Ispitivanje polumontažnih stropova od prednapetih opečnih gredica

Grandić, Davor; Sorić, Zorislav

Source / Izvornik: Građevinar, 2003, 54, 705 - 716

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:237:168376

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-28

Repository / Repozitorij:

Repository of the Faculty of Civil Engineering, University of Zagreb

Prethodno priopćenje

Ispitivanje polumontažnih stropova od prednapetih opečnih gredica

Davor Grandić, Zorislav Sorić

Ključne riječi

polumontažni strop, nosivost, progib, ispitivanja, proračunske metode

Key words

words semi-prefabricated floor, load bearing capacity, deflection, testing, calculation methods

Mots clés

plancher semi-fabriqué, capacité portante, flèche, essais, méthodes de calcul

Ключевые слова

полумонтажный потолок, несущая способность, прогиб, испытания, методы расчёта

Schlüsselworte

Halbmontagedecke, Tragfähigkeit, Durchbiegung, Untersuchungen, Berechnungsmethoden

Ispitivanje polumontažnih stropova od prednapetih opečnih gredica

Prikazani su postupci i rezultati ispitivanja polumontažnih stropova od prednapetih opečnih gredica. Ispitivana je nosivost stropova i progibi pod dugotrajnim djelovanjem. Prikazan je postupak za određivanje stanja naprezanja u gredicama od prednapinjanja i opisan je proračunski model i postupci za proračun progiba. Na temelju usporedbe izmjerenih veličina i onih dobivenih proračunom dvjema metodama odabire se metoda s rezultatima koji se bolje slažu s izmjerenim vrijednostima.

D. Grandić, Z. Sorić

D. Grandić, Z. Sorić

Testing semi-prefabricated floors made of prestressed brick elements

Test procedures and results for semi-prefabricated floors made of prestressed brick elements are presented. The load bearing capacity of floors and deflection values following long term load, are tested. The procedure for determining the state of stress of these elements due to prestressing is presented, and the calculation model and procedures used in deflection calculation are described. Measured values are compared with those obtained by calculation based on two methods, and the method whose results correspond to a greater extent to measured values is then selected.

D. Grandić, Z. Sorić

Note préliminarie

Preliminary note

Essais des planchers semi-préfabriqués en poutrelles précontraintes en briques

L'article présente les procédés et les résultats des essais des planchers semi-préfabriqués en poutrelles précontraintes en briques. Les essais ont porté sur la capacité portante des planchers et les flèches sous l'action d'une charge de longue durée. On décrit la méthode de détermination de l'état des contraintes dans les poutrelles dues à la précontrainte, ainsi que le modèle de calcul et les procédés de calcul de la flèche. Une comparaison entre les valeurs mesurées et celles obtenues par le calcul par deux méthodes permet le choix de la méthode dont les résultats sont plus conformes aux valeurs mesurées.

Д. Грандич, З. Сорич

Предварительное сообщение

Испытание полумонтажных потолков из предварительно напряжённых кирпичных брусов

Показаны способы и результаты испытаний полумонтажных потолков из предварительно напряжённых кирпичных брусов. Испытывались несущая способность потолков и прогибы при длительном действии. Показан способ для определения напряжённого состояния в брусах от предварительного напряжения и описана расчётная модель и способы расчёта прогиба. На основании сравнения измеренных величин и величин, полученных расчётом двумя методами, выбирается метод с результатами, более соответствующими измеренным значениям.

D. Grandić, Z. Sorić

Untersuchung von Halbmontagedecken aus vorgespannten Ziegelkleinprofilbalken

Dargestellt sind Verfahren und Ergebnisse der Untersuchung von Halbmontagedecken aus vorgespannten Ziegelkleinprofilbalken. Untersucht wurde die Tragfähigkeit der Decken und die Durchbiegungen unter langanhaltender Belastung. Ein Verfahren für die Bestimmung des Spannungszustandes in den Balken, verursacht durch die Vorspannung, ist dargestellt und das Berechnungsmodell und das Verfahren für die Berechnung der Durchbiegungen beschrieben. Auf Grund des Vergleichs der gemessenen Grössen und den nach zwei Methoden berechneten Grössen wählte man die Methode deren Ergebnisse besser den gemessenen Werten entsprechen.

