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Abstract: We construct bijections between certain energetically favorable resonance-like structures in several classes of benzenoid compounds 
and some well-known combinatorial structures enumerated by Catalan and related numbers. In that way we derive explicit formulas for the 
number of such structures in the considered classes of compounds. We also list some open problems and indicate some possible directions for 
future research. 
 
Keywords: benzenoid graphs, perfect matching, Kekulé structure, degeneracy, Dyck path, Narayana numbers. 
 
 
 

INTRODUCTION 
HEMISTRY and enumerative combinatorics have been 
for a long time engaged in a deep and fruitful 

interaction that plays a significant role in the advancement 
of both fields. It goes well beyond the standard practice of 
applying tools from one discipline to the problems of 
interest in the other. Instead, whole areas of either field 
benefited from contributions of researchers working on 
problems of interest to the other one. Good examples are, 
e.g., the Pólya theory and the theory of matchings in graphs 
which owe their development in a large part to chemically 
motivated problems. Matchings, in particular, provide a 
natural mathematical context for modeling electronic 
interactions in organic compounds, with perfect matchings 
serving as models of resonance structures in such 
compounds. 
 Our goal in this paper is to derive explicit expressions 
for the number of certain resonance-like structures in 
several classes of polycyclic aromatic hydrocarbons. The 
motivation comes from a recent paper concerned by such 
structures,[17] but the results could be also relevant in a 
wider context of matching theory, in particular with respect 
to the matchings with a given defect number. 

 In the next section we introduce the relevant 
concepts and cite some preliminary results. Section 3 
contains our main results – explicit formulas for the number 
of considered structures in several classes of benzenoid 
graphs. In the last section we summarize our results and 
indicate some open problems and some possible directions 
for future research. 
 

DEFINITIONS AND PRELIMINARIES 
All graphs considered here will be finite, simple and 
connected. We refer the reader to Ref. [9] or [10] for all 
graph-theoretic terms used but not defined here. 
 A hexagonal system is a connected collection of 
congruent regular hexagons arranged in a plane in such a 
way that two hexagons are either completely disjoint or 
have one common edge. To each such system we assign a 
benzenoid graph, taking the vertices of hexagons as the 
vertices of the graph, and the sides of hexagons as the 
edges of the graph. The resulting graph is simple, planar, 
bipartite and all its bounded faces are hexagons. The name 
comes from the fact that such graphs are natural models 
for benzenoid hydrocarbons, a large and important class of 
organic compounds in which carbon atoms are arranged in 

C 

http://creativecommons.org/licenses/by/4.0/
mailto:doslic@grad.hr
https://orcid.org/0000-0002-8326-513X


 
 
 
280 T. DOŠLIĆ: Computing Degeneracies of the Most Important Structures … 
 

Croat. Chem. Acta 2020, 93(4), 279–287 DOI: 10.5562/cca3752 

 

 

 

cycles of length six. Benzenoids belong to a larger class 
called the polycyclic aromatic hydrocarbons (PAHs) which 
may contain cycles of different lengths, and some of the 
concepts defined here apply to all PAHs and to their 
mathematical models. However, we will restrict our 
attention here to alternant PAHs, i.e., PAHs with only rings 
of length six, and from now on the two terms (benzenoids 
and PAHs) will be used interchangeably. 
 A matching in a graph G is a collection M of edges of 
G such that no two edges from M share a vertex. A 
matching M is perfect if every vertex of G is incident with 
exactly one edge from M. 
 Perfect matchings in benzenoid and in related 
graphs are often called Kekulé structures in the chemical 
literature. The benzenoids with perfect matchings are 
called Kekuléan. The literature on the enumeration and on 
other aspects of perfect matchings in benzenoids is vast; 
the reader might wish to see, e.g., Ref. [3] and the 
references therein. 
 The superposition of the two Kekulé structures in 
benzene is called the Clar's aromatic sextet. In larger 
benzenoids, more than two Kekulé structures are needed 
to describe the resonance patterns. A Clar structure is a 
Kekulé structure with the largest possible number of 
disjoint aromatic sextets. The largest possible number of 
disjoint aromatic sextets in a structure is its Clar number. 
According to the Clar's rule,[1,2,11] Clar structures are the 
most important structures for explaining the properties of 
benzenoid compounds. Aromatic sextets are usually 
depicted as circles in the corresponding hexagons. 
 For a given polycyclic aromatic hydrocarbon its 
standard structure, as defined in Ref. [17], is defined as a 
structure that has the smallest possible number of 
unpaired electrons and does not have aromatic sextets. 
 In a Kekuléan benzenoid, any Kekulé structure (and 
the corresponding perfect matching) can serve as a 
standard one. In non-Kekuléan benzenoids, standard 
structures are necessarily represented by non-perfect 
matchings. The number of unpaired electrons 
corresponds to the defect of that matching, i.e., to the 
number of vertices not incident with edges of the 
matching. Examples of standard structures in a Kekuléan 
and in a non-Kekuléan benzenoid are shown in Figures 1. 
and 2., respectively. 

