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Abstract: Reducing heat losses through the building envelope is one of the most important aspects to
be met if the targets set by the European Union are to be achieved. In order to obtain a more realistic
energy demand, dynamic heat transfer simulations are used to calculate the energy consumption
of buildings, since steady-state calculations do not take into account the thermal mass in buildings.
These dynamic simulations employ methods based on analytical models since numerical models
are unsuitable for longer time periods. The analytical models used herein fall into the category
of conduction transfer functions (CTFs). Two methods for computing CTFs that are addressed in
this research are the Laplace method and the State-Space method. The objective of this paper is to
verify the efficiency of the Laplace and State-Space methods for calculating the energy demand of a
building in the case of heavyweight building elements and shorter sampling times, and to provide a
means for improving the algorithms used by these methods. The Laplace and State-Space method
algorithms were implemented in Mathematica, and the results were compared to EnergyPlus and
TRNSYS, which use similar algorithms to calculate energy demand. It was shown in this paper that
for the heavyweight wall element and a time step of 0.25 h, the difference between the total energy
transferred through the inner surface was about 31% for EnergyPlus and 78% for TRNSYS compared
to the reference solution. For the lightweight wall element, the results were stable for the time step
of 0.25 h, but for the time step of 0.1 h, the differences were 45.64% and 303% between EnergyPlus,
TRNSYS and the reference solution, respectively, compared to the State-Space and Laplace methods
for which the maximum difference was 12.03% with a time step of 0.1 h. While dynamic heat
transfer simulations are better than calculations based on steady-state boundary conditions, they also
have their limitations and could lead to unsatisfactory results for short sampling times and if not
applied properly.

Keywords: Laplace method; State-Space method; building energy simulation; conduction transfer
functions; short sampling times; heavyweight building elements

1. Introduction

With the aim of ensuring that EU policies are in line with the climate goals agreed
by the Council and the European Parliament, the Fit for 55 [1] package was proposed,
which among other things, includes an increase in the CO2eq emissions from the buildings
reduction target by 2030 compared to 2005. The measures include, among others, enhancing
buildings’ energy performance when constructing new buildings and the energy renovation
of existing buildings. All of this also complies with the European Commission’s long-term
strategy for a low-carbon Europe by 2050 [2,3]. The European parliament adopted draft
measures to increase the building renovation rate as well as to minimize buildings’ energy
consumption and CO2eq emissions. European Climate Law [4] enshrined both the 2030
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and the 2050 targets into binding European law. According to the adopted measures, all
new buildings should be zero-emission buildings (ZEBs) from 2028, while new buildings
occupied, operated or owned by public authorities should be from 2026 [5], thus advancing
even further the development set up by nearly zero energy buildings (NZEBs).

To achieve these goals, it is important to predict the energy consumption of both new
buildings and renovated buildings. Most software used in the EU for energy performance
simulation use simplified methods to calculate heat transfer through building elements
based on steady-state boundary conditions averaged over a period of time [6,7]. This
calculation can lead to unsatisfactory results when boundary conditions change rapidly and
when the thermal mass of the element is significant [6,8]. As a result, the predicted energy
demand may be lower or higher than the actual energy consumption, leading to undersized
or oversized heating and cooling systems. Furthermore, if the boundary conditions are
considered to be steady-state, the peak energy demand shifts because the thermal mass is
not taken into account, leading to a thermal comfort problem for the building occupants.
Nowadays, dynamic methods for simulating building energy demand are more and more
widely used because they are powerful and important tools for optimizing building energy
demand [8–12].

The dynamic methods are based on the non-stationary solution of the heat equation.
This solution can be found numerically (finite volume method, finite element method
or finite difference method) or analytically. Due to the long analysis period and small
time steps used for the analysis, numerical methods have proven to be inadequate for
building energy simulations because they rely on solving large systems of equations at
each time step [13]. Analytical methods such as conduction transfer functions (CTFs)
have been shown to be much better for building energy simulation problems [14] and
are implemented in modern dynamic energy simulation software such as TRNSYS [15]
and EnergyPlus [16]. Although the CTF methods are superior to the abovementioned
simplified calculations, the aim of this research is to show that they have their limitations
and lead to unsatisfactory results if not properly applied. It will be shown that in the case
of heavyweight façade systems and small computational time steps, CTFs can provide
low-quality results (become more and more unstable with longer time steps, particularly
with massive building elements) [17]. The reason for using small time steps, which in some
cases can be less than one hour, could be to analyze more accurately the impact of complex
control systems on the overall energy performance of the building primarily associated
with the exploitation of renewable energy sources as well as predictive model control of
buildings [18,19]. Another reason is that NZEBs and ZEBs require more accurate dynamic
simulations of heavy and highly insulated building elements with shorter time steps (less
than 15 min) [20–22]. The problem also lies in the algorithms developed for yearly energy
simulations with a time step of one hour. Comparisons of different methods and their main
problems found in the literature are summarized in Table 1.

