Proračun ekscentrično opterećenoga pravokutnoga armiranobetonskog presjeka prema EN 1992-1-1

Kišiček, Tomislav; Sorić, Zorislav; Galić, Josip

Source / Izvornik: Građevinar, 2011, 63, 827 - 836

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:237:836787

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-08

Repository / Repozitorij:

Repository of the Faculty of Civil Engineering, University of Zagreb

Prethodno priopćenje

Proračun ekscentrično opterećenoga pravokutnoga ab presjeka prema EN 1992-1-1 Tomislav Kišiček, Zorislav Sorić, Josip Galić

Ključne riječi

pravokutni armiranobetonski presjek, norma EN 1992, ekscentrično opterećenje, proračun, dijagram međudjelovanja

Key words

rectangular reinforcedconcrete section, standard EN 1992, eccentric load, analysis, interaction diagram

Mots clés

r section rectangulaire en béton armé, norme EN 1992, charge excentrique, analyse, diagramme d'interaction

Ключевые слова

прямоугольное железобетонное сечение, норма EN 1992, эксцентричная нагрузка, расчет, диаграмма взаимодействия

Schlüsselworte

rechteckiger Stahlbetonquerschnitt, Norm EN 1992, exzentrische Belastung, Berechnung, Diagramm der Zwischeneinwirkung

T. Kišiček, Z. Sorić, J. Galić

Proračun ekscentrično opterećenoga pravokutnoga armiranobetonskog presjeka prema EN 1992-1-1

U radu je opisan postupak proračuna parametara potrebnih za izradu dijagrama međudjelovanja za proračun ekscentrično naprezanih armiranobetonskih pravokutnih poprečnih presjeka. Izrađeni su dijagrami međudjelovanja za proračun. Potreba za izradom ovih dijagrama postoji zbog betona razreda većeg od C50/60 u normi EN 1992 kojeg u prednormama ENV 1992 nije bilo te zbog drugačijeg definiranja proračunske čvrstoće svih razreda betona. Zbog toga postojeći dijagrami nisu uporabivi.

T. Kišiček, Z. Sorić, J. Galić

Preliminary note

Analysis of eccentrically loaded rectangular reinforced-concrete sections according to EN 1992-1-1

The analysis of parameters needed for generation of interaction diagrams, as required in the analysis of eccentrically stressed reinforced-concrete rectangular cross sections, is described. The interaction diagrams needed for analysis are presented. The preparation of these diagrams is necessary to take into account the concrete exceeding grade C50/60, which is present in EN 1992 but absent from ENV 1992, and because of different design strength definition in all concrete grades. For these reasons, the existing diagrams are no longer applicable.

T. Kišiček, Z. Sorić, J. Galić

Note préliminarie

L'analyse des sections rectangulaires en béton armé soumises à la contrainte excentrique selon EN 1992-1-1

L'analyse des paramètres nécessaires pour la génération des diagrammes d'interaction, indispensable dans l'analyse des sections rectangulaires en béton armé soumises à la contrainte excentrique, est décrite. Les diagrammes d'interaction nécessaires pour l'analyse sont présentés. La préparation de ces diagrammes est nécessaire pour prendre en compte le béton de classe de plus de C50/60, qui est présent dans EN 1992 mais absent d'ENV 1992, et à cause de la définition différente de la résistance de calcul dans toutes les classes de béton. Pour cette raison, les diagrammes existants ne sont plus applicables.

Т. Кисичек, З. Сорич, Й. Галич

Предварительное сообщение

Расчет эксцентрично нагруженного прямоугольного железобетонного сечения в соответствии с EN 1992-1-1

В работе описана процедура расчета параметров, необходимых для разработки диаграмм взаимодействия для расчета эксцентрично нагруженных железобетонных прямоугольных поперечных сечений. Разработаны диаграммы взаимодействия для расчета. Необходимость разработки данных диаграмм возникает в случае использования бетонов более высокого класса, чем C50/60, указанных в норме EN 1992, которые в предварительных нормах ENV 1992 отсутствовали, а также из-за отличий в определении расчетной прочности бетонов всех классов. В связи с этим использование существующих диаграмм невозможно.

T. Kišiček, Z. Sorić, J. Galić

Vorherige Mitteilung

Berechnung des exzentrisch belasteten rechteckigen Stahlbetonquerschnitts nach EN 1992-1-1

Im Artikel beschreibt man das Berechnungsverfahren für die Parameter die für die Ausarbeitung der Diagramme der Zwischeneinwirkung für die Berechnung exzentrisch belasteter rechteckiger Stahlbetonquerschnitte notwendig sind. Hergestellt sind die Diagramme der Zwischeneinwirkung für die Berechnung. Die Herstellung dieser Diagramme ist notwendig wegen des Betons höherer Klasse als C50/60 in der Norm EN 1992 der in der Vornorm ENV 1992 nicht anwesend war, sowie wegen des andersarigen Definierens der Berechnungsfestigkeit aller Betonklassen. Deshalb sind die bestehenden Diagramme unanwendbar.