 The energy of a standard structure of molecule α is 
denoted by αE  and expressed in kJ/mol. As the aromatic 
stabilization energy of benzene has been reported as 90 
kJ/mol,[14] to a structure with k extra aromatic sextet the 
energy of Eα – k · 90 kJ/mol is assigned. Similarly, since the 
C–C π-bonding energy is estimated at about 272 kJ/mol,[8] 
any two extra unpaired electrons raise αE  by 272 kJ/mol. 
Hence, according to Ref. [17], a structure with k extra 
aromatic sextets and 2l unpaired electrons is assigned 
energy of αE  – k · 90 + l · 272 kJ/mol. The energy penalties 
are shown schematically in Figure 3. 
 The structures with the smallest energy are called 
the most important structures. The structures with the 
second smallest energy are called the second most 
important structures, and so on. The number of structures 
with the same energy is called the degeneracy of that 
structure.  
 The degeneracy of the i-th most important structure 
of a graph G we denote by Δ ( )i G .  
 The degeneracies of the most important and the 
second most important structure of anthracene are shown 
in Figure 4. 
 Next we introduce some well-known and well-
researched combinatorial families which will be brought to 
bijective correspondences with our most important 
structures. 
 A Dyck path on 2n steps is a lattice path in the 
coordinate plane (x,y) from (0,0) to (2n,0) with steps (1,1) 
(Up) and (1,–1) (Down), never falling below the x-axis. The 
number of steps is called the length of the path. The set of 
all Dyck paths of length 2n we denote by ( )n . A Dyck path 
of length 14 is shown in Figure 5.  
 The lattice paths from (0,0) to (2n,0) constructed by 
using the same steps but omitting the restriction of never 

 

Figure 1. A standard structure in a linear polyacene. 

 
Figure 2. A standard structure in a non-Kekuléan benzenoid. 
 

 

Figure 3. Energy penalties. 
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falling below the x axis are called grand Dyck paths. They 
stand in a bijective correspondence with Kekulé structures 
in certain classes of benzenoid graphs; see Refs. [6] and [7] 
for explicit constructions and some consequences. For 
another appearance of Dyck paths in a chemical setting see 
Ref. [5]. 
 A peak of a Dyck path is a place where an Up step is 
immediately followed by a Down step. The set of all Dyck 
paths of length 2n with exactly k peaks we denote by 

( ).k n  Obviously, ∩ = ∅( ) ( )k ln n   for =/k l  and 

≤ ≤
=
1

( ) ( )kk n
n n  . 

 In a similar way, motivated by the obvious 
resemblance of Dyck paths to mountain landscapes, we 
define valleys as the places where a Down step is followed 
by an Up step, and ascents and descents as consecutive 
sequences of Up and Down steps, respectively. 
 There are several ways to prove that the Dyck paths 
on 2n steps are enumerated by the Catalan numbers 

( )+= 1
1

2
n nn

nC . This sequence enumerates many other 
combinatorial families. Some seventy of them are listed in 
Ex. 6.19 of Stanley's book,[15] and there are many more – 
214 families are listed in.[16] The best known of these 
families are triangulations of a convex (n+2)-gon, binary 
trees with n vertices, plane trees with n + 1 vertices, n non-
intersecting chords connecting 2n points on the circum-
ference of a circle and the legal parenthesizations 
(bracketings) of a string of n + 1 letters subject to a non-
associative binary operation. (A parenthesization is legal if 
it has equally many left and right parentheses, if, counting 
from left to right, the number of the right parentheses 
never exceeds the number of the left ones and if there are 
no empty pairs of parentheses.) The last interpretation will 
be particularly suitable as an intermediate step between 
our structures and Dyck paths. 