Among the most commonly used CTF methods are the Laplace method and the
State-Space method. This paper compares these two methods for calculating heat losses
through a heavyweight multilayer wall with a contact thermal insulation façade system
by implementing the algorithms from the research work of Stephenson and Mitalas [23]
for the Laplace method and Seem [24] for the State-Space method in Mathematica [25].
The software Mathematica was chosen due to its advanced mathematical and numerical
tools and matrix manipulation. The results from Mathematica are then compared with the
results of two commonly used software for the dynamic calculation of energy performance—
TRNSYS and EnergyPlus. The first software uses the Laplace method [21,26] to calculate the
CTF coefficients, while the second uses the State-Space method [27–29]. The finite difference
method (FDM) [30] is used as a reference point for the boundary heat flux density. The
aim is to show how well the Laplace method and the State-Space method perform for
small time steps and heavyweight building elements and what possibilities there are for
improving these methods.
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Table 1. Comparison of different methods from the literature.

Reference Method Time Step Size Main Problem

[8] EN ISO 52016-1
hourly method 1 h

Hourly assumption leads
to non-negligible
inaccuracy in the
calculated energy

consumption

[6] Finite element
method (FEM) Not specified Higher computational

time

[9] GIS technology Not specified
Too many specific data

are needed and too much
equipment per building

[10]
Comparison of

different simulation
software

Not specified

Large computer memory
and processing or

computation time for
more accurate results of
building energy demand

in real time

[11] CTF 0.5–1 h Termination due to CTF
calculation instability

[15] CTF 0.25 and 1 h Instability for smaller
step sizes

[16]

Recurrent neural
network via the

Multi-Input
Multi-Output

strategy

24 and 168 h

Gaps between predicted
and actual energy use at
the peak and base load

times are significant

[17] CTF 0.02–1 h
Problems for short-term
analysis for heavyweight

building elements

[18] DesignBuilder/EnergyPlus 0.25–1 h
Huge computation time,
complexity of the model

implementation

[19] CTF 0.1–1 h
Using a 60 min time step
could underestimate the

peak load up to 70%

2. Methodology

If we consider a multilayer wall, as shown in Figure 1, in the general case, the wall is
composed of n layers and two boundary conditions. The boundary condition for x = 0 is Tint
and for x = L Text. For the building energy performance simulation, the surface heat fluxes
on the interior (qint) and the exterior (qext) surface must be calculated since these two fluxes
represent the energy demand for the element under consideration. Only heat flux due to
conduction is considered and boundary conditions are surface temperatures on the internal
and external surfaces. Convection and radiation on both surfaces are not considered, i.e.,
Rsi and Rse are taken as 0 (m2 K)/W. Solar radiation as well as all other radiation from
the environment is not taken into account for the calculation. This assumption simplifies
the calculation of the surface heat fluxes and the implementation of the Steady-State and
Laplace method algorithms in Mathematica. The same assumption is implemented in both
Mathematica’s algorithms, EnergyPlus and TRNSYS.

In most cases, heat transfer through building elements such as walls or ceilings can be
considered one-dimensional. The heat equation for one-dimensional heat conduction is
given by Equation (1).

∂T(x, t)
∂t

=
λ

ρ · cp
· ∂2T(x, t)

∂x2 , (1)
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With the boundary and initial conditions:

T(0, t) = Tint
q(0, t) = qint

T(L, t) = Text,
q(L, t) = qext

T(x, 0) = 0

(2)

where T(x,t) is the temperature at point x at time t in ◦C, λ is the thermal conductivity in
W/(m K), ρ is the density in kg/m3, cp is the specific heat in J/(kg K), Tint is the internal
surface temperature in ◦C, Text is the external surface temperature in ◦C, qint is the internal
surface heat flux in W/m2 and qext is the external surface heat flux in W/m2.
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In this research, Equation (1) is solved using:

1. The State-Space method [24];
2. The Laplace method [23];
3. The finite difference method;
4. The State-Space method, as implemented in EnergyPlus;
5. The Laplace method, as implemented in TRNSYS.

