sl2-Harish-Chandra modules for the Schrödinger Lie algebra

5.1. Setup. The Schrödinger Lie algebra s can be defined by basis {e, h, f, p, q, z} and
the following relations: in addition to the usual g := sl2 relations on e, h, f , we also
have

[e, p] = 0, [h, p] = p, [f, p] = q,

[e, q] = p, [h, q] = −q, [f, q] = 0, [p, q] = z.

and z is declared to commute with all s. It is clear that s = g⋉H, where H is the ideal
spanned by p, q, z, and is isomorphic to the 3-dimensional Heisenberg Lie algebra. As
a g-module, H is isomorphic to L(1)⊕ L(0).

The nilradical of s is Nrad(s) = [s,H] = H. Recall that this means that H must
necessarily annihilate any simple finite-dimensional s-module.
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There is also the centerless Schrödinger Lie algebra s̄ := s/Cz , which is isomorphic to
the semi-direct product g⋉ L(1).

The disclaimer from the previous section related to [BL17] applies to the present section
with respect to [BL18].

The algebra U(s) is free as a module over its center Z(s), and Z(s) is generated by
two algebraically independent generators (see e.g. [DLMZ14]):

(23) C := (h2 + h+ 4fe)z − 2(fp2 − eq2 − hpq), and z.

It is also clear that Z(s)∩U(H) = C[z], which we will refer to as the purely Schrödinger
part of the center. For a module with central character, the scalar by which z acts is
usually called the central charge of the module.

The theory we develop here for the Schrödinger Lie algebra is very similar to the Takiff
sl2 case. So we will omit most of the details, as they are usually analogous, but easier.
One reason for this is that the purely Schrödinger part of the center is generated by a
degree 1 element, and for the Takiff sl2 we had a degree 2 element. However, a small
complication now is that the radical of s is not abelian anymore.

5.2. Universal modules. As before, the universal modules are induced from g, i.e.,
for n ∈ Z≥0 set Q(n) := Indsg L(n) = U(s) ⊗U(g) L(n) ∼= U(H) ⊗C L(n). Recall
that Q(n) ∼= Q(0) ⊗ L(n), where we consider L(n) as an s-module with the trivial
H-action.

Proposition 39. We have the following isomorphisms of algebras:

End(Q(0)) ∼= U(H)g = C[z],

where U(H)g denotes the invariants of the adjoint action of g on U(H).

Proof. The isomorphism End(Q(0))op ∼= U(H)g follows from the same argument as
in the proof of Proposition 6. The inclusion U(H)g ⊇ C[z] is obvious. The converse
follows easily from the following commutation relations, which can be proved e.g. by
induction:

[h, pmqn] = (m− n)pmqn,(24)

[e, pmqn] = npm+1qn−1 −
n(n− 1)

2
pmqn−2z,

[f, pmqn] = mpm−1qn+1 −
m(m− 1)

2
pm−2qnz. �

Fix χ ∈ C, and denote by mχ the maximal ideal (z − χ) ⊆ C[z]. As before, we define

the universal module as Q(n, χ) := Q(n)
/

mχQ(n) . It clearly has central charge χ.

As before, we have Q(n, χ) ∼= Q(0, χ)⊗ L(n).

Lemma 40. (a) As s-modules, Q(0) ∼= U(H) and Q(0, χ) ∼= U(H)
/

(z − χ) , where g

acts by the adjoint action, and H by the left multiplication. The set
{
piqj : i, j ≥ 0

}

is a basis for Q(0, χ).

(b) As a g-module, Q(0, χ) ∼=
⊕

k≥0 L(k). Moreover, pk is the highest weight vector

in L(k).

(c) C acts as zero on Q(0) and every Q(0, χ).
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Proof. The first claim is clear. We use it to prove the others.

For the second claim, note that pk generates a g-submodule isomorphic to L(k). Since
the action of g preserves Qn := span{piqj : i+ j ≤ n}, by counting dimensions we see
that Qn ∼= ⊕n

k=0L(k). The claim now follows by taking colimits.

The last claim can be checked directly (enough on the generator of Q(0)). �

From the previous lemma, the ClebschGordan coefficients for sl2, and the adjunction,
the following is not hard to deduce:

Proposition 41. (a) Q(n, χ) is a g-Harish-Chandra module, and for k ≥ 0:

(25) [Q(n, χ) : L(k)] = min{k + 1, n+ 1}.

(b) Let V be any simple s-module that has some L(n) as a simple g-submodule. Then
V is a quotient of Q(n, χ) for a unique χ. In particular, V is a g-Harish-Chandra
module, and (25) gives an upper bound for the multiplicities of its g-types.

(c) For a fixed χ, there exists a unique simple s-module which contains L(0) as a g-
submodule and has central charge χ. Moreover, it is a g-Harish-Chandra module.

Theorem 42. The module Q(0, χ) is simple if and only if χ 6= 0.

The module Q(0, 0) has infinite length, and an s-filtration whose composition factors
are L(0), L(1), L(2) . . . with the trivial action of H.

Proof. As before, the s-action on Q(0) and Q(0, χ) will be denoted by ◦.

Note that [q, pn] = −npn−1z and [p, qn] = nqn−1z. Using this and the equations (24),
one can check that

(pf − nq) ◦ pn =
n(n+ 1)

2
χ · pn−1.

So if χ 6= 0, the module Q(0, χ) is simple.

Alternatively, one can use a nilradical argument analogous to the one in Remark 12.

If χ = 0, then p and q commute in Q(0, χ), and g preserves the total degree of
monomials piqj . The rest of the proof is obvious. �

5.3. Verma modules. Verma modules for the Schrödinger Lie algebra are studied in
detail in [DLMZ14].

In the triangular decomposition (1) we have

ñ− = span{f, q}, h̃ = span{h, z}, and ñ+ = span{e, p}.

For an element λ ∈ h̃∗, denote λ1 := λ(h) and λ2 := λ(z).

Proposition 43 ([DLMZ14, Proposition 5]). If λ2 6= 0, then the Verma module ∆(λ)
is simple for any λ1 ∈ Z.

It is easy to see that the central element C acts on the Verma module ∆(λ) as the
scalar (λ1 + 1)(λ1 + 2)λ2, and the central charge is χ := λ2, see (23). We will be
concerned mostly with non-zero central charge cases.

Lemma 44. Non-isomorphic Verma modules ∆(λ) and ∆(λ′) with the same non-zero
central charge have the same central character if and only if λ′

1 = −λ1 − 3.