 There are many good references on Catalan 
numbers. A good starting point is the excellent recent 
monograph of Stanley.[16] 
 The Narayana numbers N(n,k) are defined for 
integers ≥, 1n k  by  

−     
= =     − − −     

11 1
( , ) ,

1 1 1
n n n n

N n k
k k k kn k

 

with the initial value =(0,0) : 1N  and the boundary values 
= =( ,0) 0, ( ,1) 1N n N n  for ≥ 1n . It is easy to see, by a 

direct computation, that the Narayana numbers decom-
pose the Catalan numbers, i.e. that 

≥
=∑ 0

( , ) nk
N n k C , for 

all ≥ 0n , and that this decomposition is the one defined 
by the number of peaks in Dyck paths. In other words, the 
Narayana numbers N(n,k) enumerate Dyck paths on 2n 
steps with exactly k peaks.  
 
Proposition 2.1. 

=| ( ) | ( , ).kD n N n k  
□ 

 
 For a combinatorial proof of this result, we refer the 
reader to the article Ref. [4]. The Narayana numbers have 
many other interesting properties. The most interesting for 
us will be their symmetry,  

= + −( , ) ( , 1 ),N n k N n n k  

in particular for k = 2, i.e., the equality − =( , 2) ( ,3).N n n N n  
 

MAIN RESULTS 
In this section we provide explicit formulas for degener-
acies of the most important structures in four classes of 
benzenoids. The first two considered classes are special 
types of chains, the third one belongs to catacondensed 
benzenoids (with no vertices shared by three hexagons), 
while the last one represents pericondensed benzenoids. 

Linear Polyacene 
We first consider linear polyacenes nL  consisting of n hex-
agons. An example is shown in Figure 6. The two hexagons  

 

Figure 5. A Dyck path from 4(7) . 
 

 

Figure 4. Examples of degeneracies. 
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adjacent to only one other hexagon are called terminal 
hexagons; all others, if any, are internal. (The term 
"internal hexagon" has a different meaning in the context 
of pericondensed benzenoids, where it denotes a hexagon 
surrounded by six other hexagons.) It has been well known 
for a long time that linear polyacenes are Kekuléan and that 
their Clar number is equal to one. Since all their most 
important structures have exactly one aromatic sextet and 
this sextet can be located in any of their n hexagons, it 
follows that the degeneracy of the most important 
structures in nL  is equal to the number of hexagons n. 
 
Proposition 3.1. 

=1Δ ( ) .nL n  

□ 
 
 The situation is more interesting for the second most 
important structures. All such structures have two unpaired 
electrons and two aromatic sextets. We first prove an 
auxiliary result on their arrangement in nL . 
 
Lemma 3.2.  
The unpaired electrons in a second most important 
structure of nL  must belong to internal hexagons. Both 
must be at vertices of degree 2, and one of them must be 
on the upper part of the border, while the other must be on 
the lower part. 
 
Proof. Let u and v be the vertices of nL  corresponding to 
the unpaired electrons. Then the set { },u v  must be 
independent (i.e., u and v cannot be adjacent) and nice 
(i.e., the graph { }\ ,nL u v  must contain a perfect 
matching). Moreover, there must be a perfect matching in 

{ }\ ,nL u v  with exactly two aromatic sextets, so that the 
energy fits the requirements of the second most important 
structure. An example is shown in Figure 7.  
 Let us embed nL  into the plane so that the edges 
shared by adjacent hexagons are vertical. Then all vertices 
of degree 3 are on vertical edges, half of them at their 
upper ends, half on their lower ends. Moreover, all vertices 
of degree 3 on the upper side of vertical edges belong to 
the same class of bipartition, and all vertices of degree 3 on 
the lower side belong to the opposite class.  
 Let us suppose that u and v are both of degree 3. 
Then one of them, say u, lies on the upper border of nL , 
and v lies on the lower border. As they cannot be adjacent, 