For the solution of each method, the internal surface heat flux is calculated. The
solution for all five methods is then compared to analyse the impact of each method on the
solution, and also to analyse the efficiency of each algorithm used by the abovementioned
methods. This analysis is performed for time steps ranging from one hour to six minutes
and for lightweight and heavyweight building elements (walls). As a reference solution
for the comparison (i.e., as the exact solution), the solution of the FDM is taken. Further-
more, the steady-state solution is calculated to show the difference between the transient
(dynamic) and steady-state building energy demand simulation.

2.1. The Finite Difference Method

The finite difference method (FDM) is a method used for obtaining a numerical
solution to Equation (1). As with most numerical solutions, the FDM uses a discrete
approximation of the continuous partial differential equation. This means that the solution
is known only at a finite number of points within the element. The number of these points
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is user-defined and generally increases the accuracy of the numerical solution. The discrete
approximation of Equation (1) is as follows [31]:

T j+1
i − T j

i
∆t

=
1

∆x2

λ1 · T
j
i−1 − (λi−i + λi) · T

j
i + λ2 · T

j
i+1

(ρi−1 · ci−1 + ρi · ci)/2
, (3)

Equation (3) represents the implicit FDM formulation for solving the heat equation. In
the matrix formulation, Equation (3) can be written as follows:

1 0 0 . . . 0
−r1 1 + r1 + r2 −r2 . . . 0

...
...

. . .
...

...
0 . . . −ri−1 1 + ri−1 + ri −ri
0 · · · 0 0 1

 ·


T1
T2
...

Ti−1
Ti


j+1

=


Tint
0
...
0

Text


j

, (4)

The subscript i denotes a node and j point in time. The coefficients r1 and r2 are
calculated for each node according to Equation (5).

ri−1 = ∆t
∆x2 ·

λi−1
(ρi−1·ci−1+ρi ·ci)/2

ri =
∆t

∆x2 · λi
(ρi−1·ci−1+ρi ·ci)/2

, (5)

By solving Equation (4) for each time step j, the internal heat flux qint can be calculated
using Fourier’s law of thermal conduction as follows:

qint = λ1 ·
T j

2 − T j
int

∆x
, (6)

The solution calculated using Equation (6) is used as a reference (i.e., as an exact
solution) for the comparison.

2.2. The State-Space Method

The State-Space method is usually used to describe a linear system with r inputs, m
outputs and n state variables that are written in the general form as described in [32]:

.
x(t) = A(t) · x(t) + B(t) · u(t), (7)

y(t) = C(t) · x(t) + D(t) · u(t), (8)

Here x is the state vector, u is the input vector, y is the output vector, t is time, and A,
B, C and D are matrices of dimension n × n, n × r, m × n and m × r, respectively. Since,
in the case of heat conduction, the system is time-variant (i.e., the temperature inside the
element changes with time), Equations (7) and (8) can be written by discrete time-variant
State-Space method as in [32]:

.
x(k + 1) = A(k) · x(k) + B(k) · u(k), (9)

y(k) = C(k) · x(k) + D(k) · u(k), (10)

Here the matrices A, B, C and D have the same dimensions as in the continuous time
case—Equations (7) and (8). In the case of heat conduction, the state vector x represents
the temperatures of each node of the element, the input vector u represents the boundary
conditions (i.e., the boundary temperatures shown in Figure 1) and the output vector y
represents the surface heat fluxes qi and qe shown in Figure 1.
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Equations (9) and (10) can be used to solve Equation (1) by enforcing the finite differ-
ence grid over the analysed building element:



∂T2/∂t
∂T3/∂t

...
∂Tn−2/∂t
∂Tn−1/∂t

 =



−r2 − r3 r3 0 . . . 0
r3 −r3 − r4 r4 . . . 0
...

...
. . .

...
...

0 . . . rn−3 −rn−3 − rn−2 rn−2

0 · · · 0 rn−2 −rn−2 − rn−1

 ·


T2

T3
...

Tn−2

Tn−1

+


r1 . . . 0
...

. . .
...

0 · · · rn

 ·


Tint
...