Autori: Mr. sc. **Davor Grandić**, dipl. ing. građ., Institut građevinarstva Hrvatske, Zagreb, J. Rakuše 1; prof. dr. sc. **Zorislav Sorić**, dipl. ing. građ., Građevinski fakultet Sveučilišta u Zagrebu, Kačićeva 26

Vorherige Mitteilung

1 Uvod

U gradnji stambenih i poslovnih objekata sve su češće zastupljene zidane zgrade. Njihova je primjena posljedica saznanja o prednostima zidane gradnje (ekologija, zdravlje, dovoljna seizmička otpornost). Određeni dio građevinske operative čine mala poduzeća s ograničenim tehnološkim mogućnostima (skele, oplate, kvalificirana radna snaga pa im je jednostavnija zidana gradnja od, primjerice, betonske. Iz razloga primjene zidanih konstrukcija prirodno slijedi i primjena nekog od polumontažnih stropnih sustava s ispunom od opečnih uložaka. Razmatrani polumontažni stropovi sastoje se od predgotovljenih prednapetih opečnih gredica, ispune od šuplje opeke, te tlačne armiranobetonske ploče koja se zajedno s rebrima betonira na mjestu izvedbe stropa. Gredice se postavljaju na jednakim osnim razmacima od 60 cm, a u fazi izvedbe podupiru se na razmaku od 1,5 m. Predgotovljene gredice prednapinju se adhezijski na stazi, a armatura za prednapinjanje je visokovrijedna čelična žica. Osim glavne armature od prednapetih visokovrijednih čeličnih žica gredice su na svojim krajevima opremljene sponama od hladno vučene glatke žice, radi prihvaćanja poprečnih sila u stropnoj konstrukciji.

Slika 1. Poprečni presjek stropa s prednapetim opečnim gredicama

Uzorci stropova ispitivani su opterećivanjem do sloma, pri čemu su registrirane veličine progiba, relativnih deformacija i opterećenja. Posebno je ispitivan progib pod djelovanjem dugotrajnog opterećenja. Rezultati eksperimentalnih istraživanja iskorišteni su pri verifikaciji usporednog proračuna progiba koji je proveden u funkciji vremena, odnosno usvojene metode i proračunskog modela.

2 Eksperimentalno utvrđivanje nosivosti i ponašanja stropova pod opterećenjem

2.1 Provedba ispitivanja

Provedeno je ispitivanje opterećivanjem do sloma uzoraka stropova duljine 6,75 i 5,25 m. Rasponi (razmaci ležajeva pri ispitivanju) ispitanih uzoraka l_{eff} bili su 6,50, odnosno 5,10 m. Uzorci duljine 6,75 m bili su označeni brojevima 1 i 4, a uzorci duljine 5,25 m brojevima 5 i 6. Brojevima 2 i 3 bili su označeni uzorci na kojima je provedeno ispitivanje progiba pod dugotrajnim opterećenjem. Kratkotrajnim ispitivanjem do sloma ispitivana su po dva uzorka od svake navedene duljine. Uzorci stropova izrađeni su od prednapetih opečnih gredica, blokova ispune i betona, prema slici 2.

Slika 2. Poprečni presjek uzoraka za ispitivanje

Mjereni su progib u sredini raspona i pripadna sila, tako da je za svaki ispitani uzorak dobiven dijagram sila-progib (*P-f* dijagram). Deformacije su mjerene u gornjoj i donjoj zoni uzoraka, s obje bočne strane uzoraka i u sredini raspona. Na slici 3. prikazan je postupak ispitivanja, a na slici 4. dijagram sila-progib stropnog uzorka br. 5, duljine 5,25 m.

Slika 3. Ispitivanja uzorka br. 5 duljine 5,25 m

Slika 4. Dijagram sila-progib (P-f) uzorka br. 5 duljine 5,25 m

2.2 Analiza izmjerenih rezultata

2.2.1 Granično stanje uporabljivosti (progib)

U tablici 1. prikazane su izmjerene veličine progiba pod kratkotrajnim djelovanjem koje odgovaraju opterećenju stropova u eksploataciji (stalno: g = 5,0 kN/m², korisno za L = 5,25 m: $q_{525} = 2,0$ kN/m² i za L = 6,75 m $q_{675} = 1,5$ kN/m²). U poprečnom presjeku stropnih uzoraka nalaze se tri rebra. Uzorci su širine 132 cm, a rebra su na osnom razmaku od 60 cm. U stvarnom stropu na tri rebra dolazi 180 cm širine poprečnog presjeka stropa. Navedena opterećenja pomnožena su popravnim koeficijentom k = 1,23 kojim se uzima u obzir razlika u specifičnoj krutosti između stropnog uzorka i stvarnog stropa.

Tablica 1. Izmjereni progibi za opterećenje u eksploataciji

	L = 5,25 m,		L = 6,75 m ,	
Uzorak	$l_{eff} = 5,10 \text{ m}$		$l_{eff} = 6,50 \text{ m}$	
	<i>f</i> [mm]	$f/l_{e\!f\!f}$	f [mm]	$f/l_{e\!f\!f}$
Uzorak 1			30,3	1 / 215
Uzorak 4			27,0	1 / 241
Uzorak 5	10,3	1 / 495	—	—
Uzorak 6	11,0	1 / 464		—

U početnoj fazi opterećenja odnos sila-progib je linearan (slika 4.). Daljnjim opterećivanjem taj odnos postaje neinearan, tj. dolazi do pada krutosti stropova. Ta pojava je izraženija kod uzoraka stropova duljine 6,75 m. Već za uporabno opterećenje zabilježen je značajan pad krutosti u odnosu na početnu, što se objašnjava pojavom pukotina u vlačnoj zoni presjeka (stanje naprezanja II), o čemu valja voditi računa pri proračunu veličine progiba za kratkotrajno i dugotrajno djelovanje.