Proof. This reduces to solving the equation (λ1 + 1)(λ1 + 2) = (λ′
1 + 1)(λ′

1 + 2). �
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Lemma 45. As a g-module, ∆(λ) has a filtration with subquotients isomorphic to the
g-Verma modules ∆g(λ1 − k), k = 0, 1, 2, . . .

If λ2 = 0 or λ1 6∈ Z≥0, then as a g-module we have ∆(λ) ∼=
⊕

k≥0 ∆
g(λ1 − k).

Otherwise (λ2 6= 0 and λ1 ∈ Z≥0) we have as g-modules

∆(λ) ∼= ∆g(−1)⊕

λ1+2⊕

k=2

P g(−k)⊕
⊕

k≥3

∆g(−λ1 − k).

Proof. Denote by vλ a basis element of Cλ. Then ∆(λ) has a basis of weight vectors
{f iqjvλ : i, j ≥ 0}. A direct computation shows that

e · f iqjvλ = i(λ1 − i− j + 1)f i−1qjvλ + λ2
j(j − 1)

2
f iqj−2vλ.

This implies that the required filtration is given by the degree of q. The subquotients
are given by the span of {f iqkvλ : i ≥ 0}, which is clearly isomorphic to ∆g(λ1 − k).
The rest can be proved in the same way as for Lemma 15. �

Lemma 46. For λ1 ∈ Z, λ2 6= 0 and µ ∈ Z≥0 there is an isomorphism of s-modules

∆(λ)⊗ L(µ) ∼= ∆(λ1 + µ, λ2)⊕∆(λ1 + µ− 2, λ2)⊕ . . .⊕∆(λ1 − µ, λ2).

Proof. The left-hand side has a filtration with subquotients equal to the summands on
the right-hand side. But these subquotients have different central characters by Lemma
44, since the first components of their highest weights have the same parity, so they
must split. �

5.4. Enright-Arkhipov completion. Fix an ad-nilpotent element x ∈ s (for example

f or p, which we will use), and denote by Sx := U(s)(x)
/

U(s) the localization of the
algebra U(s) by x, modulo the canonical copy of U(s) inside it. This is a U(s)-bimodule.
For an s-module M write

EA(M) :=
e(

Sf ⊗
U(s)

M

)

.

As before, one can check that this is a well defined functor on the category of s-modules.
Moreover, Proposition 21 is valid here, with the same proof.

Theorem 47. Take λ with λ1 ∈ Z and λ2 6= 0. Then EA(∆(λ)) is a simple g-Harish-
Chandra module, and decomposes as a g-module as

(26) EA(∆(λ)) ∼=
⊕

k≥0

L

(∣
∣
∣
∣
λ1 +

3

2

∣
∣
∣
∣
−

1

2
+ k

)

.

Proof. Lemma 45, the fact that the functor EA commutes with the forgetful functor
from s-modules to g-modules, and (the Schrödinger analogue of) Example 22 imply
the decomposition (26).

Note that the lowest weight vector of a L(µ) in (26) is f−1qtvλ, where t := 2+λ1+µ.
To prove simplicity, it is enough for µ ≥

∣
∣λ1 +

3
2

∣
∣+ 1

2 to find an element in U(s) that

maps f−1qtvλ to f−1qt−1vλ. One can check by direct calculation that
(

p−
1

µ
qe

)

· f−1qtvλ =
λ2t

2µ
(µ− λ1 − 1)f−1qt−1vλ.

The scalar on the right-hand side is non-zero because of the assumption on µ.

Alternatively, one can use a nilradical argument analogous to the one in Remark 24. �
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Theorem 47, Proposition 41(c) and Theorem 42 together give:

Corollary 48. For λ2 6= 0 we have

EA(∆(−1, λ2)) ∼= EA(∆(−2, λ2)) ∼= Q(0, λ2).

5.5. Classification. The Enright-Arkhipov completion of Verma modules again gives
us a family of g-Harish-Chandra modules. This construction gives all infinite-dimensional
g-Harish-Chandra modules, as we will see in this subsection.

Definition 49. For n ∈ Z and λ2 6= 0 denote

V (n, λ2) :=

{

EA(∆(n− 1, λ2)) : n ≥ 0,

EA(∆(n− 2, λ2)) : n ≤ 0.

From Corollary 48 we have that V (0, λ2) is well-defined, and moreover isomorphic to
Q(0, λ2). Note that the central element C acts on V (n, λ2) as n(n + 1)λ2 if n ≥ 0,
and as n(n− 1)λ2 if n ≤ 0.

Theorem 47 and Lemma 44 easily give:

Corollary 50. The module V (n, λ2) is a simple g-Harish-Chandra module, and has
g-types L(|n|), L(|n|+ 1), L(|n|+ 2) . . . with multiplicity one.

If V (n, λ2) ∼= V (n′, λ′
2), then λ′

2 = λ2 and n′ ∈ {n,−n}.

On Figure 5 to 8 we present several V (n, λ2)’s, and how they are constructed. It is
interesting to compare this to the Takiff sl2 case (cf. Figure 1 to 4).

Proposition 51. For n ∈ Z≥0 and λ2 6= 0 we have V (−n, λ2) ∼= V (n, λ2). Moreover,

Q(n, λ2) ∼= V (n, λ2)⊕ V (n− 1, λ2)⊕ . . .⊕ V (0, λ2).

Proof. We use induction over n. The basis is given in Corollary 48. Suppose the
proposition is true for all k = 0, . . . , n − 1 where n ≥ 1 is fixed. Observe that, using
(the Schrödinger version of) Proposition 21 and Lemma 46, we have

Q(n, λ2) ∼=Q(0, λ2)⊗ L(n) ∼= EA(∆(−1, λ2))⊗ L(n)

(27)

∼=EA(∆(n− 1, λ2))⊕EA(∆(n− 3, λ2))⊕ . . .⊕EA(∆(−n− 1, λ2))

∼=V (n, λ2)⊕ V (n− 2, λ2)⊕ . . .⊕ V (ǫ, λ2)⊕

⊕ V (ǫ− 1, λ2)⊕ V (ǫ − 3, λ2)⊕ . . .⊕ V (−n+ 1, λ2),

where ǫ ∈ {0, 1} is of the same parity as n. By inductive assumption it follows that

Q(n, λ2) ∼=V (n, λ2)⊕ V (n− 1, λ2)⊕ . . .⊕ V (1, λ2)⊕ V (0, λ2)

∼=V (n, λ2)⊕Q(n− 1, λ2)

In the same way, but using Q(0, λ2) ∼= EA(∆(−2, λ2)) in the first line (27) we can get
that Q(n, λ2) ∼= V (−n, λ2)⊕Q(n− 1, λ2). It follows that V (n, λ2) ∼= V (−n, λ2). �

Similarly, one can prove the following analogue of Proposition 28:

Proposition 52. Let n, k ∈ Z≥0 and λ2 6= 0. If k ≤ n, then

V (n, λ2)⊗ L(k) = V (n− k, λ2)⊕ V (n− k + 2, λ2)⊕ . . .⊕ V (n+ k, λ2).