Autori: Doc. dr. sc. **Tomislav Kišiček**, dipl. ing. građ.; prof. dr. sc. **Zorislav Sorić**, dipl. ing. građ.; dr. sc. **Josip Galić**, dipl. ing. građ., Sveučilište u Zagrebu, Građevinski fakultet, Zagreb

1 Uvod

Tehničkim propisom za betonske konstrukcije (N.N. 139/09 i 14/10) [1] propisuje se proračun armiranobetonskih konstrukcija prema nizovima norma HRN EN 1990, HRN EN 1991, HRN EN 1992, HRN EN 1997 i HRN EN 1998. Za razliku od norme niza HRN ENV 1992 [2], norma niza HRN EN 1992 donosi nove razrede čvrstoća betona s različitim radnim dijagramima, a između ostalog i novu definiciju proračunske čvrstoće betona. U normi niza HRN EN 1992 dodani su novi razredi betona: C55/67, C60/75, C70/85, C80/95, C90/105. Promjenom proračunskog ($\sigma_c - \varepsilon_c$) dijagrama betona za nove razrede betona, ali i promjenom definicije proračunske tlačne čvrstoće betona dolazi do potrebe za izradom novih dijagrama međudjelovanja za dimenzioniranje ekscentrično naprezanih armiranobetonskih poprečnih presjeka. Prema HRN EN 1992-1-1 [3] vrijednost proračunske tlačne čvrstoće određuje se izrazom: $f_{\rm cd} = \alpha_{\rm cc} \cdot f_{\rm ck} / \gamma_{\rm C}$ gdje je, $\alpha_{\rm cc}$ koeficijent kojim se u obzir uzimaju dugotrajni učinci na tlačnu čvrstoću i nepovoljni učinci koji su posljedica načina opterećivanja, a γ_{C} , parcijalni koeficijent sigurnosti za beton. Vrijednost α_{cc} kreće se između 0,8 i 1,0 i utvrđuje se nacionalnim dodatkom. Preporučena vrijednost u izvorniku norme, a i usvojena u Hrvatskoj je $\alpha_{cc} = 1,0$. Detaljniji opis karakteristika betona i njihovih proračunskih dijagrama dan je u normi HRN EN 1992-1-1 [3] i u radovima [5], [8], [10], [12], [13], [14] i [15].

2 Proračun

2.1 Uvod u proračun

Kod proračuna poprečnog presjeka prema graničnom stanju nosivosti smatra se da je promjena relativnih deformacija tlačno naprezanog betona ε_c , i vlačno naprezane armature, ε_{s1} , po visini presjeka u pravcu. Postoje tri karakteristične točke relativnih deformacija: A, B i C. U točki A relativna je deformacija vlačne armature maksimalna. U tom je slučaju $\varepsilon_{s1} = \varepsilon_{ud} = 0.02$, odnosno 20,0 ‰. Točka B definirana je relativnom tlačnom deformacijom betona ε_{cu2} , koja ovisno o razredu betona odgovara maksimalnoj relativnoj deformaciji tlačno naprezanog betona (vidjeti [3] i [10]). Točka C je sjecište pravca koji spaja relativnu deformaciju betona ε_{cu2} (točku B) s relativnom deformacijom betona jednakom nuli (na donjem rubu presjeka) te pravca koji određuje jednoliku relativnu tlačnu deformaciju betona po visini presjeka, $\varepsilon_c = \varepsilon_{c1} = \varepsilon_{c2}$. Relativna tlačna deformacija betona ε_{c2} , ovisna je o razredu betona, a odgovara relativnoj deformaciji pri kojoj proračunski dijagram tlačno naprezanog betona iz parabole prelazi u horizontalni pravac [3] i [10]. Ovisno o relativnim deformacijama betona i čelika postoji pet područja relativnih deformacija, koja su prikazana na slici 1.

Područje 1 predstavlja presjek naprezan uzdužnom vlačnom silom ili vlačnom silom s malom ekscentričnošću i cijeli je vlačno naprezan. Područje 2 predstavlja presjek s uzdužnom vlačnom silom i savijanjem. U području 3 presjek je naprezan pretežno savijanjem, dok je u području 4 presjek naprezan savijanjem i tlačnom silom. U području 5 presjek je naprezan tlačnom silom s malom ekscentričnošću ili uzdužnom tlačnom silom i cijeli je tlačno naprezan. Izrazi za dimenzioniranje ovise o tim područjima.

Temeljni izrazi za dimenzioniranje ekscentrično opterećenoga poprečnoga presjeka su izrazi za ravnotežu uzdužnih sila i momenata savijanja u poprečnom presjeku.

$$N_{\rm Ed} \le N_{\rm Rd} \tag{1}$$

$$M_{\rm Ed} \le M_{\rm Rd} \tag{2}$$

gdje je:

Slika 1. Dijagrami deformacija pravokutnog presjeka armiranobetonskog elementa s područjima relativnih deformacija (ε_c i ε_{s1}) u graničnom stanju nosivosti

N_{Ed} – proračunska vrijednost uzdužne sile

 $M_{\rm Ed}$ – proračunska vrijednost momenta savijanja

 $M_{\rm Rd}$ – proračunska otpornost presjeka na moment savijanja

Uzdužnoj sili, $N_{\rm Ed}$ i momentu savijanja $M_{\rm Ed}$, odupire se proračunska otpornost presjeka na uzdužnu silu $N_{\rm Rd}$ i proračunska otpornost presjeka na moment savijanja $M_{\rm Rd}$.