Stropni uzorci raspona 6,50 m nisu zadovoljili granično stanje uporabljivosti pod kratkotrajnim djelovanjem jer je izmjerena veličina progiba veća od granične veličine po ENV 1992-1-1 [17] ($l_{eff}/250$).

2.2.2 Granično stanje nosivosti

U svrhu valorizacije postignutog opterećenja u trenutku kad su elementi dostigli granično stanje sloma proveden je proračun nosivosti stropnih uzoraka. Promatraju se stropni uzorci dviju duljina (5,25 i 6,75 m).

U gredici duljine 5,25 m ima 16 prednapetih visokovrijednih žica promjera 2,5 mm (površina čeličnih žica za prednapinjaje $A_{p1} = 0,785 \text{ cm}^2$), a u gredici duljine 6,75 m ima ih 18 ($A_{p1} = 0,884 \text{ cm}^2$). Kakvoća čelika za prednapinjanje je $f_{p0,2,k}/f_{pk} = 1800/2000 \text{ N/mm}^2$, gdje je $f_{p0,2,k}$ karakteristična granica popuštanja, a f_{pk} je karakteristična čvrstoća. U stropne uzorke ugrađen je beton razreda čvrstoće C16/20. Moment nosivosti proračunava se iz poznatoga betonskog presjeka, površine armature i kakvoće gradiva. Radi ocjene kakvoće gradiva i sustava u cjelini, pri proračunu nosivosti rabe se karakteristične čvrstoće gradiva, neumanjene parcijalnim koeficijentima sigurnosti za gradivo, tako da se dobije karakteristična nosivost presjeka (M_{Rk}) . U postupku proračuna nosivosti presjeka najprije se pronađe koeficijent armiranja:

$$\rho_1 = A_p / (b \cdot d), \tag{1}$$

gdje je:

 $A_p = 3 \cdot A_{p1}$ – ukupna površina čelika za prednapinjanje u stropnom uzorku (tri gredice)

zatim se iz uvjeta ravnoteže horizontalnih sila po visini presjeka ($\Sigma H = 0$, izraz (2)) odredi koeficijent položaja neutralne osi:

$$F_c = F_p, \tag{2}$$

$$\xi = \frac{\rho_1 \cdot \sigma_p}{0.85\alpha_V \cdot f_{ck}} , \qquad (3)$$

gdje je:

- F_c tlačna sila u betonu
- F_p vlačna sila u čeliku za prednapinjanje
- $\sigma_p = \varepsilon_p \cdot E_s \le 0.9 f_{pk} = 1800 \text{ N/mm}^2 \text{naprezanje u čeliku}$ za prednapinjanje ($E_s = 200000 \text{ N/mm}^2$ je modul elastičnosti čelika, a ε_p je relativna deformacija čelika za prednapinjanje)
- f_{ck} karakteristična čvrstoća betona (za C16/20 f_{ck} = 16,0 N/mm²)

 α_V – koeficijent punoće dijagrama tlačnog naprezanja,

a potom se odredi koeficijent kraka unutarnjih sila:

$$\zeta = (1 - k_a \cdot \xi), \tag{4}$$

gdje je k_a koeficijent položaja tlačne sile s obzirom na tlačni rub, a uz pretpostavku da će deformacija betona biti $0,0020 \le |\varepsilon_{c2}| \le 0,0035$, dobije se prema izrazu [23]:

$$k_a = \frac{1000\varepsilon_{c2}(3000\varepsilon_{c2} - 4) + 2}{2000\varepsilon_{c2} \cdot (3000\varepsilon_{c2} - 2)}.$$
(5)

Koeficijent punoće tlačnog dijagrama α_V uz pretpostavku da će deformacija betona biti 0,0020 $\leq |\varepsilon_{c2}| \leq 0,0035$, dobije se prema izrazu [23]:

$$\alpha_V = \frac{3000\varepsilon_{c2} - 2}{3000\varepsilon_{c2}}.$$
 (6)

Na posljetku se izračuna (karakteristični) moment nosivosti presjeka:

$$M_{Rk} = A_p \cdot \sigma_p \cdot \zeta \cdot d \tag{7}$$

Dodatna deformacija čelika za prednapinjanje ($\Delta \varepsilon_p$) koja je prouzročena savijanjem stropnih uzoraka pod optere-

ćenjem provjerava se uz pretpostavljenu deformacija betona uz pomoć izraza za visinu tlačne zone:

$$x = \frac{-\varepsilon_{c2}}{-\varepsilon_{c2} + \Delta\varepsilon_p} d = \xi \cdot d .$$
(8)

Upotrebljava se bilinearni proračunski radni dijagram čelika za prednapinjanje s horizontalnom gornjom granom. Za ukupnu deformaciju čelika za prednapinjanje $\varepsilon_p = \varepsilon_{pm,t} + \Delta \varepsilon_p > 0.9 f_{pk}/E_s = 0.009 (\varepsilon_{pm,t})$ je deformacija čelika izazvana prednapinjanjem) u proračunu nosivosti uzima se vrijednost $0.9 f_{pk} = 1800 \text{ N/mm}^2$ [17].