26 VOLODYMYR MAZORCHUK AND RAFAEL MRD̄EN
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Figure 5. V (−1, λ2) = EA(∆(−3, λ2))
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Figure 6. V (0, λ2) = EA(∆(−2, λ2))
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Figure 7. V (0, λ2) = EA(∆(−1, λ2))
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Figure 8. V (1, λ2) = EA(∆(0, λ2))

If k > n, then

V (n, λ2)⊗ L(k) = V (0, λ2)⊕ V (1, λ2)⊕ . . .⊕ V (k − n− 1, λ2)⊕

⊕ V (k − n, λ2)⊕ V (k − n+ 2, λ2)⊕ . . .⊕ V (k + n, λ2).

Since any simple g-Harish-Chandra module is a quotient of some Q(n, λ2), we have
proved:

Theorem 53. Let V be a simple g-Harish-Chandra module for s. Denote by λ2 its
central charge, and suppose L(n), n ∈ Z≥0, is the minimal g-type of V .

• If λ2 6= 0, then V ∼= V (n, λ2) ∼= V (−n, λ2).

• If λ2 = 0, then V ∼= L(n) with the trivial H-action.



LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE OVER THE SEMI-SIMPLE PART 27

In other words, V (n, λ2), n ∈ Z≥0, λ2 ∈ C \ {0}, together with the finite-dimensional
simple g-modules constitute a complete list of pairwise non-isomorphic simple g-Harish-
Chandra modules for s.

Remark 54. For the centerless Schrödinger Lie algebra s̄, infinite-dimensional simple
g-Harish-Chandra modules do not exist. All simple g-Harish-Chandra modules are given
by L(n), n ∈ Z≥0, with the trivial action of H̄ := H/Cz .

This follows from observing that the endomorphism ring of Inds̄g(L(0)) is only C (simi-
larly as in Proposition 39), and so all the universal modules have s̄-filtrations by simple
finite-dimensional modules (similarly as in Theorem 42 for χ = 0).

5.6. Extensions. Self-extensions of infinite-dimensional simple g-Harish-Chandra mod-
ules (i.e. the ones having non-zero central charge) can be calculated in the same way
as for the Takiff sl2 case (Subsection 4.6):

Theorem 55. Let V be a simple infinite-dimensional g-Harish-Chandra module for s.
Then Ext1(V, V ) ∼= C.

5.7. Annihilators. We show that simple infinite-dimensional g-Harish-Chandra mod-
ules again have the same annihilators as the corresponding Verma modules. The fact
that annihilators of Verma modules for s are centrally generated is already known, see
[DLMZ14, Theorem 21].

Proposition 56. Suppose n ∈ Z≥0 and λ2 6= 0.

(a) The element p acts injectively on V (n, λ2).

(b) The module Sp ⊗U(s) V (n, λ2) is isomorphic to the direct sum of Verma modules
∆(n− 1, λ2)⊕∆(−n− 2, λ2).

Proof. The proof is analogous to the proof of Proposition 33, but easier. So we will
omit it. �

From (the Schrödinger version of) Lemma 32, Proposition 56, the definition of V (n, λ2),
and [DLMZ14, Theorem 21] we have:

Corollary 57. Suppose n ∈ Z≥0 and λ2 6= 0. Then

Ann(V (n, λ2)) = Ann(∆(n− 1, λ2)) = Ann(∆(−n− 2, λ2)),

and these annihilators are centrally generated.

5.8. The action of finite-dimensional sl2-modules. Denote by F the monoidal cat-
egory of finite-dimensional sl2-modules. For a fixed non-zero χ ∈ C, denote by Kχ the
category of semi-simple g-Harish-Chandra s-modules of central charge χ.

Proposition 58. For each non-zero χ, the category Kχ is a simple module category
over F .

Proof. The fact that Kχ is a module category over F follows directly from Propo-
sition 52. Since Kχ is semi-simple by definition, to show that it is a simple module
category over F it is enough to show that, staring from any simple object of Kχ and
tensoring it with finite-dimensional sl2-modules, we can obtain any other simple ob-
ject of Kχ as a direct summand, up to isomorphism. This claim follows by combining
Proposition 52 with Theorem 53. �
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We note that, by Proposition 52, the combinatorics of the F -module category Kχ does
not depend on χ. Furthermore, by comparing Propositions 28 and 52, we see that the
combinatorics of the F -module category Hχ is different from the combinatorics of the
F -module category Kχ.

6. Some general results on g-Harish-Chandra modules

6.1. A sufficient condition for existence of simple infinite-dimensional g-Harish-

Chandra modules. Recall our general setup from Section 2, where L ∼= g ⋉ r was
arbitrary finite-dimensional Lie algebra. Assume that a triangular decomposition (1) is

fixed. Denote by r0 the zero-weight space of r. Obviously, we have h̃ = h⊕ r0.

To prove the main theorem in this section, we need to use another variant of Enright’s
and Arkhipov’s functors. It will be the same as EA from before, but without taking the
locally finite for the positive root vector. Fix a simple reflection s, and the corresponding
sl2-triple {f, h, e} ⊆ g. For an L-module M , set

Cs(M) := Sf ⊗
U(L)

M,

where, as before, Sf denotes the localized algebra U(L)(f) modulo U(L). This functor
commutes with the forgetful functor that forgets the r-action. Moreover, it preserves
g-central characters.

Remark 59. Note that if we would twist the action on Cs(M) by the inner automor-
phism of L that corresponds to the simple reflection s, we would get exactly the twisting
functor Ts(M) from [Ark04, AS03]. We conclude that if M is from the category O
for g, then Cs(M) is also from the category O for g, but for another choice of Borel
subalgebra.

Theorem 60. Suppose that [L, r] ∩ r0 6= 0. Then there exists an infinite-dimensional
simple g-Harish-Chandra module for L.