Text

 (11)

The coefficients r1 and r2, which represent the left node “i − 1” and the node “i” for
each row of the matrix, are calculated for each node using Equation (12).

ri−1 = 1
∆x2 ·

λi−1
(ρi−1·ci−1+ρi ·ci)/2

ri =
1

∆x2 · λi
(ρi−1·ci−1+ρi ·ci)/2

, (12)

where index “i” denotes the node in the FDM grid (i = 2 to n) and “i − 1” first previous
node in the FDM grid.

The interior heat flux can be written in the matrix form as follows:

(qint) =

−λ1/∆x
...
0

 ·
 T2

...
Ti−1

+

[
λ1/∆x

0

]
·
(

Tint
Text

)
, (13)

If Equations (11) and (13) are compared to Equations (9) and (10), then matrices A, B,
C and D are equal to:

A =


−r2 − r3 r3 0 . . . 0

r3 −r3 − r4 r4 . . . 0
...

...
. . .

...
...

0 . . . ri−3 −ri−3 − ri−2 ri−2
0 · · · 0 ri−2 −ri−2 − ri−1


B =

 r1 . . . 0
...

. . .
...

0 · · · ri


C =

 −λ1/∆x
...
0


D =

[
λ1/∆x

0

]

, (14)

The matrices (14) are the input values for the algorithm [24] to calculate the CTF
coefficients Zj, Yj and ϕj. The algorithm [24] is implemented in Mathematica [25], and all
operations with matrices were performed using this powerful software. From the CTF
coefficients, the interior heat flux is calculated as follows:

qint(k · ∆t) =
NZ

∑
j=0

Zj · Tint,k·∆t−j·∆t +
NY

∑
j=0

Yj · Text,k·∆t−j·∆t −
NΦ

∑
j=1

Φj · qint,k·∆t−j·∆t, (15)

where Zj is the interior CTF coefficient, Yj is the cross CTF coefficient and ϕj is the flux CTF
coefficient. NZ, NY and Nϕ represent the number of Zj, Yj and ϕj coefficients, respectively.
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It is common practice to use Equation (16) to verify that the CTF coefficients obtained
by the State-Space method give the correct steady-state heat transfer, with Xk being the
exterior CTF coefficient.

Na
∑

k=1
Xk

1−
Nk
∑

k=1
Φk

=

Nb
∑

k=1
Yk

1−
Nk
∑

k=1
Φk

=

Nb
∑

k=1
Zk

1−
Nk
∑

k=1
Φk

≈ U, (16)

2.3. The Laplace Method

The Laplace method uses Laplace transforms to solve Equation (1) [33]. In matrix
form, this solution can be written as follows:(

Tint

qint

)
=

NL

∏
k=1

 cosh
(√

s/αk · Lk
) sinh(

√
s/αk·Lk)

λk·
√

s/αk

λk ·
√

s/αk · sinh
(√

s/αk · Lk
)

cosh
(√

s/αk · Lk
)
 ·( Text

qext

)
,

=

(
AA(s) BB(s)
CC(s) DD(s)

)
·
(

Text

qext

) (17)

Here AA(s), BB(s), CC(s) and DD(s) are the elements of the wall transmission matrix
H that relates to the surface temperatures and surface heat flux, with NL being the number
of layers, s being the frequency in the Laplace domain, and Lk and α being the thickness
and the thermal diffusivity of each layer, respectively.

For the purpose of building performance simulation, and because DD(s) = AA(s),
Equation (17) is transformed into Equation (18) [34].(

qint
qext

)
=

1
BB(s)

(
AA(s) −1

1 −AA(s)

)
·
(

Tint
Text

)
, (18)

In their work, [23] introduced a procedure that uses Z-Transforms [35] to convert the
solution from the frequency domain (s) back to the time domain (t). This procedure is based
on the partial fraction expansion [36,37] and finding roots of the denominator BB(s) on
some predefined interval. The root-finding algorithm is one of the main drawbacks of the
Laplace method, as it can lead to an excessive computation time and potential calculation
errors [38]. Although the Laplace method is an analytical method, except for the root-
finding procedure, which is mostly conducted numerically, the State-Space method has
been shown to be superior for shorter time steps and heavyweight building elements [39,40].
Some researchers have tried to overcome the problem of root-finding such as [41], which
proved to be efficient. They discovered that the roots of the heat transfer function BB(s) are
separated by the roots of the transfer function AA(s). This new discovery ensured that no
roots of the heat transfer function BB(s) are overlooked when performing the root-finding
procedure. Nevertheless, they did not overcome the problem of using numerical methods
for finding the actual roots, which was performed by the classical bisection method. In this
paper, the root-finding procedure is performed using Mathematica’s FindRoot function and
Brent’s method [42], in contrast to TRNSYS, which uses the bisection method.