Na isti način dobivaju se i proračunski momenti nosivosti (M_{Rd}) samo što se umjesto karakterističnih čvrstoća gradiva $(f_{ck} i \ 0.9f_{pk})$ u jednadžbama (3) i (7) primjenjuju se proračunske čvrstoće gradiva $f_{cd} = 16.0/1.5 = 10.67 \text{ N/mm}^2$ (beton) i $f_{pd} = 0.9f_{pk}/1.15 = 1565.2 \text{ N/mm}^2$ (proračunska granica popuštanja čelika za prednapinjanje).

Kako bi se jednoznačno utvrdilo da ispitani uzorci zadovoljavaju granično stanje nosivosti provodi se provjera po 3 kriterija nosivosti [17 i 19]:

kriterij I. $M_{Sd} \leq M_{Rd}$,

kriterij II. $M_{u,isp} \ge M_{Sd} \cdot 1,15$,

kriterij III. $M_{u,isp} \ge M_{Rk}$,

gdje je:

 M_{Sd} – proračunski moment savijanja

 M_{Rd} – proračunski moment nosivosti presjeka

 $M_{u,isp}$ – moment savijanja u ispitivanju koji odgovara slomu uzoraka

 M_{Rk} – karakteristični moment nosivosti presjeka.

Prvim kriterijem utvrđuje se da je proračunski moment savijanja M_{Sd} manji ili jednak od proračunske nosivosti presjeka M_{Rd} određene iz stvarne količine armature, dimenzija presjeka i proračunskih čvrstoća gradiva. Ovaj kriterij ima značenje provjere projekta. Drugim se kriterijem utvrđuje da je maksimalni moment savijanja kad je uzorak dostigao granično stanje nosivosti $M_{u,isp}$ veći ili jednak od potrebne karakteristične nosivosti presjeka, uz potvrđenu pretpostavku da se slom dogodio preko čelika, jer je $\gamma_s = 1.15$ koeficijent sigurnosti za čelik. Trećim se kriterijem zahtijeva da maksimalni moment savijanja za granično stanje sloma dostignuto ispitivanjem $M_{u,isp}$ bude veći od karakteristične nosivosti presjeka M_{Rk} za stvarne dimenzije presjeka, količinu armature i karakteristične čvrstoće gradiva, neumanjene koeficijentima sigurnosti za gradivo (maksimalni kapacitet nosivosti). Drugi i treći kriterij imaju značenje provjere ispitivanjem. Prikaz za udovoljavanja kriterija I. do III. za pojedine uzorke stropova dan je u tablicama 2. i 3.

Kriterij		Uzorak 5	Uzorak 6
I.	$M_{Sd} \le M_{Rd}$	57,06 kNm	57,06 kNm <
		< 65,14 kNm	65,14 k Nm
II.	$M_{u,isp} \ge M_{Sd} \cdot 1,15$	104,95 kNm >	79,45 kNm >
	· •	65,62kNm	65,62 kNm
III.	$M_{u,isp} \ge M_{Rk}$	104,95 kNm >	79,45 kNm >
		76,42 kNm	76,42 kNm
Uzorci 5 i 6 zadovoljavaju granično stanje nosivosti.			

Tablica 3. Uzorci 1 i 4, duljine 6,75 m

projektno opterećenje

Tablica 2. Uzorci 5 i 6, duljine 5,25 m

Kriterij		Uzorak 1	Uzorak 4
I.	$M_{Sd} \leq M_{Rd}$	85,56 kNm >	85,56 kNm >
		72,23 kNm *	72,23 kNm*
II.	$M_{u,isp} \ge M_{Sd} \cdot 1,15$	112,52 kNm >	111,28 kNm >
		98,39 kNm	98,39 kNm
III.	$M_{u,isp} \ge M_{Rk}$	112,52 kNm >	111,28 kNm >
		84,99 kNm	84,99 kNm
* Uzorci 1 i 4 zadovoljavaju granično stanje nosivosti po kriteriji-			
ma II. i III., a po kriteriju I ne zadovoljavaju za pretpostavljeno			