Proof. Fix an element c ∈ [L, r] ∩ r0. Then c ∈ Nrad(L), so c must annihilate any
simple finite-dimensional L-module.

The idea is to start with the simple quotient of a Verma module for L, which has finite
multiplicities of its g-submodules (but possibly infinite-dimensional), and then use the
functors Cs to obtain an L-module that should have a finite-dimensional g-submodule.
Then the image of the universal L-module in the constructed module should have only
finite-dimensional g-submodules with finite multiplicities. The element c will insure
infinite-dimensionality.

Fix an antidominant, regular and integral λ ∈ h∗ and extend it to λ̃ ∈ h̃∗ such that
λ̃(c) 6= 0. Consider the Verma module ∆(λ̃) as in (2), and its simple quotient L(λ̃).

By considering the h-weight spaces of ∆(λ̃) (Proposition 4), it follows that as a g-

module, L(λ̃) has a g-direct summand ∆g(λ) generated by the highest weight vector

v ∈ L(λ̃), and this is the only g-composition factor of L(λ̃) of this g-central character.

From the fact that ∆(λ̃) and L(λ̃) have finite-dimensional weight spaces, it follows
that, when considered as g-modules, they contain any simple g-composition factor with
at most finite multiplicity. Moreover, from this it follows that their components in any
fixed g-central character lie in the category O for g.

The element c acts on v ∈ ∆g(λ) ⊆ L(λ̃) by the scalar λ̃(c) 6= 0.
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Choose a reduced expression w0 = s1s2 . . . sk of the longest element in the Weyl group
for g, and set Cw0

= Cs1 ◦Cs2 ◦ . . . ◦ Csk . From Remark 59 and [AS03, Theorem
2.3] it follows that Cw0

(∆g(λ)) is isomorphic to the dual dominant g-Verma module
for the opposite Borel subalgebra. From this, we can conclude Cw0

(∆g(λ)) contains
the finite-dimensional g-submodule L(µ), where µ := w0 · λ is dominant, integral and
regular. Moreover, by observing what is happening on the sl2-subalgebras of g, one can
conclude that the lowest weight vector in L(µ) is given by

(28) f−1
1 f−1

2 . . . f−1
k v,

where fi is the negative root vector corresponding to si.

It follows that M := Cw0
(L(λ̃)) as a g-module has also L(µ) as a g-direct summand.

Moreover, from Remark 59 it follows that L(µ) appears in M precisely once, and that
each simple g-module appears with at most finite multiplicity.

Consider Q(µ) := IndLg (L(µ)) = U(L) ⊗U(g) L(µ). It has only finite-dimensional
g-composition factors, but possibly with infinite multiplicities.

By the universal property of the induction functor, we get a non-zero L-homomorphism
ϕ : Q(µ) → M , hitting the g-submodule L(µ) in M . Denote by N the image of this
map. It follows from the construction N is a g-Harish-Chandra module, generated by
its unique occurence of the g-type L(µ).

Furthermore, N has a unique simple quotient V , which contains this g-type L(µ).
Clearly, V is a simple g-Harish-Chandra L-module.

But also, V is infinite-dimensional. To see this, it is enough to check that c does not
annihilate the vector (28). Observe that

c · f−1
1 f−1

2 . . . f−1
k v = λ̃(c) · f−1

1 f−1
2 . . . f−1

k v +

k∑

i=1

f−1
1 . . . [c, f−1

i ] . . . f−1
k v.

Since [c, f−1
i ] = f−1

i [fi, c]f
−1
i , each summand with [c, f−1

i ] 6= 0 will contain a factor

from Nrad(L). Therefore, these terms cannot cancel with λ̃(c) · f−1
1 f−1

2 . . . f−1
k v, and

so the total result is non-zero. �

We believe that the connection to the highest weight theory could be established in a
more general setup, at least for the Takiff Lie algebras. Using the notation from Section
3, we formulate:

Conjecture 61. Let T be a Takiff Lie algebra attached to a semi-simple Lie algebra g.

For a “generic” χ : Z(g) → C, there is λ ∈ h̄∗ such that EAw0
(∆(−2ρ, λ)) ∼= Q(0, χ).

Here ρ is the half-sum of all elements in ∆+(g, h), and EAw0
should be defined as the

composition EAs1 ◦EAs2 ◦ . . . ◦ EAsk , where w0 = s1s2 . . . sk is a fixed a reduced
expression of the longest element in the Weyl group for g. Each EAs should be defined
as in Definition 20, i.e., as EAs :=

e(Cs(−)) for the sl2-triple {f, h, e} corresponding
to s. It is not a priori clear that such EAw0

does not depend on the choice of a reduced
expression.

Conjecture 61 was already proved for the Takiff sl2 case in Section 4. Analogous
statement is proved also for the Schrödinger Lie algebra in Section 5.
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6.2. On classification of simple g-Harish-Chandra modules for generalized Takiff

Lie algebras. In this subsection we consider a finite-dimensional Lie algebra L with a
fixed Levi decomposition L ∼= g⋉ r and assume that:

r is abelian.

It is reasonable to call such algebras generalized Takiff Lie algebras. In analogy to
Subsection 3.2, we consider the purely radical part Z(L) := Z(L)∩U(r) of the center

Z(L) of U(L). Since r is assumed to be abelian, it is obvious that Z(L) = U(r)g, the
g-invariants in U(r) ∼= Sym(r) with respect to the adjoint action. For brevity, algebra

homomorphisms χ : Z(L) → C will be loosely called radical central characters.

For λ ∈ h∗ integral, dominant and regular, we have the universal module

Q(λ) := IndLg L(λ) = U(L) ⊗
U(g)

L(λ) ∼= U(r)⊗
C

L(λ) ∼= Sym(r)⊗
C

L(λ).

Clearly, it is g-locally finite. Completely analogously to Proposition 6, one can show
that EndQ(0) ∼= Z(L). Given also a radical central character χ : Z(L) → C, we
define

Q(λ, χ) := Q(λ)
/

mχQ(λ) ,

where mχ := Kerχ is the maximal ideal in Z(L) corresponding to χ.

From [Kna88, Proposition 6.5] we have Q(λ) ∼= Q(0)⊗L(λ), and from this and right-
exactness of tensor product we conclude Q(λ, χ) ∼= Q(0, χ)⊗ L(λ). In these formulas
L(λ) is considered to be an L-module with the trivial action of r.

By construction, the action of g on Q(0, χ) is locally finite, with the trivial module
L(0) having multiplicity exactly 1 in Q(0, χ). Since Q(0, χ) is generated by this unique
copy of L(0), it follows that Q(0, χ) has a unique simple quotient, which we denote by
V (0, χ).