let us suppose that u lies to the left of v, as shown in Figure 8. 
The total number of edges on the boundary of nL  is 4n + 2 
and they form the cycle +4 2nC . It follows by a simple parity 
argument that the distance between u and v along this 
cycle is odd, due to the odd number of edges in terminal 
hexagons. Hence the removal of u and v splits the +4 2nC  
into two even paths, both of them having a perfect 
matching. The union of those two perfect matchings is a 
perfect matching in { }\ ,nL u v . It is easy to see that this is 
the only perfect matching in { }\ ,nL u v . Indeed, the same 
parity argument implies that no vertical edge of { }\ ,nL u v  
can be in a perfect matching of this graph. Hence, there 
cannot be an aromatic sextet in { }\ ,nL u v , contrary to our 
assumption.  
 Next we consider the case that u is of degree 3 and v 
of degree 2. Then, with one exception, both of them must 
be either on the upper or on the lower part of the border. 
(Otherwise they would belong to the same class of 
bipartition.) Let they be both on the upper part; see Figure 
9. It follows by the same parity argument that no vertical 
edge lying between u and v can participate in any perfect 
matching of { }\ ,nL u v . The same is valid for any vertical 
edge lying between u and the terminal hexagon closer to it 
than to v. The vertical edges between v and the terminal 
hexagon closer to it than to u can participate in perfect 
matchings. Any such matching, however, can have only one 
aromatic sextet and cannot have the energy of the second 
most important structure. The exception mentioned above 
is the case when the vertex of degree 2 lies on the vertical 

 

Figure 9. Unpaired electrons at vertices at the same part of 
the border. 

 
Figure 7. A second most important structure in a linear 
polyacene. 
 

 

Figure 8. Unpaired electrons at vertices of degree 3. 
 

 

Figure 6. One of the n most important structures in a linear 
polyacene. 
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edge in one of the two terminal hexagons. Then it must be 
on the opposite part of the border. In our case, with u on 
the upper part, v must be on the lower part. Again, all edges 
are forced and hence no perfect matching of { }\ ,nL u v  
can contain an aromatic sextet, let alone two. 
 It remains to consider the case when both unpaired 
vertices are of degree 2. If both of them lie on vertical 
edges, they cannot be both on the same edge, so one of 
them must be on the leftmost and the other one on the 
rightmost vertical edge. If both are on the upper border, 
then they must belong to the same class of bipartition, and 
the rest of nL  cannot have a perfect matching. Let the 
unpaired vertex on the leftmost vertical edge be on the 
upper border of nL  as in Figure 10. Then the other unpaired 
vertex must be the lower one on the rightmost vertical 
edge. Then all edges of the unique perfect matching in the 
rest of the graph are forced and the unique perfect 
matching cannot have an aromatic sextet. This is a 
contradiction with our assumption that the considered 
structure is a second most important one.  
 If only one of them, say u, lies on a vertical edge, then 
the other one must lie on the same part of the border. Then 
all edges between u and v are forced, and the same 
argument as above implies that only the part of nL  to the 
right of v can contain aromatic sextets. Since it is straight, it 
contains exactly one aromatic sextet. It follows that no 
perfect matchings in { }\ ,nL u v  contains two aromatic 
sextets. Hence none of u, v lies on vertical edges.  
 Let u lie on the top of hexagon k and v on the bottom 
of hexagon l with ≥k l . Then all edges of any perfect 
matching in { }\ ,nL u v  lying in hexagons …, ,k l  are forced, 
leaving the two parts outside hexagons k and l to each 
contain one aromatic hexagon. Hence, none of u and v can 
lie on terminal hexagons. 
 The remaining cases follow by symmetry. □ 
 
Lemma 3.2 will be useful also for other considered 
catacondensed cases. 
 
Theorem 3.3. 

 
 
 

−
=

2

2

( 1)1
Δ ( ) .

6 2n

n
L  

Proof. Let us take a second most important structure in .nL  
As noted above, it must have exactly two aromatic sextets 
and exactly one pair of unpaired electrons. Moreover, from 
Lemma 3.2 we know that all unpaired electrons must lie 
between two aromatic hexagons. For each such structure 
we construct a legal bracketing with two pairs of 
parentheses in a string of − 2n  letters in the following 
way. We scan the structure from left to right. To each non-
aromatic hexagon we assign a letter. To the first aromatic 
hexagon we assign a left parenthesis. To a hexagon with an 
unpaired electron on its top, we assign a left parenthesis 
and a letter; to a hexagon with an unpaired electron at its 
bottom, we assign a letter and a right parenthesis. If there 
is a hexagon containing two unpaired electrons, we assign 
to it a letter enclosed in a pair of parentheses. Finally, to 
the second aromatic sextet we assign a right parenthesis. It 
follows from Lemma 3.2 than any such bracketing must be 
legal, and the correspondence is clearly bijective. It is 
illustrated in the left-hand side of Figure 11. for 4L . The 
right-hand side of the same figure illustrates the canonical 
bijection between bracketings and Dyck paths: Left 
parentheses correspond to the Up steps, the right ones to 
the Down steps and letters correspond to peaks. It is now 
clear that the number of the second most important 
structures, i.e., their degeneracy, is equal to the Narayana 
number − =( , 2) ( ,3)N n n N n  and our claim 