3 Eksperimentalno utvrđivanje progiba stropova pod dugotrajnim djelovanjem

Stropni uzorci su izrađeni od prednapetih opečnih gredica, blokova ispune i betona prema slici 1. Uzorci su postavljeni na ležajeve na međusobnom razmaku (raspon) 5,10 m i 6,50 m. Odgovarajuće duljine uzoraka su 5,25 m i 6,75 m. Za potrebe ovog ispitivnja pripremljen je po jedan uzorak navednih duljina. Uzorak duljine 6,75 m bio je označen brojem 2, uzorak duljine 5,25 m brojem 3. Opterećeni su kontinuiranim opterećenjem, koje zajedno s vlastitom težinom uzorka odgovara kvazistalnoj kombinaciji djelovanja prema ENV 1991-1 [19]. Ispitivanje je obavljeno mjerenjem vertikalnih pomaka koji su opažani nivelirom. Vertikalni pomaci su mjereni u prvim danima opterećenja (do 7 dana) svaki dan, a kasnije jedanput na tjedan. Ispitivanje je trajalo 164, odnosno 168 dana. Za mjerenje progiba pod dugotrajnim djelovanjem rabi se kvazistalna kombinacija djelovanja u skladu s ENV 1992 [17]:

$$E_d = E_d \left[\sum_j G_{k,j} + P_k + \sum_i \left(\Psi_{2,i} \cdot Q_{k,i} \right) \right], \tag{9}$$

gdje su $G_{k,j}$ i $Q_{k,i}$ veličine stalnih i promjenljivih djelovanja, $\Psi_{2,i}$ je koeficijent koji promjenjivo djelovanje svodi na stalno i za uobičajene namjene (stanovi, uredi, trgovine do 50 m², predvorja itd.), a iznosi 0,3. Kvazistalna kombinacija djelovanja prikazana kao proračunsko kontinuirano opterećenje dobiva se iz izraza:

$$q_d = \sum_j G_{kj} + 0.3 \cdot Q_{k,1} . \tag{10}$$

GRAĐEVINAR 54 (2002) 12, 705-716

Kod stropnih uzoraka duljine L = 5,25 m pretpostavljena su ova djelovanja:

- * stalno djelovanje: $g = 5,0 \text{ kN/m}^2$
- * promjenjivo djelovanje: $q = 2,0 \text{ kN/m}^2$ (uporabno opterećenje) $\Rightarrow q_d = 5,0 + 0,3 \cdot 2,0 = 5,6 \text{ kN/m}^2$.

Za stropne uzorke duljine L = 6,75 m uzeta je sljedeća kombinacija djelovanja:

 $g = 5.0 \text{ kN/m}^2$,

 $q = 1.5 \text{ kN/m}^2 \Rightarrow q_d = 1.0 \cdot 5.0 + 0.3 \cdot 1.5 = 5.45 \text{ kN/m}^2.$

Veličina opterećenja koje je naneseno na stropne uzorke dobivena je oduzimanjem od ukupnog proračunskog opterećenja q_d pomnoženog s popravnim koeficijentom k (točka 2.2.1) opterećenja od vlastite težine stropnog uzorka:

- $q'_d = 1,23 \cdot 5,60 3,0 = 3,89 \text{ kN/m}^2$ (uzorak duljine L = 5,25 m),
- $q'_d = 1,23 \cdot 5,45 3,0 = 3,70 \text{ kN/m}^2$ (uzorak duljine L = 6,50 m).

Uzorak je opterećen betonskim blokovima, betonskim kockama i čeličnim pločama. Na slici 5. prikazan je način očitavanja veličina vertikalnih pomaka (nivelir kojim se mjeri nije prikazan na fotografiji).

Slika 5. Očitavanje vertikalnih pomaka

4 Proračunski model – pretpostavke proračuna progiba polumontažnog stropa

4.1 Pretpostavke proračuna progiba

Uvode se pretpostavke s kojima se može postaviti prikladan proračunski model za proračun veličine progiba. Potrebno je obuhvatiti sva bitna svojstva stropa koja utječu na vremenski rast i konačnu veličinu progiba.

Posebna svojstva ovog stropnog sustava u odnosu na obične armiranobetonske nosače uzimaju se u obzir usvajanjem sljedećih pretpostavki:

- 1. Prednapeta opečna gredica je vlačni element presjeka stropa u kojem ne dolazi do pojave pukotina zbog rastlačenja (dekompresije) poradi djelovanja opterećenja na stropnu konstrukciju.
- 2. Pukotine se pojavljuju u naknadno betoniranim rebrima stropa. Ove pukotine protežu se od gornje površine gredice do neutralne osi.
- Ostvarena je kompatibilnost deformacija između prednapetih opečnih gredica i naknadno betoniranog dijela stropa.
- Utjecaj stropne ispune na veličinu progiba može se zanemariti pri proračunu veličine progiba kad beton u rebrima prijeđe u stanje naprezanja II (tj. u pukotinsko stanje).