Bezdimenzijske veličine uzdužne sile ν_{Ed} , odnosno momenta savijanja μ_{Ed} glase:

$$v_{\rm Ed} = \frac{N_{\rm Ed}}{b \cdot h \cdot f_{\rm cd}} \tag{3}$$

$$\mu_{\rm Ed} = \frac{M_{\rm Ed}}{b \cdot h^2 \cdot f_{\rm cd}} \tag{4}$$

gdje je:

b – širina poprečnog presjeka

h – visina poprečnog presjeka

 $f_{\rm cd}$ – proračunska tlačna čvrstoća betona

Bezdimenzijska uzdužna sila otpornosti ν_{Rd} poprečnog presjeka nekoga armiranobetonskog elementa te bezdimenzijski moment savijanja μ_{Rd} tog presjeka ovise o područjima relativnih deformacija. Kako bi se ti izrazi mogli izvesti, uvedeni su mehanički koeficijenti armiranja za vlačnu i tlačnu armaturu presjeka ω_1 i ω_2 :

$$\omega_{\rm l} = \rho_{\rm l} \cdot \frac{f_{\rm yd}}{f_{\rm cd}}; \ \omega_{\rm 2} = \rho_{\rm 2} \cdot \frac{f_{\rm yd}}{f_{\rm cd}} \tag{5}$$

gdje su bezdimenzijski koeficijenti armiranja ρ_1 i ρ_2 , vlačne i tlačne armature A_{s1} i A_{s2} , dani izrazima:

Slika 2. Pravokutni presjek naprezan vlačnom silom s malom ekscentričnošću

GRAĐEVINAR 63 (2011) 9/10, 827-836

$$\rho_1 = \frac{A_{s1}}{b \cdot h}; \ \rho_2 = \frac{A_{s2}}{b \cdot h}, \tag{6}$$

a f_{yd} je proračunska granica popuštanja čelika (proračunska čvrstoća čelika). Omjer ploština tlačne i vlačne armature definira se kao:

$$\beta = A_{\rm s2}/A_{\rm s1} \tag{7}$$

Za tzv. simetrično armiranje presjeka, tj. kada je $A_{s1} = A_{s2}$, izlazi da je $\beta = 1$. Ako je poznat mehanički koeficijent armiranja $\omega_1 = \omega_2 = \omega$ tada se iz izraza (5) i (6) može odrediti potrebna simetrična armatura presjeka kao:

$$A_{\rm s1} = A_{\rm s2} = \omega \cdot b \cdot h \cdot \frac{f_{\rm cd}}{f_{\rm yd}} \tag{8}$$

2.2 Bezdimenzijske veličine uzdužne sile i momenta savijanja

2.2.1 Područje 1 (prema slici 1.)

Relativne deformacije armature ε_{s1} i ε_{s2} kreću se u sljedećim granicama:

 $\varepsilon_{s1} = \varepsilon_{ud} = 0,020$ tj. 20,0% (vlačne deformacije)

 $\varepsilon_{s2} = 0,000 \text{ do } \varepsilon_{ud} = 0,020 \text{ tj. do } 20,0 \frac{0}{00}$ (vlačne deformacije) što znači da je cijeli presjek vlačno naprezan.

Proračunske otpornosti poprečnog presjeka na uzdužnu silu i moment savijanja glase:

$$N_{\rm Rd} = -A_{\rm s1} \cdot \sigma_{\rm s1} - A_{\rm s2} \cdot \sigma_{\rm s2} \tag{9}$$

U gornjem je izrazu uzeto da su sile čiji je smjer djelovanja od desna na lijevo pozitivne.

$$M_{\rm Rd} = +A_{\rm s1} \cdot \sigma_{\rm s1} \cdot \left(\frac{h}{2} - d_1\right) - A_{\rm s2} \cdot \sigma_{\rm s2} \cdot \left(\frac{h}{2} - d_2\right) \qquad (10)$$

Kada se u izraz (3) umjesto $N_{\rm Ed}$ uvrsti $N_{\rm Rd}$, tj. izraz (9) uz izraze (5) i (6) može se odrediti izraz (11):

$$\nu_{\rm Rd} = -\omega_{\rm l} \cdot \frac{\sigma_{\rm s1}}{f_{\rm yd}}$$

$$-\omega_{\rm 2} \cdot \frac{\sigma_{\rm s2}}{f_{\rm yd}}$$
(11)

Kada se u izraz (4) umjesto $M_{\rm Ed}$ uvrsti $M_{\rm Rd}$, tj. izraz (10) uz izraze (5) i (6) može se odrediti izraz (12):

$$\mu_{\rm Rd} = \omega_{\rm l} \cdot \frac{\sigma_{\rm s1}}{f_{\rm yd}} \cdot \left(0, 5 - \frac{d_{\rm l}}{h}\right) - \omega_{\rm 2} \cdot \frac{\sigma_{\rm s2}}{f_{\rm yd}} \cdot \left(0, 5 - \frac{d_{\rm 2}}{h}\right) \quad (12)$$

U izrazu (10) se momenti savijanja u smjeru kazaljke na satu uzimaju kao negativni.

Pretpostavi li se simetrično armiranje poprečnog presjeka, tj. kada je $A_{s1} = A_{s2}$, tj. $\omega_1 = \omega_2 = \omega$, $\sigma_{s1} = \sigma_{s2} = f_{yd}$ i $d_1 = d_2$, tada je bezdimenzijska vrijednost otpornosti na moment savijanja, $\mu_{Rd} = 0$, dok je bezdimenzijska veličina otpornosti na uzdužnu silu jednaka:

$$v_{\rm Rd} = -2 \cdot \omega \tag{13}$$

2.2.2 Područje 2 (prema slici 1.)

Relativne deformacije armature ε_{s1} , i betona ε_c kreću se u sljedećim granicama:

$$\varepsilon_{s1} = \varepsilon_{ud} = 0,020 \text{ tj. } 20,0 \frac{0}{00} \text{ (vlačne deformacije)}$$

 $\varepsilon_{\rm c} = 0$ do $\varepsilon_{\rm cu2}$ (tlačne deformacije).