From the CTF coefficients (bj, cj, dj), the interior heat flux is calculated as follows:

qint(k · ∆t) =
Nb

∑
j=0

bj · Text,k·∆t−j·∆t −
Nc

∑
j=0

cj · Tint,k·∆t−j·∆t −
Nd

∑
j=1

dj · qint,k·∆t−j·∆t, (19)

where bj is the interior CTF coefficient, cj is the cross CTF coefficient and dj is the flux CTF
coefficient. Nb, Nc and Nd represent the number of bj, cj and dj coefficients, respectively.
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It is common practice to use Equation (20) to verify that the CTF coefficients obtained
by the Laplace method give the correct steady-state heat transfer.

Na
∑

k=1
ak

Nk
∑

k=1
dk

=

Nb
∑

k=1
bk

Nk
∑

k=1
dk

=

Nb
∑

k=1
ck

Nk
∑

k=1
dk

≈ U, (20)

2.4. EnergyPlus

Version of the software used in this research is version 9.6. The building elements
were modelled in a single zone environment and only heat conduction through the wall
was considered, i.e., convection and radiation on both internal and external surface were
set to zero in EnergyPlus settings. That means that the temperature on of the internal and
external surface was the same as the air temperature. EnergyPlus uses Steady-State method
for the approximation of the solution for the heat equation as shown below. The same
weather file used in Mathematica was also used in EnergyPlus.

The following equation shows the basic form of a CTF solution for the internal surface
heat flux [43]:

qint(k · ∆t) = −
NZ

∑
j=0

Zj · Tint,k·∆t−j·∆t +
NY

∑
j=0

Yj · Text,k·∆t−j·∆t +
NΦ

∑
j=1

Φj · qint,k·∆t−j·∆t, (21)

where Zj is the interior CTF coefficient, Yj is the cross CTF coefficient and ϕj is the flux CTF
coefficient. NZ, NY and Nϕ represent the number of Zj, Yj and ϕj coefficients, respectively.

2.5. Trnsys

Version of the software used in this research is 17. For consistency with both Energy-
Plus and algorithms implemented in Mathematica for Steady-State and Laplace method
algorithms, only conduction through the wall was modelled. Convection and radiation
on the internal and external surface were not considered. The temperature of the internal
surface was the same as the air temperature. The building element was also modelled in a
single zone environment. The same weather file that was used in Mathematica was used in
TRNSYS.

The instantaneous heat flux entering or leaving the zone for an exterior wall can be
modelled according to Equation (19) as described in [44].

3. Results

In this section, the results of all the abovementioned methods are compared to check
the efficiency of each method for different time steps and two types of building elements
(i.e., heavyweight and lightweight) shown in Tables 2 and 3. The time steps used for the
analysis were 1 h, 0.5 h, 0.25 h and 0.1 h. The thermal transmittance (U-value) of each
building element was also calculated to determine the steady-state surface heat flux as:

qint = U · (Tint − Text), (22)

The U-value in this research refers to surface-to-surface heat conduction that does not
take into account the values of the surface heat transfer resistances due to the convection
and radiation, i.e., Rsi = 0 (m2 K)/W and Rse = 0 (m2 K)/W. U-values calculated this way
cannot be used as the design values. If the design values are to be calculated from the
material properties and thicknesses shown in Tables 2 and 3, then the procedure and values
of the surface heat transfer coefficients (hsi and hse) given by ISO 6946 standard are to be
used accordingly.
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Table 2. Characteristics of the heavyweight building wall element.

Description d λ cp ρ

(cm) (W/(m K)) (J/(kg K)) (kg/m3)

Interior stucco 2 1.0 1000 1800
Heavyweight

concrete 20 2.6 1000 2500

Mineral wool 16 0.035 1030 100
Exterior stucco 1 0.9 1000 1800

U-value: 0.21370 W/(m2 K)

Table 3. Characteristics of the lightweight building wall element.