Ako se usvoje navedene pretpostavke, proračun veličine progiba može se zasnivati na standardnim postupcima. U tom se slučaju prednapeta opečna gredica u proračunskom modelu stropa tretira kao vlačni element. Utjecaj dodatnih vremenskih deformacija poradi puzanja zanemaruje se zbog malog tlačnog naprezanja u gredicama koje preostaje nakon rastlačenja gredica zbog opterećenja stropa. Povratne dugotrajne deformacije (viskoelastične) nakon rasterećenja kod mladih betona koji su bili izloženi dugotrajnom naprezanju, tek su manji dio deformacije puzanja pod djelovanjem naprezanja [3] pa se također ovdje zanemaruju. Takve povratne deformacije betona dostižu relativno brzo svoj maksimum [3] i stoga se mogu, ako je njihova uloga u deformaciji prednapetih gredica značajna, uočiti mjerenjem progiba stropa pod dugotrajnim opterećenjem i na taj način provjeriti valjanost pretpostavke o malim povratnim deformacijama gredica. Veličina dodatnog skupljanja betona u gredicama također se ovdje ne razmatra jer se najveći dio skupljanja već odigrao prije ugradnje prednapetih opečnih gredica u strop. Prema tome, preostaju samo elastična svojstva takve kompozitne stropne gredice jer su vremenske deformacije uglavnom neutralizirane. Stropna je gredica vlačni element presjeka stropa koja ima svoju površinu i težište. Njezin utjecaj najlakše će se uzeti u obzir preko idealne površine gredice svedene na jedno gradivo. Zbog pretpostavke elastičnog ponašanja gredice i pretpostavke da će ostati u stanju naprezanja I, idealna površina gredice izrazit će se preko čelika.

U radu [26], prije nego što se pristupilo proračunu progiba, provjerena je valjanost usvojenih pretpostavki. Pritom se kontroliralo sljedeće:

- za pretpostavku 1: *stanje naprezanja u prednapetim opečnim gredicama*
- za pretpostavku 2: stanje naprezanja u prednapetim opečnim gredicama i naknadno betoniranom dijelu presjeka stropa

Stropovi od opečnih gredica

- za pretpostavku 3: uspoređuje se najveće posmično naprezanje na kontaktu betonprednapeta gredica s mjerenim veličinama posmične čvrstoće (prekoračenjem posmične čvrstoće narušila bi se kompatibilnost deformacija između prednapetih gredica i betonskog rebra stropa)
- za pretpostavku 4: posmično naprezanje između stropne ispune i betona sudjelovanje stropne ispune u krutosti stropa na savijanje.

Na temelju eksperimentalnih ispitivanja gradiva i elemenata stropa, njihovih međudjelovanja, te ispitivanja provedenih na uzorcima stropova u naravnoj veličini (nosivost, progibi) i teorijskih proračuna progiba i naprezanja [26], utvrđeno je sljedeće:

- prednapete opečne gredice kao sastavni dio presjeka ostat će pod optrećenjem stropa u stanju naprezanja I
- pretpostavka o raspucavanju betona iznad gredice potvrđena je rezultatima mjerenja i usporednih proračuna
- veličina eksperimentalno utvrđene čvrstoće prionjivosti između prednapetih gredica i naknadno betoniranog dijela presjeka stropa osigurava kompatibilnost njihovih deformacija (određenu ulogu ima i poprečna armatura)
- utjecaj stropne ispune na veličinu progiba zanemarivo je kad beton u rebrima prijeđe u stanje naprezanja II (tj. u pukotinsko stanje).

Ovdje se zbog opširnosti navode samo osnovni izrazi (točka 4.2, izrazi (11) do (22)) s pomoću kojih je određeno stanje naprezanja u gredici zbog prednapinjanja [26]. Tlačno naprezanje gredice zbog prednapinjanja je bitno jer je za ponašanje takvih polumontažnih stropova poželjno da gredice pod djelovanjem vlastite težine stropa ostanu pod tlakom ili da vlačno naprezanje u prednapetim gredicama ne izazove pojavu pukotina u njima. Pojava pukotina u gredicama (naročito ako bi se pojavile već pri manjem dijelu ukupnog uporabnog opterećenja), uzrokovala bi pad krutosti i znatno povećanje progiba stropa.

4.2 Stanje naprezanja u prednapetim opečnim gredicama zbog prednapinjanja

Na slici 6. prikazan je presjek prednapete opečne gredice. Presjek gredice sastoji se od mikrobetona, opečne kanalice, poprečne armature (spona) i armature za prednapinjanje.

Slika 6. Presjek prednapete opečne gredice

4.2.1 Početni gubici sile prednapinjanja

Nakon očvršćivanja mikrobetona gredice koji je ubrzan toplinskim postupkom u trajanju 16 do 20 sati gredice se režu na potrebnu duljinu zbog čega dolazi do početnih gubitaka sile prenapinjanja. Sila prednapinjanja neposredno nakon otpuštanja žica iznosi:

$$P_{m0} = P_0 - \Delta P_c - \Delta P_{ir} , \qquad (11)$$

gdje je:

- P_0 sila prešom unesena u žice
- ΔP_c gubitak sile prednapinjanja zbog elastičnih deformacija
- ΔP_{ir} gubitak zbog početnog opuštanja čelika.