− 


 

=
 2

2

( 1)1
Δ ( )

6 2n

n
L

 

readily follows by rearranging the obtained expression.  □ 

Next we obtain explicit formulas for the degeneracy of the 
third most important structure in linear polyacenes. The 
smallest polyacene allowing such structures is the linear 
pentacene. 

 

Figure 10. Unpaired electrons at vertices of degree 2 on 
vertical edges. 
 

 

Figure 11. Bijection between second most important 
structures in a linear polyacene and Dyck paths. 
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Theorem 3.4. 

2

3
2 8 11

Δ ( ) .
521n

nn n
L

−
=

 
 
 

+
 

Proof. An example of a third most important structure in 

7L  is shown in Figure 12. Any such structure must have 
three aromatic sextets and two pairs of unpaired electrons, 
two electrons on the upper and two on the lower part of 
the border. Counting such structures reduces to the 
problem of counting the number of ways of choosing three 
aromatic sextets and of positioning unpaired electrons 
between them. For a given n, the leftmost aromatic sextet 
in nL  can be chosen in − 4n  ways – it can be any of 
hexagons labeled by … −1,2, , 4n . Denote its location by k. 
Now the middle aromatic sextet can be placed in any 
hexagon from + 2k  to − 2n . Let it be hexagon m. Finally, 
the rightmost aromatic sextet can be placed in any hexagon 
between + 2m  and n. The total number of ways of 
choosing three aromatic sextets in nL  is given by  

− − −

= = + =

− − −
− − = =

   
   
   

∑ ∑ ∑
4 2 4

1 2 1

2 2
( 1) .

2 3

n n n

k m k k

n k n
n m  

For two aromatic hexagons at distance ≥ 2  there are 
− 2( 1)  ways to insert two unpaired electrons, since they 

can be chosen independently of each other, one in each of 
− 1  available positions on the upper and on the lower 

border, respectively. The claim of the Theorem now follows 
by summing over all legal positions of three aromatic 
sextets and simplifying the resulting expressions: 

− −

= = + = +

 
 


− +
− − − =


−∑ ∑ ∑





24 2
2 2

1 2 2

2 8 11
( 1) ( 1) .

521

n n n

k m k m

nn n
m k m  

  □ 
 
 Our results in this subsection provide explicit 
expressions for the values reported in Table 3 of Ref. [17]. 
They also provide correct values for the degeneracies of the 
third most important structures in 18L , 19L  and 20L  as 
210120, 321708 and 480624, respectively. Those values are 
incorrectly reported in the rightmost column of Table 3 of 
Ref. [17]. The sequence 2Δ ( )nL  appears as sequence A002415 
in the On-Line Encyclopedia of Integer Sequences,[12] while 
the sequence 3Δ ( )nL , starting with 1,10,53,200,606, ..., 
seems to be new. It would be interesting to investigate 
whether our results could be also relevant in the context of 

lithium adsorption on polyacenes and on more general 
zigzag-edge graphene strips.[13] 

Straight Chains With one Kink 
In this subsection we consider benzenoid chains ,k lL  of 
length + + 1k l  in which two straight polyacene segments 
of length k and l, respectively, are joined by one kinky 
hexagon. (A hexagon is kinky if the two edges it shares with 
other hexagons are neither adjacent nor parallel.) An 
example is shown in Figure 13. 
 We take ≥k l . As the cases when both k and l are 
smaller than 3 were considered in Ref. [17], we assume 
≥ 3k . A segment of ,k lL  is long if its length is at least three. 

 The most important structures are Kekuléan with 
two aromatic sextets, one in each segment. There are m 
ways to place an aromatic sextet in a segment of length m. 
Since the sextets can be placed independently of each 
other, we have altogether ⋅k l  most important structures. 
 