From Theorem 11 we know that Q(0, χ) = V (0, χ) when L is the Takiff sl2 and χ
is not the radical central character of the trivial module, but generally this fails, for
example when r ∼= L(4) as a g-module, as we will see in Subsection 7.3.

We will use the notion of Gelfand-Kirillov dimension, for the definition and basic prop-
erties see [CCM, 2.3] or [KL00]. The Gelfand-Kirillov dimension of a finitely generated
module M will be denoted by GK(M) and the Bernstein number by e(M).

Proposition 62. Fix a radical central character χ.

• V (0, χ) is the unique simple L-module having both radical central character χ
and the trivial g-module as one of g-types.

• If [g, r] = r, then V (0, χ) is either the trivial L-module (precisely when χ is the
radical central character of the trivial L-module), or infinite-dimensional.

• V (0, χ) is a g-Harish-Chandra module.

Proof. The first claim follows from universal property of the induction functor.

For the second claim, recall that [g, r] = NradL is the intersection of all kernels of
simple finite-dimensional L-modules (see 2). Therefore any simple finite-dimensional
L-module necessarily has the same radical central character as the trivial module L-
module. From the uniqueness in the first part it follows that V (0, χ) is either trivial or
infinite-dimensional.

It remains to prove that V (0, χ) is a g-Harish-Chandra module. It is g-locally finite
by construction. Assume that [V (0, χ) : L] = ∞ for some simple finite-dimensional
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g-module L. The module V (0, χ) ⊗ L∗ is also g-locally finite and finitely generated.
By [Jan83, Lemma 8.8] we have

(29) GK(V (0, χ)⊗L∗) = GK(V (0, χ)) and e(V (0, χ)⊗L∗) = dimL ·e(V (0, χ)).

Moreover,

[V (0, χ)⊗ L∗ : L(0)] = Homg(L(0), V (0, χ)⊗ L∗)) =

= Homg(L(0)⊗ L, V (0, χ)) = [V (0, χ) : L] = ∞.

By uniqueness in the first part, it follows that V (0, χ) appears in V (0, χ)⊗L∗ infinitely
many times. This is a contradiction with (29) and [CCM, Lemma 8]. �

Remark 63. One can check that Gelfand-Kirillov dimensions of all infinite-dimensional
simple g-Harish-Chandra modules for the Takiff sl2 (Section 4) as well for the Schrödinger
Lie algebra (Section 5) are 2.

Proposition 64. Let χ be a radical central character and L a simple finite-dimensional
g-module. Then L has a simple g-Harish-Chandra module with the radical central
character χ and having L as one of g-types.

Moreover, the number of (isomorphism classes of) simple g-Harish-Chandra modules
with the radical central character χ and having L as one of its g-types is at most

(30)
∑

M

lLM,L[V (0, χ) : M ] < ∞,

where M runs through the set of isomorphism classes of simple finite-dimensional g-
modules and lLM,L is the Littlewood-Richardson coefficient, i.e. the multiplicity of L in
M ⊗ L.

We note that only finitely many summands in (30) are non-zero, as lVM,V 6= 0 if and
only if M appears as a summand of V ⊗ V ∗.

Proof. Since we know from Proposition 62 that V (0, χ) is a g-Harish-Chandra module
having L(0) as a g-type, it follows that L⊗V (0, χ) is also a g-Harish-Chandra module,
having L as one of g-types. This implies the first part of the proposition.

Conversely, let N be a simple g-Harish-Chandra module with the radical central char-
acter χ and having L as one of g-types. Then L∗ ⊗N is a g-Harish-Chandra module
with the radical central character χ and having L(0) as one of g-types, and therefore
contains V (0, χ) as a subquotient.

The above arguments, combined with the biadjunction (L ⊗ −, L∗ ⊗ −), imply that
any simple g-Harish-Chandra module with the radical central character χ and having
L as one of g-types is a subquotient of L⊗ V (0, χ). The latter is a g-Harish-Chandra
module in which the multiplicity of L is bounded by the expression in (30) (see the
proof of Proposition 7). This implies the second part of the proposition. �

7. On sl2-Harish-Chandra modules for other conformal Galilei

algebras

7.1. Conformal Galilei algebras. By a conformal Galilei algebra we mean a semi-
direct product Ln := sl2 ⋉ L(n), where n ∈ Z≥0. Here L(n) is an abelian ideal on
which g := sl2 acts in the obvious way. For a more general definition and various
central extensions, see [LMZ14, AIM19, GK12].

Note that we have L0 ∼= gl2, L
1 is the centerless Schrödinger Lie algebra, and L2 is

the Takiff sl2.
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We have Nrad(Ln) = r = L(n), and so [Ln, r] ∩ r0 ∼= C if and only if n is even (i.e.,
L(n) is odd-dimensional), otherwise [Ln, r] ∩ r0 = 0.

Denote by vn, vn−2, . . . , v−n a basis of L(n) such that each vi is a weight vector of
weight i, and [e, vn−2i] = (n− i+ 1)vn−2i+2, for i ∈ {1, 2, . . . , n}.

7.2. The Lie algebra L3 = sl2 ⋉ L(3). Since r = L(3) has trivial zero-weight space,
the assumption in Theorem 60 is not satisfied. Nevertheless, we will show that simple
infinite-dimensional g-Harish-Chandra modules exist. So the converse of Theorem 60
is not true. This suggest that the highest weight theory is not enough to obtain and
classify g-Harish-Chandra modules for any Lie algebra.

From the classical invariant theory it is well known that Sym(r)g is generated by only
one element C, homogeneous of degree 4, the so called cubic discriminant (see e.g.
[Hil93, Lecture XVII]):

C = v2−1v
2
1 − 27v2−3v

2
3 − 4v3−1v3 − 4v−1v

3
3 + 18v−3v−1v1v3.

This expression of C is just for the record, we will not use it in the computations. We
identify radical central characters with their value on C.

For χ ∈ C we have the universal L3-module Q(0, χ) = Q(0)
/

(C − χ) .

Proposition 65. For χ 6= 0, the moduleQ(0, χ) is g-Harish-Chandra. The multiplicities
of its g-types are given by [Q(0, χ) : L(k)] = k − 2

⌊
k+2
3

⌋
+ 1.