Slika 3. Pravokutni presjek naprezan vlačnom silom s velikom ekscentričnošću

Proračunske otpornosti poprečnog presjeka na uzdužnu silu i moment savijanja glase:

$$N_{\rm Rd} = f_{\rm cd} \cdot \alpha_{\rm v} \cdot \xi \cdot d \cdot b + A_{\rm s2} \cdot \sigma_{\rm s2} - A_{\rm s1} \cdot \sigma_{\rm s1} \tag{14}$$

gdje je: $\xi \cdot d = x$.

 $M_{\rm Rd} =$

$$f_{cd} \cdot \alpha_{v} \cdot \xi \cdot d \cdot b \cdot \left(\frac{h}{2} - k_{a} \cdot x\right) + A_{s2} \cdot \sigma_{s2} \cdot \left(\frac{h}{2} - d_{2}\right) + (15)$$
$$+ A_{s1} \cdot \sigma_{s1} \cdot \left(\frac{h}{2} - d_{1}\right)$$

Kada se u izraz (3) uvrsti izraz (14) uz izraze (5) i (6) može se odrediti izraz:

$$v_{\rm Rd} = \alpha_{\rm v} \cdot \xi \cdot \frac{d}{h} + \omega_2 \cdot \frac{\sigma_{\rm s2}}{f_{\rm yd}} - \omega_{\rm l} \cdot \frac{\sigma_{\rm s1}}{f_{\rm yd}}$$
(16)

Kada se u izraz (4) uvrsti izraz (15) uz izraze (5) i (6) može se odrediti izraz:

$$\mu_{\mathrm{Rd}} = \alpha_{\mathrm{v}} \cdot \xi \cdot \frac{d}{h} \cdot \left(0, 5 - \frac{d}{h} \cdot k_{\mathrm{a}} \cdot \xi\right) + \\ + \omega_{2} \cdot \frac{\sigma_{\mathrm{s2}}}{f_{\mathrm{yd}}} \cdot \left(0, 5 - \frac{d_{2}}{h}\right) + \omega_{\mathrm{l}} \cdot \frac{\sigma_{\mathrm{s1}}}{f_{\mathrm{yd}}} \cdot \left(0, 5 - \frac{d_{1}}{h}\right)$$
(17)

U izrazima od (15) do (17) pojavljuju se koeficijent punoće radnog dijagrama betona, α_v te koeficijent položaja rezultante tlačnih naprezanja u betonu k_a koji su za betone razreda C12/15 do razreda C50/60 definirani izrazima (18) i (19) i ovise o relativnoj tlačnoj deformaciji betona ε_c :

- ako je $0 < \varepsilon_c \le 0,002$:

$$\alpha_{v} = \frac{1000 \cdot \varepsilon_{c}}{12} \left(6 - 1000 \cdot \varepsilon_{c} \right); k_{a} = \frac{8 - 1000 \cdot \varepsilon_{c}}{4 \left(6 - 1000 \cdot \varepsilon_{c} \right)} \quad (18)$$

- ako je $0,002 < \varepsilon_{\rm c} \le 0,0035$:

$$\alpha_{v} = \frac{3000 \cdot \varepsilon_{c} - 2}{3000 \cdot \varepsilon_{c}}$$

$$k_{a} = \frac{1000 \cdot \varepsilon_{c} (3000 \cdot \varepsilon_{c} - 4) + 2}{2000 \cdot \varepsilon_{c} (3000 \cdot \varepsilon_{c} - 2)} (19)$$

Za betone razreda C55/67 do razreda C90/105, izrazi za koeficijent punoće i koeficijent položaja tlačne sile, zbog različitih proračunskih dijagrama, za svaki razred betona imaju složeniji oblik prikazan u nastavku.

Ploština ispod proračunskog dijagrama betona dobije se iz određe-

nog integrala funkcija koje opisuju proračunski dijagram betona (izrazi (3) i (4) iz članka [10]), a za proračun koeficijenta položaja tlačne sile potreban je i statički moment ploštine ispod proračunskog dijagrama.

Ako je $0 < \varepsilon_c \le \varepsilon_{c2}$, koeficijent punoće proračunskog dijagrama betona jest:

$$\alpha_{\rm v} = \frac{\varepsilon_{\rm c} - \left(1 - \frac{\varepsilon_{\rm c}}{\varepsilon_{\rm c2}}\right)^n \left(-\frac{\varepsilon_{\rm c2}}{1+n} + \frac{\varepsilon_{\rm c}}{1+n}\right) - \left(\frac{\varepsilon_{\rm c2}}{1+n}\right)}{\varepsilon_{\rm c}} \tag{20}$$

gdje je "n" stupanj parabole proračunskog dijagrama betona, koji ovisi o razredu betona [3] i [10], dok je koeficijent položaja rezultante tlačnih naprezanja betona:

$$k_{\rm a} = 1 - \frac{S_{\rm l}}{P_{\rm l} \cdot \varepsilon_{\rm c}} \tag{21}$$