Gubitak zbog početne relaksacije čelika ΔP_{ir} može se zanemariti zbog malog broja sati od napinjnjanja žica do rezanja gredica. Dakle, treba računati samo s gubitkom sile od elastičnog skraćenja koji se za adhezijsko prednapinjanje dobiva uz pomoć izraza iz [18]:

$$\Delta P_c = \sigma_{c0} \cdot \frac{\alpha_e}{1 + \rho_1 \cdot \alpha_e} \cdot A_p \,, \tag{12}$$

gdje je:

- σ_{c0} početno naprezanje u betonu u visini težišta prednapete armature,
- α_e omjer modula elastičnosti čelika i mikrobetona,
- A_p ploština čelika za prednapinjanje,
- ρ_1 koeficijent armiranja prednapetom armaturom.

Proračun gubitka sile prednapinjanja zbog elastičnih deformacija provodi se s idealnom površinom presjeka gredice svedenom na mikrobeton, uzimajući u obzir površinu opečne kanalice i mikrobetona, bez prednapete armature:

$$A_{c,id} = A_c + \alpha_{eb} \cdot A_b, \qquad (13)$$

gdje je:

 A_c – površina mikrobetona

 A_b – površina opečne kanalice

 α_{eb} – omjer modula elastičnosti opeke i mikrobetona.

4.2.2 Vremenski gubici sile prednapinjanja i promjene naprezanja u mikrobetonu i opečnim kanalicama

Prednapete opečne gredice razlikuju se u odnosu prema ostalim prednapetim elementima po tome što osim čelika i betona u istom presjeku postoji i treća vrsta gradiva, a to su opečne kanalice. Opečne kanalice imaju različit modul elastičnosti i koeficijent puzanja u odnosu na beton. Puzanje opeke pod konstantnim opterećenjem znatno je manje od puzanja betona. Veličina konačnog koeficijenta puzanja $\varphi_{b\infty}$ kreće se između 0,5 i 1,5 [25]. Vremenski gubitak sile prednapinjanja bit će reduciran u odnosu na slučaj da se radi o čistom betonskom presjeku jer će se omjer prenošenja sile prednapinjanja između betona i opeke zbog različitog puzanja opeke i betona s vremenom mijenjati. Tako će omjer između naprezanja opeke i naprezanja mikrobetona s vremenom rasti. Do relaksacije naprezanja zbog prednapinjanja u mikrobetonu tijekom vremena dolazi, prema tome, iz dva razloga:

- Naprezanje u mikrobetonu smanjuje se zbog vremenskog gubitka sile prednapinjanja koji je zbog postojanja opečnih kanalica reduciran u odnosu na slučaj čistoga betonskog presjeka
- 2 Kanalice s druge strane također smanjuju naprezanje u mikrobetonu jer se s vremenom povećava njihov udjel u prenošenju sile prednapinjanja.

Da bi se riješila ta reološka zadaća, polazi se od algebarke veze naprezanje-relativna deformacija prema Trostu koja je u ENV 1992-1 [17] dana u obliku:

$$\varepsilon_{tot}(t,t_0) = \varepsilon_n(t) + \sigma(t_0) \cdot \left[\frac{1}{E_c(t_0)} + \frac{\varphi(t,t_0)}{E_c(28)} \right] + \left[\sigma(t) - \sigma(t_0) \right] \cdot \left[\frac{1}{E_c(t_0)} + \frac{\varphi(t,t_0) \cdot \chi}{E_c(28)} \right]$$
(14)

gdje je:

- $\varepsilon_{tot}(t,t_0)$ ukupna relativna deformacija betona u vremenu t
- t starost betona u danima u promatranom vremenu ($t > t_0$)
- *t*₀ starost betona u danima u trenutku nanošenja prvog opterećenja na beton
- $\varepsilon_n(t)$ relativna deformacija betona neovisna o naprezanju, izazvana skupljanjem ili temperaturom u vrijeme *t*
- $E_c(t_0)$ tangentni modul elastičnosti u vremenu prvog opterećenja t_0

- $\varphi(t,t_0)$ koeficijent puzanja betona
- $E_c(28)$ tangentni modul elastičnosti betona starog 28 dana
- $\sigma(t)$ naprezanje u betonu u vremenu t
- $\sigma(t_0)$ naprezanje u betonu u vremenu prvog opterećenja t_0
- $\chi \cong 0.8$ koeficijent starenja (relaksacijska vrijednost ovisna o vremenskom razvoju deformacija).

Izraz (14) vrijedi uz sljedeće pretpostavke:

- puzanje i skupljanje je međusobno neovisno
- vrijedi linearni odnos između deformacije i naprezanja
- utjecaj promjene temperature i vlage je zanemaren,
- vrijedi zakon superpozicije
- sve navedeno vrijedi i za vlačno naprezanje betona.