Proof. From the main result of [FO05] it follows easily that Sym(r) is free as a module
over Sym(r)g = C[C]. This implies that the g-structure of Q(0, χ) does not depend on
the choice of χ. So in particular, it is enough to prove the finite-multiplicity statement
for Q(0, 0), which is as a g-module isomorphic to Sym(r)

/

C · Sym(r) .

But these are now graded modules, so we can subtract their graded characters. More
precisely, for d ≥ 4 and k ≥ 0 we have

(31) [Q(0, 0)d : L(k)] = [Symd(r) : L(k)]− [Symd−4(r) : L(k)],

where (−)d denotes the homogeneous part of degree d.

Using [HHLS18], one can calculate the right-hand side of (31). For non-negative
integers a, b, c let p(a, b, c) denote the number of partitions of c into at most b parts,
and each part bounded above by a. Denote N(a, b, c) := p(a, b, c) − p(a, b, c − 1) if
c ≥ 1, and set N(a, b, 0) := 1. By [HHLS18, Theorem 3.1], the multiplicity (31) is
equal to 0 if k 6∈ {3d, 3d− 2, 3d− 4, . . .}, and to

N

(

d, 3,
3d− k

2

)

−N

(

d− 4, 3,
3d− k

2
− 6

)

otherwise. But the latter is also equal to 0 whenever k < d− 4, by using the formulas
in [HHLS18, Corollary 3.2]. It follows that any L(k) can appear in Q(0, 0) in at most
degree k + 4, hence only finitely many times.

Using the same formulas in [HHLS18, Corollary 3.2], one can derive the multiplicity
formula from the statement of the proposition. We omit the details. �

Either from Proposition 62, or from Proposition 65, we have:

Corollary 66. The unique simple quotient V (0, χ) of Q(0, χ) is g-Harish-Chandra. It
is infinite-dimensional if χ 6= 0.

We do not know whether Q(0, χ) = V (0, χ), i.e., whether Q(0, χ) is already simple
(for χ 6= 0), as was in the Takiff sl2 and the Schrödinger cases.
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7.3. The Lie algebra L4 = sl2⋉L(4). Consider now the algebra L4. In this subsection
we classify simple g-Harish-Chandra modules for L4 which appear in Enright-Arkhipov
completions of simple highest weight modules.

The algebra Sym(r)g is generated by two algebraically independent elements, homoge-
neous of degrees 2 and 3 (see e.g. [Hil93, Lecture XVIII]):

C2 = v20 − 3v−2v2 + 12v−4v4,

C3 = v30 −
9

2
v−2v0v2 +

27

2
v2−2v4 +

27

2
v−4v

2
2 − 36v−4v0v4.

Recall also, from [LMZ14, Theorem 4], the structure of simple highest weight L4-

modules. Let h̃ denote the (generalized) Cartan subalgebra of L4 spanned by h and v0.

If λ ∈ h̃∗ is such that λ(v0) = 0, then r annihilates the corresponding simple highest

weight module L(λ). If λ ∈ h̃∗ is such that λ(v0) 6= 0, then the restriction of L(λ) to
g has a multiplicity free Verma filtration with subquotients of the form ∆g(λ − nα),
where n ∈ Z≥0 and α is the root corresponding to e ∈ g. Note that the elements C2

and C3 act on L(λ) as the scalars λ(v0)
2 and λ(v0)

3, respectively.

Denote by F the semi-simple additive category generated by simple subquotients of
Enright-Arkhipov completions of simple highest weight L4-modules. Note that all mod-
ules in F are g-Harish-Chandra modules for L4. Our main result of this subsection is
the following theorem.

Theorem 67. (a) For each λ̃ ∈ C \ {0} and for each i ∈ Z>0, there is a unique, up

to isomorphism, simple object V (i, λ̃) in F on which Cj , where j = 2, 3, acts via

λ̃j and which has g-types L(i), L(i+ 2), L(i+ 4), . . . , all multiplicity free.

(b) For each λ̃ ∈ C \ {0}, there is a unique, up to isomorphism, simple object V ′(0, λ̃)

in F on which Cj , where j = 2, 3, acts via λ̃j and which has g-types L(0), L(4),
L(8), . . . , all multiplicity free.

(c) For each λ̃ ∈ C \ {0}, there is a unique, up to isomorphism, simple object V ′(2, λ̃)

in F on which Cj , where j = 2, 3, acts via λ̃j and which has g-types L(2), L(6),
L(10), . . . , all multiplicity free.

(d) The modules above provide a complete and irredundant list of representatives of
isomorphism classes of simple objects in F .

(e) Let V be a simple g-Harish-Chandra module on which Cj , where j = 2, 3, acts via

λ̃j , for some λ̃ ∈ C \ {0}. Then V belongs to F .

To prove this result, we will need some preparation. The following lemma extends
[HHLS18, Corollary 3.5] (note that the case treated in the lemma below is referred to
as “complicated” in [HHLS18]).

Lemma 68. For every non-negative integer k, we have

⌊ 2k−1

4
⌋

∑

s=0

(⌊
2k − 4s− 1

2

⌋

−

⌊
2k − 4s− 2

3

⌋)

−

k−2∑

s=0

(⌊s

2

⌋

−

⌊
s− 1

3

⌋)

= 0.

Proof. Using computer, it is easy to check that the claim of the lemma is true for small
values of k (we checked this independently and by different methods using Scilab and
SageMath up to k = 200). After that, one can do induction on k with induction step
12. So, we write k = 12a+ r and consider each r separately. Let S(k) denote the left
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hand side of the formula. For k > 12, the value S(k)− S(k − 12) can be written as a
polynomial in a (the polynomial itself depends on r) of degree at most two.

From the original computation it follows that S(k) − S(k − 12) vanishes for enough
values of a to conclude that S(k)− S(k − 12) is identically 0. The claim follows. �

Remark 69. The results of [HHLS18] say that Lemma 68 is equivalent to the fact
that, for each k ≥ 0, the set Λ1 of all vectors (a, b, c, d, e) with non-negative integer
coefficients satisfying a+b+c+d+e = k and 2a+b−d−2e = 1 has the same cardinality
as the set Λ2 of all vectors (a, b, c, d, e) with non-negative integer coefficients satisfying
a + b + c + d + e = k and 2a + b − d − 2e = 2. We give here explicitely a bijection
between these sets. First, note that {(a, b, c, d, e) ∈ Λ1 : e 6= 0} maps bijectively to
{(a′, b′, c′, d′, e′) ∈ Λ2 : d

′ 6= 0} by

(a, b, c, d, e) 7→ (a, b, c, d+ 1, e− 1).