Proposition 3.5. 
Let ,k lL  be a one-kink benzenoid chain with both segments 
long. Then 

1 ,Δ ( ) .k lL k l= ⋅  
  □ 
 
 The second most important structure is unique. It is 
Kekuléan, with just one aromatic sextet in the kink 
hexagon. Hence, =2 ,Δ ( ) 1k lL . 
 Since any Kekuléan structure in ,k lL  must have at 
least one aromatic sextet, it follows that any third most 
important structure must have two unpaired electrons. 
Their placement is still governed by Lemma 3.2. If the 
unpaired electrons are placed on different segments, there 
can be at most two aromatic sextets in the rest of the 
graph; if they are placed on the same segment, three 
aromatic sextets can be placed in the rest of the graph, 
resulting in a structure with lower energy. Since there is no 
way to place more than three aromatic sextets in ,k lL  after 
removal of any two vertices, any third most important 
structure must have exactly three aromatic sextets. Hence 
the unpaired electrons must be on the same segment, on 
the opposite parts of its border, and there must be three 

 

Figure 12. A third most important structure in a linear 
polyacene. 

 

Figure 13. A one-kink chain with long segments. 
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aromatic sextets, two on the segment with unpaired 
electrons, and the third one on the other segment. The 
following result is then a simple consequence of the results 
of the previous subsection. 
 
Proposition 3.6. 
Let ,k lL  be a one-kink benzenoid chain with both segments 
long. Then  

= + = +3 , 1 2 2 1 2 2Δ ( ) Δ ( )Δ ( ) Δ ( )Δ ( ) Δ ( ) Δ ( ).k l k l k l l kL L L L L k L l L  
  □ 
 
By defining =2Δ ( ) 0lL  for < 3l  the above result becomes 
valid also for one-kink chains in which only one segment is 
long. 

Branched Benzenoid with  
Straight Branches 

The simplest branched benzenoid is the triphenylene. We 
consider here a bit more general case with one branching 
hexagon and three straight segment of length k, l, and m. 
For the sake of simplicity, we assume that all segments are 
long. Such a structure is denoted by ( , , )S k l m ; an example 
is shown in Figure 14.  
 Since the Clar number of ( , , )S k l m  is equal to 3, the 
most important structures will be Kekuléan, with one 
aromatic sextet in each segment. The sextets can be chosen 
independently, and hence the number of such structures is 
equal to the product of the segment lengths.  
 
Proposition 3.7. 
Let ( , , )S k l m  be a benzenoid with one branching hexagon 
and three long polyacene branches of length k, l, and m. 
Then =1Δ ( ( , , ))S k l m klm . □ 
 

 It follows by parity that a Kekuléan structure in 
( , , )S k l m  cannot have exactly two aromatic sextets, and 

that there is only one Kekuléan structure with exactly one 
aromatic sextet – the one with the aromatic sextet in the 
branching hexagon. As in the case of one-kink chains,  
this structure is the second most important. Hence 

=2Δ ( ( , , )) 1.S k l m  
 As before, any third most important structure must 
have two unpaired electrons, and by the same arguments 
we can conclude that the energetically most favorable 
placement must place both of them on the same branch. As 
all branches are long, it follows that the number of aromatic 
sextets must be four, two on the branch with unpaired 
electrons and one on each of the remaining branches. Now 
the degeneracy of the third most important structure can 
be compactly expressed in the following way. 
 
Proposition 3.8. 
Let ( , , )S k l m  be a benzenoid with one branching hexagon 
and three long polyacene branches of length k, l, and m. 
Then  

∈

= ∑ 2
3

{ , , } 1

Δ ( )
Δ ( ( , , )) .

Δ ( )
p

p k l m p

L
S k l m klm

L
 □ 

 For short branches we have more complicated 
situations and we omit the detailed case-by-case analysis. 

Strips of a Fixed Width 
The last class we consider here are benzenoid strips (or 
benzenoid parallelograms) of varying length and fixed 
width. An example of length 6 and width 3 is shown in 
Figure 15. In this subsection we do not distinguish between 
various Kekuléan structures and consider only the most 
important non-Kekuléan structures. Their degeneracy will 
be denoted by 2 ,Ω ( )n mB . An example is shown in Figure 16. 
 Our first results are explicit formulas for cases 

= 2,3m . 

 

Figure 14. A branched catacondensed benzenoid with three 
long polyacene segments. 
 