GRAĐEVINAR 63 (2011) 9/10, 827-836

gdje su vrijednosti P_1 i S_1 u dimenzijama naprezanja:

$$P_{\rm l} = f_{\rm cd} \cdot \left[\varepsilon_{\rm c} - \left(1 - \frac{\varepsilon_{\rm c}}{\varepsilon_{\rm c2}} \right)^n \left(-\frac{\varepsilon_{\rm c2}}{1+n} + \frac{\varepsilon_{\rm c}}{1+n} \right) - \left(\frac{\varepsilon_{\rm c2}}{1+n} \right) \right] (22)$$
 Koefic

$$S_{\rm l} = f_{\rm cd} \cdot \left[- \left(-\frac{\varepsilon_{\rm c}^2}{2} + \frac{\left(-\varepsilon_{\rm c2} + \varepsilon_{\rm c} \right)^n \left(\varepsilon_{\rm c2} + \varepsilon_{\rm c} + n \cdot \varepsilon_{\rm c} \right)}{2+3n+n^2} \right] \right] - \frac{\varepsilon_{\rm c2}}{2+3n} = \frac{1}{2+3n} \left[-\frac{\varepsilon_{\rm c2}}{2+3n+n^2} \right] = \frac{1}{2+3n} = \frac{1$$

Slika 4. Pravokutni presjek naprezan momentom savijanja

Slika 5. Pravokutni presjek naprezan tlačnom silom s velikom ekscentričnošću

Ako je $\mathcal{E}_{c2} < \mathcal{E}_{c} \leq \mathcal{E}_{cu2}$, tada je koeficijent punoće proračunskog dijagrama betona:

$$\alpha_{\rm v} = \frac{\varepsilon_{\rm c2} - \left(\frac{\varepsilon_{\rm c2}}{1+n}\right) + \left(\varepsilon_{\rm c} - \varepsilon_{\rm c2}\right)}{\varepsilon_{\rm c}} \tag{24}$$

dok je koeficijent položaja rezultante tlačnih naprezanja:

$$k_{\rm a} = 1 - \frac{\left(S_2 + S_3\right)}{P_2 \cdot \varepsilon_{\rm c}} \tag{25}$$

gdje su vrijednosti P_2 , S_2 i S_3 u dimenzijama naprezanja:

$$P_2 = f_{\rm cd} \cdot \left[\varepsilon_{\rm c2} - \left(\frac{\varepsilon_{\rm c2}}{1+n} \right) + \left(\varepsilon_{\rm c} - \varepsilon_{\rm c2} \right) \right]$$
(26)

$$S_{2} = f_{cd} \cdot \left[\frac{\varepsilon_{c2}^{2}}{2} - \frac{\varepsilon_{c2}^{2}}{2 + 3n + n^{2}} \right]$$
(27)

$$g = f_{cd} \cdot \left[\frac{(\varepsilon_c - \varepsilon_{c2})(\varepsilon_{c2} + \varepsilon_c)}{2} \right]$$
(28)

C

Koeficijent položaja neutralne osi ξ određuje se prema izrazu:

(23)

$$\xi = \frac{|\varepsilon_{\rm c}|}{|\varepsilon_{\rm c}| + |\varepsilon_{\rm S1}|} < 1 \tag{29}$$

2.2.3 Područja 3 i 4 (prema slici 1.)

Relativne deformacije armature \mathcal{E}_{s1} i betona \mathcal{E}_{c} kreću se u sljedećim granicama:

 $\varepsilon_{s1} = \varepsilon_{ud} = 0,020 \text{ tj. } 20,0\%_{00} \text{ do } 0,0\%_{00}$ (vlačne deformacije)

 $\varepsilon_{\rm c} = \varepsilon_{\rm cu2}$ (tlačne deformacije)

Za područja 3 i 4 vrijede izrazi od (14) do (29).

2.2.4 Područje 5 (prema slici 1)

Relativna deformacija armature \mathcal{E}_{s1} kreće se u sljedećim granicama: $\mathcal{E}_{s1} = 0$ do \mathcal{E}_{c2} (tlačne deformacije) što znači da se relativna deformacija armature \mathcal{E}_{s1} u konačnici izjednačava s relativnom deformacijom betona \mathcal{E}_{c} čija vrijednost iznosi $\mathcal{E}_{c} = \mathcal{E}_{c2}$. Vrijednost \mathcal{E}_{c2} (slika 1.), dana

je u tablici 3.1 iz [3] ili u tablici 1. iz članka [10].

Relativne deformacije betona kreću se u sljedećim granicama:

 $\varepsilon_{c1} = 0$ do $\varepsilon_{c1} = \varepsilon_{c2}$ (tlačne deformacije) na jednom rubu presjeka (na slici 1. to je donji rub), a na drugom rubu $\varepsilon_{c} = \varepsilon_{cu2} \ do \ \varepsilon_{c} = \varepsilon_{c2}$ (tlačne deformacije), što znači da je cijeli presjek tlačno naprezan.