The remainder {(a, b, c, d, 0) ∈ Λ1} maps bijectively to {(a′, b′, c′, 0, e′) ∈ Λ2} by the
formula

(a, b, c, d, 0) 7→

(

b, 2a, c, 0,
b+ d− 1

2

)

.

Lemma 70. Let V be a simple infinite-dimensional g-Harish-Chandra module for L4.
Then each vi acts injectively on V .

Proof. Since the adjoint action of vi on L4 is locally nilpotent, the action of vi on each
simple L4-module is either injective or locally nilpotent, cf. [DMP, Section 3]. Note
that the action of both e and f on V is locally nilpotent by definition. Let x ∈ V be
such that vi · x = 0, for some i 6= 4, and em · v = 0. Then adm(vi)(e

m) · x = 0 and it
is easy to check that this implies that vmi+2 ·x = 0. That is, the action of vi+2 is locally
nilpotent. Applying similar arguments using e and f , we get that the action of all vj ’s
is locally nilpotent.

As all vj ’s commute, V must contain some non-zero x which is killed by all the vj ’s.
Since the adjoint action of e preserves the set of the vj ’s, we can even assume that e
kills x. But then this means that V is a highest weight module. Being also a g-Harish-
Chandra module, this implies that V must be finite-dimensional, a contradiction. �

For χ2, χ3 ∈ C, we recall the universal L4-module

Q(0, χ2, χ3) = Q(0)
/

(C2 − χ2, C3 − χ3) ,

and its unique simple quotient V (0, χ2, χ3) containing L(0).

Proposition 71. Fix λ̃ ∈ C \ {0}. The module V (0, λ̃2, λ̃3) is a simple infinite-
dimensional g-Harish-Chandra module. Its g-types are L(0), L(4), L(8) . . ., each oc-
curring with multiplicity one.

Proof. By [HHLS18, Theorem 3.1 and Corollary 3.4], the multiplicity of L(2) in Q(0)
is given by the left hand side of the formula from Lemma 68. Therefore, by Lemma 68,
L(2) does not appear in Q(0).

Now, take λ such that λ(h) = −2 and λ(v0) = λ̃. Then EA(L(λ)) is a g-Harish-
Chandra module having multiplicity-free g-types L(0), L(2), L(4), . . . . As v4 commutes
with e, from Lemma 70 it follows that v4 sends each non-zero highest weight vector of
L(i) inside EA(L(λ)) to a non-zero highest weight vector of L(i+4) inside EA(L(λ)).
Note that all simple subquotients of EA(L(λ)) must be infinite-dimensional as the
central characters of EA(L(λ)) is different, by construction, from the central characters
of simple finite-dimensional L4-modules.
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By the universal property of Q(0), the inclusion of L(0) in EA(L(λ)) gives rise to a
non-zero homomorphism from Q(0) to EA(L(λ)). The image V of this homomorphism
does not contain L(2), as was established in the first paragraph of the proof. Therefore,
from Lemma 70 it follows that V has g-types L(0), L(4), L(8), . . . and the quotient
EA(L(λ))/V has g-types L(2), L(6), L(10), . . . . In fact, from Lemma 70 and the
above remark that all simple subquotients of EA(L(λ)) must be infinite-dimensional,
it follows that both V and EA(L(λ))/V are simple modules.

This implies that V ∼= V (0, λ̃2, λ̃3) and the claim of the lemma follows. �

Lemma 72. If λ(v0) 6= 0, then, in the category of h-weight L4-modules, we have the
vanishing Ext1(L(λ − α),L(λ)) = 0.

Proof. Let L(λ) →֒ M ։ L(λ − α) be a short exact sequence in the category of
h-weight L4-modules. Consider the vector space X := Mλ ⊕Mλ−α and note that it
is killed by v4. Therefore this vector space is a module over the polynomial algebra
A in e and v2. The space of first self-extensions for each simple A-module is two-
dimensional. Since L(λ) is simple, the submodule Y := L(λ)λ ⊕ L(λ)λ−α of X is
indecomposable. Since L(λ)λ−α has dimension 2, Y is the universal self-extension
of the trivial A-module. This implies that, in the category of A-modules, the first
extension from L(λ−α)λ−α to Y coming from the socle of Y vanishes. Consequently,
M must have a non-zero vector of weight λ−α which is killed by both e and v2. As the
adjoint action of v0 leaves the span of e and v2 invariant, it follows that M contains a
highest weight vector of weight λ− α. Consequently, M splits, proving the claim. �

Now we are ready to prove Theorem 67.

Proof of Theorem 67. We take λ such that λ(h) = −2 and λ(v0) = λ̃.

The L4-module V ′(0, λ̃) := V (0, λ̃2, λ̃3) and the module V ′(2, λ̃) := EA(L(λ))/V ,
cf. the proof of Proposition 71, are already constructed. Note that the proof of
Proposition 71 implies

Ext1(V ′(0, λ̃), V ′(2, λ̃)) = 0

in the category of g-Harish-Chandra modules. As usual, on the category of g-Harish-
Chandra modules we have the restricted duality, which we denote by ⋆, that maps
⊕

i

L(i)⊕mi to
⊕

i

(L(i)∗)⊕mi . The fact that V ′(0, λ̃) is self-dual follows directly

from its uniqueness given by construction. Applying ⋆, we obtain

Ext1(V ′(2, λ̃)⋆, V ′(0, λ̃)) = 0,

where the modules V ′(2, λ̃) and V ′(2, λ̃)⋆ have the same g-types. If we assume that

V ′(2, λ̃) 6∼= V ′(2, λ̃)⋆, then, from Proposition 64, it follows that these are the only
simple g-Harish-Chandra modules having L(2) as a g-type.

Consider now the module L(2)⊗V ′(0, λ̃). By adjunction, this must have both V ′(2, λ̃)

and V ′(2, λ̃)⋆ as simple subquotients, both with multiplicity one. The remaining g-types

are L(4), L(8), L(10). . . . . If V is a subquotient of L(2)⊗V ′(0, λ̃) whose g-types form
a subset of these remaining g-types, then V , by adjunction, cannot be in the top or
socle of L(2) ⊗ V ′(0, λ̃) as L(2) ⊗ V does not have L(0) as a simple subquotient.