Description d λ cp ρ

(cm) (W/(m K)) (J/(kg K)) (kg/m3)

Gypsum
sheathing board 2.5 0.25 900 900

Mineral wool 5 0.032 1030 10
Oriented strand

board (OSB) 1.5 0.13 1700 650

Mineral wool 16 0.032 1030 10
Gypsum

sheathing board 1.3 0.25 900 900

Polystyrene 10 0.042 1260 30
U-value: 0.10857 W/(m2 K)

The boundary conditions used for the analysis were 20 ◦C for the interior surface
temperature (Tint), and the values for the exterior surface temperatures (Text) were taken
from [45] for the City of Zagreb (Figure 2). The data taken from [45] provide climate
data with a 30 min time step, and to be able to use it for shorter time steps, the data are
transformed into a continuous function using Mathematica’s algorithms. The calculation
period was one month, with a warm-up period of six days to neutralize the effects of the
initial conditions. Since only heat conduction through the elements was considered, the
internal and external surface heat transfer coefficients were both taken as 0 W/(m2 K).
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Table 4. Steady-state heat transfer for heavyweight wall element.

Time Step State-Space EnergyPlus Laplace TRNSYS
∑X/∑Φ ∑a/∑d

1 h 0.21379 0.21371 0.21370 0.21371
0.5 h 0.21378 0.21357 0.21370 0.21356

0.25 h 0.21379 0.16264 0.21370 0.18437
0.1 h 0.21372 5.19508 0.19196 843.73377

∑ Y/∑ Φ ∑ b/∑ d
1 h 0.21379 0.21370 0.21370 0.21370

0.5 h 0.21379 0.21370 0.21370 0.21370
0.25 h 0.21379 0.21376 0.21370 0.21385
0.1 h 0.21379 0.20323 0.21250 0.15343

∑ Z/∑ Φ ∑ c/∑ d
1 h 0.21379 0.21371 0.21370 0.21367

0.5 h 0.21378 0.21638 0.21370 0.21326
0.25 h 0.21379 0.25976 0.21370 0.32998
0.1 h 0.21373 14.49152 0.19549 364.89093

Table 5. Steady-state heat transfer for lightweight wall element.

Time Step State-Space EnergyPlus Laplace TRNSYS
∑X/∑Φ ∑a/∑d

1 h 0.10803 0.10735 0.10857 0.10857
0.5 h 0.10803 0.10734 0.10857 0.10856

0.25 h 0.10803 0.10730 0.10857 0.10851
0.1 h 0.10803 0.10156 0.10857 0.11196

∑ Y/∑ Φ ∑ b/∑ d
1 h 0.10803 0.10735 0.10857 0.10857

0.5 h 0.10803 0.10736 0.10857 0.10857
0.25 h 0.10803 0.10736 0.10857 0.10857
0.1 h 0.10803 0.10723 0.10857 0.10796

∑ Z/∑ Φ ∑ c/∑ d
1 h 0.10803 0.10736 0.10857 0.10857

0.5 h 0.10803 0.10736 0.10857 0.10834
0.25 h 0.10803 0.11020 0.10857 0.10744
0.1 h 0.10803 0.14306 0.10857 0.33648

As a result of the analysis, the interior heat flux is calculated using Equations (6), (15),
(19), (21) and (22) for time steps 1, 0.5, 0.25 and 0.1 h (Figures 3–6). In addition, the total
energy transferred through the interior surface of the element is calculated by integrating
the heat flux function from tmin = 144 h to tmax = 864 h (Figure 6b) the results for EnergyPlus
and TRNSYS are not shown because they are numerically unstable, as can be seen in
Figure 7d.

Table 6 and Figure 8 show the computational time required to calculate the interior
heat flux function in the period from tmin to tmax for the FDM, the State-Space method and
the Laplace method as implemented in Mathematica.

Table 6. Algorithm computation time for each method.

Method Computation Time (s)
Time Step 1 h 0.5 h 0.25 h 0.1 h 0.05 h

FDM 1.291 2.360 4.289 10.183 20.058
State-Space 1.296 2.010 3.454 7.905 15.393

Laplace 3.065 3.581 4.618 8.282 14.852
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4. Comparison and Discussion

Two different types of wall elements were modelled—heavyweight and lightweight.
For each wall element, the internal heat flux was calculated using six different procedures
to show the effect of the wall’s thermal mass on the solution for different time steps used
for the dynamic thermal simulation for all six procedures.