Dijagram relativnih deformacija po visini presjeka u ovom području uvijek prolazi točkom C u kojoj je relativna deformacija poprečnog presjeka jednaka ε_{c2} . Prema slikama 1. i 6., udaljenost te točke od gornjeg ruba poprečnog presjeka dana je izrazom:

$$x_{\rm c} = \left(1 - \frac{\varepsilon_{\rm c2}}{\varepsilon_{\rm cu2}}\right) \cdot h \tag{30}$$

GRAĐEVINAR 63 (2011) 9/10, 827-836

831

Slika 6. Pravokutni presjek naprezan tlačnom silom s malom ekscentričnošću

Relativne deformacije gornjeg i donjeg ruba betonskog presjeka ε_c i ε_{c1} te gornje armature ε_{s2} mogu se izraziti pomoću relativne deformacije donje armature ε_{s1} i kuta φ sljedećim izrazima:

$$\varphi = \frac{\varepsilon_{c2} - \varepsilon_{s1}}{d - x_c} \tag{31}$$

$$\varepsilon_{\rm c} = \varepsilon_{\rm s1} + \varphi \cdot d \tag{32}$$

$$\varepsilon_{\rm c1} = \varepsilon_{\rm s1} - \varphi \cdot d_1 \tag{33}$$

$$\varepsilon_{s2} = \varepsilon_{s1} + \varphi \cdot \left(d - d_2 \right) \tag{34}$$

Koeficijent položaja neutralne osi u ovom području glasi:

$$\xi = \frac{|\varepsilon_{\rm c}|}{|\varepsilon_{\rm c}| - |\varepsilon_{\rm s1}|} \ge 1 \tag{35}$$

Proračunske otpornosti poprečnog presjeka na uzdužnu silu i moment savijanja glase:

$$N_{\text{Rd}} = f_{\text{cd}} \cdot \alpha_{\text{v2}} \cdot \xi \cdot d \cdot b - f_{\text{cd}} \cdot \alpha_{\text{v1}} \cdot (\xi \cdot d - h) \cdot b + + A_{\text{s2}} \cdot \sigma_{\text{s2}} + A_{\text{s1}} \cdot \sigma_{\text{s1}}$$
(36)

$$M_{\mathrm{Rd}} = f_{\mathrm{cd}} \cdot \alpha_{\mathrm{v2}} \cdot \xi \cdot d \cdot b \cdot \left(\frac{h}{2} - k_{\mathrm{a2}} \cdot \xi \cdot d\right) + f_{\mathrm{cd}} \cdot \alpha_{\mathrm{v1}} \cdot \left(\xi \cdot d - h\right) \cdot b \cdot \left(\frac{h}{2} + k_{\mathrm{a1}} \cdot \left(\xi \cdot d - h\right)\right) + (37) + A_{\mathrm{s2}} \cdot \sigma_{\mathrm{s2}} \cdot \left(\frac{h}{2} - d_{2}\right) - A_{\mathrm{s1}} \cdot \sigma_{\mathrm{s1}} \cdot \left(\frac{h}{2} - d_{1}\right)$$

Bezdimenzijske veličine otpornosti poprečnog presjeka na uzdužnu silu i moment savijanja jesu:

$$\nu_{\rm Rd} = \alpha_{\rm v2} \cdot \xi \cdot \frac{d}{h} - \alpha_{\rm v1} \cdot \left(\xi \cdot \frac{d}{h} - 1\right) + \omega_2 \cdot \frac{\sigma_{\rm s2}}{f_{\rm yd}} + \omega_1 \cdot \frac{\sigma_{\rm s1}}{f_{\rm yd}}$$
(38)

$$\mu_{\mathrm{Rd}} = \alpha_{\mathrm{v2}} \cdot \xi \cdot \frac{d}{h} \cdot \left(0, 5 - \frac{d}{h} \cdot k_{\mathrm{a2}} \cdot \xi\right) + \alpha_{\mathrm{v1}} \cdot \left(\xi \cdot \frac{d}{h} - 1\right) \cdot \left(0, 5 + k_{\mathrm{a1}} \cdot \left(\xi \cdot \frac{d}{h} - 1\right)\right) + (39) + \omega_{2} \cdot \frac{\sigma_{\mathrm{s2}}}{f_{\mathrm{yd}}} \cdot \left(0, 5 - \frac{d_{2}}{h}\right) - \omega_{1} \cdot \frac{\sigma_{\mathrm{s1}}}{f_{\mathrm{yd}}} \cdot \left(0, 5 - \frac{d_{1}}{h}\right)$$

Koeficijent punoće radnog dijagrama betona α_{v2} te koeficijent položaja rezultante tlačnih naprezanja u betonu k_{a2} ovise o relativnoj tlačnoj deformaciji betona ε_c dok koeficijent punoće radnog dijagrama betona α_{v1} te koeficijent položaja rezultante tlačnih naprezanja u betonu, k_{a1} , ovise o relativnoj tlačnoj deformaciji betona na donjem rubu presjeka, ε_{c1} . Ti koeficijenti proračunavaju se prema izrazima od (18) do (28), ovisno o primijenjenom razredu betona.

U slučaju centričkog tlaka, pri relativnoj deformaciji cijeloga poprečnog presjeka ε_{c2} , bezdimenzijska veličina otpornosti na moment savijanja jest $\mu_{Rd} = 0$, dok bezdimenzijska veličina otpornosti na uzdužnu silu iznosi:

$$\nu_{\rm Rd} = 1 + \omega_2 \cdot \frac{\sigma_{\rm s2}}{f_{\rm yd}} + \omega_{\rm l} \cdot \frac{\sigma_{\rm s1}}{f_{\rm yd}} \tag{40}$$