This implies that L(2)⊗ V ′(0, λ̃) must have socle V ′(2, λ̃) and top V ′(2, λ̃)⋆ or vice-

versa. However, since both V ′(0, λ̃) and L(2) are self-dual, so is L(2) ⊗ V ′(0, λ̃), a

contradiction. Therefore V ′(2, λ̃) ∼= V ′(2, λ̃)⋆ and thus

(32) EA(L(λ)) ∼= V ′(0, λ̃)⊕ V ′(2, λ̃).
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Consider now the module L(1) ⊗ V ′(0, λ̃). It has g-types L(1), L(3), L(5), . . . , all

multiplicity-free. We claim that that L(1) ⊗ V ′(0, λ̃) is a simple g-module which we

can declare to be V (1, λ̃). Assume that L(1) ⊗ V ′(0, λ̃) is not simple and let V be a

submodule or a quotient of L(1) ⊗ V ′(0, λ̃) which does not have L(1) as its g-type.
Using the self-adjointness of L(1)⊗−, by adjunction we have a non-zero homomorphism

between V ′(0, λ̃) and L(1) ⊗ V . However, the latter is not possible as L(0) is not a

g-type of L(1) ⊗ V due to our definition of V . This shows that L(1) ⊗ V ′(0, λ̃) is
simple.

From Lemma 72, it follows that L(1) ⊗ L(λ) ∼= L(λ − 1
2α) ⊕ L(λ + 1

2α). As EA

commutes with L(1)⊗−, it follows that

L(1)⊗EA(L(λ)) ∼= EA(L(λ −
1

2
α)) ⊕EA(L(λ +

1

2
α)).

By comparing the g-types, we see that

EA(L(λ −
1

2
α)) ∼= V (1, λ̃) or EA(L(λ +

1

2
α)) ∼= V (1, λ̃).

Consider the first case, the second one is similar. By adjunction, we have

Hom(V (1, λ̃), L(1)⊗EA(L(λ))) ∼= Hom(L(1)⊗ V (1, λ̃),EA(L(λ))).

By the above, L(1) ⊗ V (1, λ̃) has EA(L(λ)) as a direct summand and the endomor-

phism of EA(L(λ)) has dimension two. Consequently, Hom(V (1, λ̃),L(λ+ 1
2α)) must

be non-zero, which implies

EA(L(λ+
1

2
α)) ∼= V (1, λ̃)

by comparing the g-types of these modules.

Using, inductively, arguments similar to the ones used above, we construct modules

V (i, λ̃) ∼= EA(L(λ +
i

2
α))

for i > 1. The proof of Theorem 67 is now completed easily using construction and
adjunction. �

Remark 73 (A sketch of an altenative proof of the splitting (32)). Denote by b the
span of h and e, and consider the polynomials C[x] as (b⋉L(4))-module by declaring:
h · xk = (−2 − 2k)xk, e acts as ∂

∂x
, v4 and v2 annihilate everything, v0 multiplies

by 3λ̃, v−2 multiplies by 6λ̃x, and v−2 multiplies by 3λ̃x2 (this is known as the Fock

module). From [LMZ14, Theorem 4(ii)] it follows that L(λ) ∼= IndL
4

b⋉L(4)C[x] (recall

that λ(h) = −2 and λ(v0) = λ̃). From this, we have that EA(L(λ)) has g-types
L(0), L(2), L(4), . . . , and the lowest weight vector in each L(2k) is f−1 ⊗ xk. By a
long and tedious, but straightforward computation, one can see that

v4f
−1 ⊗ xk =

3λ̃

4(k + 1)(k + 2)(2k + 1)(2k + 3)
· e4f−1 ⊗ xk+2

−
3λ̃

2(2k + 3)(2k − 1)
· e2f−1 ⊗ xk

+
3λ̃k(k − 1)

4(2k + 1)(2k − 1)
· f−1 ⊗ xk−2.

From this formula it follows easily that L4 maps L(k) to L(k+4)⊕L(k)⊕L(k− 4) if
k ≥ 2, and to L(k+2)⊕L(k) for k = 0, 1, with non-zero projections to each summand.
This proves the claim.
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Remark 74. From the proof of Theorem 67, the combinatorics of tensoring with L(1)
can be recorded as follows:

L(1)⊗ V ′(0, λ̃) ∼= V (1, λ̃);

L(1)⊗ V ′(2, λ̃) ∼= V (1, λ̃);

L(1)⊗ V (1, λ̃) ∼= V ′(0, λ̃)⊕ V ′(2, λ̃)⊕ V (2, λ̃);

L(1)⊗ V (i, λ̃) ∼= V (i− 1, λ̃)⊕ V (i+ 1, λ̃), i > 1.

In particular, the additive closure of V ′(0, λ̃), V ′(2, λ̃) and all V (i, λ̃) forms a simple
F -module category, cf. Propositions 38 and 58. From the above formulae, we see that
the combinatorics of this F -module category is different from the combinatorics of the
F -module categories described in Propositions 38 and 58.

We note that there might exist, potentially, other simple g-Harish-Chandra modules
for L4 which correspond to characters of Sym(r)g that do not occur in simple highest
weight modules. The problem here seems to be the absence, in case of L4, of an
analogue of the classical theorem by Harish-Chandra that, in case of reductive Lie
algebras, any central character is realizable on some highest weight module.

7.4. Some speculations in case of the Lie algebras Ln = sl2 ⋉ L(n) with n
even. For an even non-negative integer n, consider the Lie algebra Ln = sl2 ⋉ L(n).
The algebra L0 is reductive and hence all its sl2-Harish-Chandra modules are finite-
dimensional. Classification of all sl2-Harish-Chandra modules for the Takiff Lie algebra
L2 is given in Section 4. Note that all simple sl2-Harish-Chandra modules for L2 are
connected to highest weight L2-modules. For the Lie algebra L4, all sl2-Harish-Chandra
modules that are connected to highest weight L4-modules are classified in the previous
subsection. Potentially, these are not all sl2-Harish-Chandra modules for L4. As we
see, the level of difficulty of the problem increases drastically with n.

The highest weight theory for Ln is described in [LMZ14, Theorem 4]. As vector space,
simple highest weight Ln-modules look the same, independently of n. Therefore we
expect that the problem of classification of simple sl2-Harish-Chandra modules for Ln

that are connected to highest weight Ln-modules via Enright-Arkhipov functor should
be solvable. One of the crucial missing ingredients, at the moment, seems to be an
analogue of [HHLS18, Corollary 3.4] for general n (i.e., for general k in the notation of
[HHLS18]).

Of special interest is the question of what kind of a monoidal representation of the
monoidal category of finite-dimensional sl2-modules do the Ln-modules from the pre-
vious paragraph form.
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