The solution of the FDM was taken as the reference point for the comparison. The
number of subdivisions for the FDM solution was 100 with the step size of 0.390 cm for the
heavyweight and 0.363 cm for the lightweight wall element. The solution of the FDM is
calculated as described in Section 2.1. The same subdivision used for the FDM was used
for the State-Space method.

In Tables 4 and 5, the stability of all procedures can be seen. For the heavyweight wall
element, all methods show stable solutions for time steps of 1 h and 0.5 h (Figures 3a and 4a).
For time steps of 0.25 h and 0.1 h, the State-Space method and the Laplace method show
stable solutions, while EnergyPlus and TRNSYS show a high deviation from the solution
obtained with the FDM (Figures 5a and 6a). For a time step of 0.25 h, this difference is as
high as 31% for EnergyPlus and 78% for TRNSYS. In the case of a time step of 0.1 h, both En-
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ergyPlus and TRNSYS give unreliable results. Although the algorithms of the State-Space
method and the Laplace method implemented in the Mathematica for the purpose of this
research are also implemented in EnergyPlus and TRNSYS, the heat flux calculated using
EnergyPlus and TRNSYS is unstable for smaller time steps (Figures 5a and 6a). This is due
to the simplified procedures used for the calculation of matrix exponential in the case of
the State-Space method implemented in EnergyPlus, and the root-finding algorithm for the
Laplace method implemented in TRNSYS. In contrast, Mathematica uses a robust built-in
algorithm for finding the matrix exponential and finding the roots of the denominator
BB(s). In the case of the State-Space method, the number of subdivisions also affects the
solution; however, not in terms of the stability of the CTF coefficients, but rather in terms
of the overall accuracy of the calculated heat flux. As the number of subdivisions increases,
the CTF coefficients for the State-Space method converge to a finite value.

For the lightweight wall element, all procedures show stable solutions for time steps
of 1 h, 0.5 h and 0.25 h (Figures 3b, 4b and 5b). For time steps of 0.1 h, the State-Space
method and the Laplace method show stable solutions, while EnergyPlus and TRNSYS
show a high deviation from the solution obtained with the FDM (Figures 5b and 6b). For a
time step of 0.1 h, the difference is 46% for EnergyPlus and 303% for TRNSYS.

The difference in total energy transferred through the interior surface can be seen
in Figure 7. For the lightweight wall element, the State-Space method and the Laplace
method behave similarly for all time steps. There is no difference between the total energy
transferred through the inner surface between the FDM and the State-Space method. For
the Laplace method, this difference is negligible (0.39%). For the heavyweight wall element,
the State-Space method is also stable for all time steps, and the difference between the total
energy transmitted through the inner surface calculated using the FDM and the State-Space
method is 0–0.04%. The Laplace method gives stable results for the time steps of 1 h, 0.5 h
and 0.25 h, and the difference between the solution of the FDM and the Laplace method is
0.02%. For a time step of 0.1 h, the difference is 12.03%.

For the lightweight and heavyweight wall elements, EnergyPlus calculation produces
more stable results than TRNSYS (Figure 7). For the lightweight wall element, the difference
between the total energy transferred through the inner surface between the FDM and
EnergyPlus is 0.65–3.11% for time steps of 1 h, 0.5 h and 0.25 h, and for the time step of 1 h,
that difference is 45.64%. On the other hand, the difference between FDM and TRNSYS
is 0.04–0.31% for the 1 h and 0.5 h time steps, and 31.01% for the 0.25 h time step. For the
0.1 h time step, the results are unreliable as can be seen in Figure 7d.

If the steady-state solution is considered, it can be seen that although the amplitude of
the steady-state heat flux function is greater than that of the FDM, the difference between
the total energy transferred through the inner surface between the FDM and the steady-
state method is only 2.23% for the lightweight wall element and 2.19% for the heavyweight
wall element (Figures 3–7). However, when the steady-state method is used to calculate
the heat flux, the thermal mass of the element is not taken into account, which could lead
to potential problems when designing mechanical systems and thermal comfort for the
building’s occupants. This is especially important since one of the future directions of
building energy management lies in the implementation of model predictive control (MPC).