2.3 Dijagrami međudjelovanja

Za pretpostavljene vrijednosti mehaničkih koeficijenata armiranja pri simetričnom armiranju pravokutnih presjeka $\omega = \omega_1 = \omega_2$ te za parove deformacija prema slici 1., izrađeni su dijagrami međudjelovanja uz pretpostavku da je statička visina $d = 0.9 \cdot h$, da se kao ($\sigma_c - \varepsilon_c$) dijagrami za beton rabe oni oblika "parabola + horizontalni pravac" te da se rabi čelik kvalitete B500B. Ovi se dijagrami također mogu rabiti i za čelik kvalitete B500A, jer je za taj čelik karakteristična relativna deformacija pri najvećoj sili $\varepsilon_{uk} = 25 \frac{9}{00}$, što je veće od definirane proračunske granične relativne deformacije $\varepsilon_{ud} = 20 \frac{9}{00}$

GRAĐEVINAR 63 (2011) 9/10, 827-836

Dijagrami nisu primjenjivi za čelik B450C zbog njegove granice popuštanja od 450 N/mm² što je manje od primijenjene granice popuštanja od 500 N/mm². Tlačna naprezanja, relativne deformacije i sile uzimaju se kao negativne. Za betone razreda od C12/15 do razreda C50/60 dovoljan je jedan dijagram, dok je za svaki razred betona C55/67, C60/75, C70/85, C80/95 te C90/105 izrađen različit dijagram zbog različitih proračunskih dijagrama tih razreda betona.

Nakon što se iz dijagrama međudjelovanja odredi mehanički koeficijent armiranja, $\omega = \omega_1 = \omega_2$, moguće je odrediti potrebnu vlačnu odnosno tlačnu armaturu simetrično armiranoga poprečnog presjeka:

$$A_{\rm s1} = A_{\rm s2} = \omega \cdot \frac{f_{\rm cd}}{f_{\rm vd}} \cdot b \cdot h \tag{41}$$

3 Primjeri proračuna pravokutnoga poprečnog presjeka stupa na ekscentrični tlak

U nastavku je primjer proračuna pravokutnog presjeka opterećenog na ekscentrični tlak za beton različitih razreda čvrstoće (C25/30, C55/67, C80/95) prema HRN EN 1992-1-1 [3].

Slika 7. Dijagram međudjelovanja za betone razreda C12/15 do C50/60

Primjer: Pravokutni poprečni presjek širine b = 40 cm, visine h = 60 cm, statička visina presjeka iznosi d = 54 cm, čelik je kvalitete B500B pa je proračunska granica popuštanja armature:

 $f_{\rm yd} = f_{\rm yk} / \gamma_{\rm S} = 500 / 1,15 = 434,78 \text{ N/mm}^2 = 43,48 \text{ kN/cm}^2 .$ Na presjek djeluje proračunska tlačna sila $N_{\rm Ed} = 2845 \text{ kN}$ i proračunski moment savijanja $M_{\rm Ed} = 936 \text{ kNm}$.

a) Za beton razreda C25/30

Za koeficijent
$$\alpha_{cc} = 1,0$$
, proračunska čvrstoća betona
iznosi: $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_C = 1,0 \cdot 25 / 1,5 =$
 $= 16.67 \text{ N/mm}^2 = 1.667 \text{ kN/cm}^2$

Bezdimenzijska veličina uzdužne sile jest:

$$v_{\rm Ed} = \frac{N_{\rm Ed}}{b \cdot h \cdot f_{\rm cd}} = \frac{2845}{40 \cdot 60 \cdot 1,667} = 0,711$$

Bezdimenzijska je veličina momenta savijanja:

$$\mu_{\rm Ed} = \frac{M_{\rm Ed}}{b \cdot h^2 \cdot f_{\rm cd}} = \frac{93600}{40 \cdot 60^2 \cdot 1,667} = 0,390 \; .$$

Slika 8. Dijagram međudjelovanja za betone razreda C55/67

Slika 9. Dijagram međudjelovanja za betone razreda C60/75

Iz dijagrama na slici 7. očita se mehanički koeficijent armiranja $\omega = 0,425$, pa je potrebna ploština armature

stupa:
$$A_{s1} = A_{s2} = \omega \cdot \frac{f_{cd}}{f_{yd}} \cdot b \cdot h =$$
$$= 0,425 \cdot \frac{1,667}{43,48} \cdot 40 \cdot 60 = 39,11 \text{ cm}^2$$

b) Za beton razreda C55/67

Za koeficijent $\alpha_{cc} = 1,0$, proračunska je čvrstoća betona:

$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_{C} = 1,0.55 / 1,5 =$$

= 36.67 N/mm² = 3.667 kN/cm²

Bezdimenzijska veličina uzdužne sile jest:

$$v_{\rm Ed} = \frac{N_{\rm Ed}}{b \cdot h \cdot f_{\rm cd}} = \frac{2845}{40 \cdot 60 \cdot 3,667} = 0,323$$

Bezdimenzijska veličina momenta savijanja jest:

$$\mu_{\rm Ed} = \frac{M_{\rm Ed}}{b \cdot h^2 \cdot f_{\rm cd}} = \frac{93600}{40 \cdot 60^2 \cdot 3,667} = 0,177.$$

Slika 10. Dijagram međudjelovanja za betone razreda C70/85

Iz dijagrama na slici 8. očita se mehanički koeficijent armiranja $\omega = 0,088$, pa je potrebna ploština armature

$$A_{s1} = A_{s2} = \omega \cdot \frac{f_{cd}}{f_{yd}} \cdot b \cdot h =$$

a:
$$= 0,088 \cdot \frac{3,667}{43.48} \cdot 40 \cdot 60 = 17,81 \text{ cm}^2$$

c) Za beton razreda C80/95

Za koeficijent $\alpha_{cc} = 1,0$, proračunska je čvrstoća betona:

$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 1,0 \cdot 80 / 1,5 =$$

= 53.33 N/mm² = 5.333 kN/cm²

Bezdimenzijska je veličina uzdužne sile:

$$v_{\rm Ed} = \frac{N_{\rm Ed}}{b \cdot h \cdot f_{\rm cd}} = \frac{2845}{40 \cdot 60 \cdot 5,333} = 0,222$$

Bezdimenzijska je veličina momenta savijanja:

$$\mu_{\rm Ed} = \frac{M_{\rm Ed}}{b \cdot h^2 \cdot f_{\rm cd}} = \frac{93600}{40 \cdot 60^2 \cdot 5{,}333} = 0{,}122 \; .$$

GRAĐEVINAR 63 (2011) 9/10, 827-836

Slika 11. Dijagram međudjelovanja za betone razreda C80/95

Iz dijagrama na slici 11. očita se mehanički koeficijent armiranja $\omega = 0.05$, pa je potrebna ploština armature

 $A_{s1} = A_{s2} = \omega \cdot \frac{f_{cd}}{f_{yd}} \cdot b \cdot h =$ stupa:

$$= 0.05 \cdot \frac{5.333}{43.48} \cdot 40 \cdot 60 = 14.72 \text{ cm}^2$$

Dakako da ukupna uzdužna armatura stupa mora biti veća od minimalne i manja od maksimalne armature određene normom.

LITERATURA

- Tehnički propis za betonske konstrukcije, Narodne novine 139/09 i 14/10
- HRN ENV 1992-1-1:2004. Eurokod 2: Projektiranje betonskih konstrukcija – 1-1. dio: Opća pravila i pravila za zgrade (ENV 1992-1-1:1991)
- [3] HRN EN 1992-1-1:2009. Eurokod 2 Projektiranje betonskih konstrukcija – Dio 1-1: Opća pravila i pravila za zgrade (EN 1992-1-1:2004)
- [4] Sorić, Z.: Betonske i zidane konstrukcije I. betonske konstrukcije prema Eurokodu 2, (HRN ENV 1992-1-1). Skripta Građevinskog fakulteta Sveučilišta u Zagrebu. Zagreb, 2008.

Slika 12. Dijagram međudjelovanja za betone razreda C90/105

4 Zaključak

Cilj ovoga rada bio je upozoriti na promjene pri dimenzioniranju pravokutnih armiranobetonskih presjeka opterećenih ekscentričnom uzdužnom silom prema normi HRN EN 1992-1-1 [3] u odnosu na normu HRN ENV 1992-1-1 [2] i radove [4], [6], [7] i [11] te prikazati sve veličine koje imaju utjecaj na postupak dimenzioniranja. U sklopu rada na ovom članku, izrađeni su dijagrami međudjelovanja za dimenzioniranje takvih presjeka.

- [5] Sorić, Z.; Kišiček, T.; Galić, J.: betonske i zidane konstrukcije 2. betonske konstrukcije prema EC2 – 2. dio. Skripta Građevinskog fakulteta Sveučilišta u Zagrebu. 236. str. Zagreb, 2009.
- [6] Sorić, Z.; Pičulin, S.; Zamolo, M.; Kišiček, T.: (Jure Radić i suradnici.): Osnove proračuna, V. poglavlje u knjizi BETONSKE KONSTRUKCIJE, PRIRUČNIK. Urednik, Čandrlić, V., Hrvatska sveučilišna naklada, Sveučilište u Zagrebu – Građevinski fakultet, ANDRIS. Sveučilišni udžbenik, Zagreb, 2006. ISBN 953-169-126-6. str. 399-663.
- [7] Sorić, Z.; Kišiček, T.; Galić J.; (Jure Radić i suradnici.): Konstrukcijski elementi, III. poglavlje u knjizi Betonske

konstrukcije, riješeni primjeri, Urednik Čandrlić, V., Hrvatska sveučilišna naklada, Sveučilište u Zagrebu – Građevinski fakultet, SECON HDGK, ANDRIS. Sveučilišni udžbenik, Zagreb, 2006. ISBN 953-169-142-8. str. 139-390.

- [8] Tomičić, I.: Projektiranje betonskih konstrukcija prema EN 1992-1-1, Građevinski godišnjak "05/06", Urednik, V. Simović, HSGI, Zagreb 2006., str. 345-460.
- [9] Tomičić, I.: Betonske konstrukcije, DHGK, Zagreb 1996.
- [10] Kišiček, T.; Sorić, Z.; Galić, J.: Tablice za dimenzioniranje armiranobetonskih presjeka, Građevinar 62 (2010) 11, 1001-1010
- [11] Tomičić, I.: Priručnik za proračun AB konstrukcija, DHGK, Zagreb 1996.
- [12] Martin, L.H.; Purkiss, J.A.: Concrete Design to EN 1992, Butterworth-Heinemann, An imprint of Elsevier, 2006.
- [13] Narayanan, R. S.; Beeby, A.: Designer's Guide to EN 1992-1-1 and 1992-1-2, Thomas Telford, 2005.
- [14] *Eurocode 2, Commentary*, European concrete Platform ASBL, 2008.
- [15] *Eurocode 2, Worked Examples*, European concrete Platform ASBL, 2008.