 

Figure 15. Benzenoid strip of length 6 and width 3. 
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Proposition 3.9. 
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5 1
Ω ( ) ;

56n

nn
B  

 


+ −
= 

 

2

2 ,3
7 146

Ω ( ) .
628n

nn n
B  

Proof. Let us look at the case m = 2. We must count the 
ways of choosing one aromatic sextet in the lower row, 
then one in the upper row, then again one in the lower row 
and finally one in the upper row. If the hexagons are 
numbered left to right by …1,2, ,n , their indices must 
differ by at least one between a lower one and the upper 
one, and at least by two between an upper one and the 
lower one following it. This is possible for all ≥ 5n . If the 
chosen hexagons in the lower row are labeled by k and m, 
and in the upper row by l and p, we must have ≤ − 1k l , 
≤ − 2l m  and ≤ − 1m p . There are − − 1m k  ways to 

insert one unpaired electron on the lower border and 
− − 1p l  way to do the same on the upper border. The 

claim now follows by summing over all possible arrang-
ements of k,l,m,p satisfying the above conditions: 

− − −

= = + = + = +

−
=


− − −


 


−


∑ ∑ ∑ ∑
4 3 1

1 1 2 1

5 1
( 1)( 1) .

56

n n n n

k l k m l p m

nn
m k p l  

 The case = 3m  follows along the same lines for 
≥ 6n . The number of nested sums increases to six, but 

only two summands are non-constant.  

− − − − −

= = + = + = + = + = +

 
 

− − − − =

−

 

+

∑ ∑ ∑ ∑ ∑ ∑
5 4 3 2 1

1 1 1 2 1 1

2

( 1)( 1)

7 146
628

n n n n n n

k l k m l p l q p r q

p k r m

nn n
 

  □ 
 

In general, for a fixed ≥ 2m , 2 ,Ω ( )n mB  is a 
polynomial of degree +2 2m  in n obtained by evaluating 
the 2m-fold nested sum  

− + + +

−

− − − − − − − −

= = + = + = + = +

+
= +

− − − −

∑ ∑ ∑ ∑ ∑

∑

 

1 2 1 1 1 2 2 1

2 2 1

2 1 3 1

1 1 1 2 1

1 1 2
1

( 1)( 1).

m m m m m

m m

n m n m n n m n m

i i i i i i i i i

n

m m m
i i

i i i i
 

For = 1m , the above expression reduces to our previously 
derived formula, 

−
= =

−


 
 

2 ,1 2
2( 1)

Ω ( ) Δ ( )
43n n

nn
B L

n
. 

 

OPEN PROBLEMS AND  
CONCLUDING REMARKS 

In this contribution we have counted the most important 
structures in several classes of benzenoid graphs and thus 
provided explicit expressions for their degeneracies. Our 
methods could be used to solve the same problem in 
various other classes of benzenoids and of more general 
graphs. In this sections we indicate some possible 
candidates. 
 One could start with benzenoid chains with kinks. 
We have presented some initial results for chains with two 
long straight segments separated by one kink, but for other 
cases the problem is still open. Branched catacondensed 
benzenoids would be the next logical choice, followed by 
pericondensed benzenoids of high symmetry. Some of such 
structures have been investigated in Ref. [17], but the 
results are far from satisfactory. For example, the 
degeneracy of the second most important structure in the 
rhombic graphene nanoflake shown in Figure 17. has been 
reported as 18. Indeed, for the arrangement of aromatic 
sextets shown in Figure 17., nine structures with the same 
energy can be obtained by positioning one unpaired 
electron at any of the places indicated by arrows in the 

 

Figure 17. 18 second most important structures in a rhombic 
nanoflake found in Ref. [17]. 

 

Figure 16. A most important non-Kekuléan structure in B6,3. 
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upper right corner and the other one on any of places 
similarly indicated in the lower left corner, and another 
nine structures could be obtained by mirroring the 
aromatic sextet arrangement across the long diagonal. 
There are, however, more structures of the same energy. 
Eight more of them can be obtained in the way indicated in 
Figure 18. 
 We leave to the interested reader to derive the 
exact expression as a function of the length n of the 
rhombus side. 
 It would be also interesting to consider such 
structures on nanoflakes with defects, in particular on 
nanocones and fullerene patches. Finally, one could also 
formulate and investigate analogous problems for lattice 
animals on other lattices. 
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