The computation times for the State-Space method, Laplace method and FDM are
shown in Figure 8 and Table 6. For larger time steps, the State-Space method and the FDM
perform similarly, while the Laplace method is much slower due to the interval for finding
the roots of the denominator BB(s), which is 10−8 for both the lightweight and heavyweight
wall elements. For smaller time steps, the computation time for the State-Space method
and the Laplace method is similar. In contrast, the computation time of the FDM becomes
higher due to the number of linear systems that must be solved for each time step.

The State-Space method and the Laplace method implemented in the conventional
software for dynamic energy simulations software could be improved by implementing
more advanced algorithms for the calculation of the matrix exponential for the State-Space
method and the root-finding procedure for the Laplace method, as these are the main
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drawbacks of the CTF methods. As is shown in the results, by using more advanced
algorithms, both the State-Space method and the Laplace method were stable for smaller
time steps in comparison to the results obtained from EnergyPlus and TRNSYS. This
improvement for the calculation of the matrix exponential and the root-finding procedure
comes at the cost of the computational time. However, if the goals set by the EU for the
NZEBs and ZEBs are to be achieved, it is essential to improve the accuracy of the dynamic
calculation for smaller time steps.

5. Conclusions

Dynamic methods are based on the non-stationary solution of the heat equation. This
solution can be found numerically or analytically. Because of the long analysis period
and the small time steps used for the analysis, numerical methods have proven to be
insufficient for building energy simulations. Analytical methods such as conduction
transfer functions (CTFs) have proven to be much better for building energy simulation
problems and are implemented in modern dynamic energy simulation software such as
TRNSYS and EnergyPlus. Among the most commonly used CTF methods are the Laplace
method and the State-Space method. This research compares these two methods for the
calculation of heat losses in heavyweight wall elements by implementing the algorithms
from the research paper of Stephenson and Mitalas for the Laplace method and Seem for
the State-Space method. These results are then compared with the results from TRNSYS
and EnergyPlus.

TRNSYS uses the Laplace method to calculate the CTF coefficients and the bisection
method to calculate the roots of the function BB(s), while EnergyPlus uses the State-Space
method to calculate the CTF coefficients and the simplified methods such as the algorithm
by Moler and Van Loan to calculate the matrix exponential. The goal of this paper is to
show how well the Laplace method and the State-Space method perform for small time
steps and heavyweight building elements and to show what opportunities exist to improve
these methods by implementing more efficient algorithms for root-finding and the matrix
exponential procedure. The finite difference method (FDM) is used as a reference point for
the boundary heat flux density.

For the time steps of 1 h and 0.5 h, all methods (State-Space, Laplace, EnergyPlus and
TRNSYS) were found to be adequate for both the heavyweight and lightweight wall ele-
ments. For the heavyweight wall element and a time step of 0.25 h, the difference between
the total energy transferred through the inner surface was about 31% for EnergyPlus and
78% for TRNSYS compared to the solution obtained with the FDM. For the lightweight
wall element, the results were stable for the time step of 0.25 h, but for the time step of 0.1 h,
the difference between EnergyPlus and FDM was 45.64% while the difference between
TRNSYS and FDM was 303%.

The State-Space method and the Laplace method implemented in Mathematica were
stable for all time steps for both the heavyweight and lightweight wall elements due to the
Mathematica’s powerful numerical and matrix manipulation algorithms. The maximum
difference between the FDM and Mathematica was for the Laplace method and a time step
of 0.1 h, where the difference was 12.03%. Therefore, one should choose the time step size
accordingly, and avoid the smaller time steps if possible.

For the calculation of the total energy consumption, the steady-state method proved to
be satisfactory. The difference between the FDM and the steady-state method was around
2.23% for the lightweight wall element and 2.19% for the heavyweight wall element.

The conclusions of this paper could be of interest for the implementation in NZEBs
and ZEBs where thermal mass influences are relatively higher as well as for better power
demand management strategies, which require accurate transient simulation of heavy-
weight and highly insulated building elements with short time steps (lower than or equal
to 0.1 h, i.e., 6 min). On the other hand, the limitation of the research is that it involves
a complex technique and requires high computational costs. This paper shows that the
State-Space method and the Laplace method implemented in EnergyPlus and TRNSYS
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could be improved by implementing more advanced algorithms for the calculation of
the matrix exponential for the State-Space method and the root-finding procedure for the
Laplace method since these are the main drawbacks of the CTF methods. Further research
will address the integration of more efficient algorithms with equal or smaller deviations
from theoretical values.
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