Radi određivanja stanja naprezanja u vremenu s mikrobetonom i opečnom kanalicom u istom presjeku, uvode se dodatne pretpostavke:

- algebarski izraz (14) vrijedi i za opeku,
- puzanje opeke je afino funkciji koeficijenta puzanja betona u vremenu,
- skupljanje mikrobetona i opeke je jednako,
- postoji kompatibilnost deformacija čelika, mikrobetona i opeke.

Koeficijent puzanja betona proračunava se prema ENV 1992-1-1 [17] s pomoću osnovnog izraza:

$$\varphi(t,t_0) = \varphi_0 \cdot \beta_c(t-t_0), \qquad (15)$$

gdje je:

 φ_0 – osnovna veličina koeficijenta puzanja

 β_c – koeficijent kojim se opisuje vremenski tijek puzanja pod opterećenjem ($\beta_c \le 1$).

Pri proračunu koeficijenta puzanja po izrazu (15) uzima se u obzir starost betona, vlažnost okoline, tlačna čvrstoća betona, vrsta cementa i temperatura betona (okoline) koja odstupa od uobičajene.

Osnovni izraz za točniju vrijednost veličine skupljanja u funkciji vremena prema *Dodatku 1* europske prednorme ENV 1992-1-1 [17] glasi:

$$\varepsilon_{cs}(t-t_0) = \varepsilon_{cs0} \cdot \beta_s(t-t_s) , \qquad (16)$$

gdje je:

 ε_{cs0} – osnovna vrijednost skupljanja

- β_s koeficijent kojim se opisuje vremenski tijek skupljanja
- *t_s* starost betona u danima na početku skupljanja ili bubrenja.

Naprezanja u mikrobetonu, čeliku za prednapinjanje i opečnim kanalicama dobivaju se uz pomoć algebarskog izraza za vezu između naprezanja i deformacija po Trostu [23] odnosno prema ENV 1992-1-1 [17]. Rješenje mora zadovoljavati uvjete ravnoteže sila i kompatibilnost deformacija. Promatra se samo dugotrajna deformacija mikrobetona i opečnih kanalica, odnosno puzanje i skupljanje. Početni gubitak sile prednapinjanja zbog trenutnih (elastičnih) deformacija i početna naprezanja mikrobetona i opečnih kanalica uzimaju se u obzir s pomoću izraza (11), (12) i (13). Uvjet ravnoteže glasi:

$$\Delta \sigma_{p,c+s+r} \cdot A_p = -\Delta \sigma_{bp,t} \cdot A_b + \Delta \sigma_{cp,t} \cdot A_c , \qquad (17)$$

gdje je:

 $\Delta \sigma_{p,c+s+r}$ – vremenski gubitak naprezanja u prednapetom čeliku zbog puzanja i skupljanja betona i opeke te relaksacije čelika

 A_p – površina prednapetog čelika

 $\Delta \sigma_{bp,t}$ – vremenska promjena naprezanja u opečnim kanalicama ($\Delta \sigma_{bp,t} = \sigma_{bp}(t) - \sigma_{bp}(t_0)$); t_0 je starost mikrobetona u danima u trenutku unošenja sile prednapinjanja, a t je vrijeme u kojem se promatra stanje naprezanja i deformacija u gredicinaprezanja i deformacija u gredici)

$$\Delta \sigma_{cp,t} - \text{vremenski pad naprezanja u betonu} (\Delta \sigma_{bp,t} = \sigma_{cp}(t) - \sigma_{cp}(t_0)).$$

U jednadžbi ravnoteže (17) promjena naprezanja u opeci $\Delta \sigma_b$ ima suprotan predznak od vremenskog pada naprezanja u mikrobetonu $\Delta \sigma_c$ jer se polazi od pretpostavke da će s vremenom naprezanje u opeci zbog manjeg koeficijenta puzanja u odnosu prema betonu rasti, a u mikrobetonu će se smanjivati. Uvjet kompatibilnosti bit će:

$$\varepsilon_{c,t} = \varepsilon_{b,t} = \varepsilon_{p,t}, \qquad (18)$$

gdje su $\varepsilon_{c,b}$ $\varepsilon_{b,t}$ i $\varepsilon_{p,t}$ vremenske relativne deformacije mikrobetona, opeke (kanalica) i čelika. Vremenske relativne deformacije mikrobetona i opečnih kanalica mogu se napisati:

$$\begin{aligned} \varepsilon_{c,t} &= \varepsilon_{cc} + \varepsilon_{cs} ,\\ \varepsilon_{b,t} &= \varepsilon_{bc} + \varepsilon_{bs} , \end{aligned} \tag{19}$$

gdje su ε_{cc} i ε_{bc} relativne deformacije od dugotrajnog opterećenja mikrobetona i opečnih kanalica (puzanje), a ε_{cs} i ε_{bs} predstavljaju veličine skupljanja mikrobetona i opečnih kanalica. Kako je usvojeno da je $\varepsilon_{cs} \approx \varepsilon_{bs}$, tada se uvjet kompatibilnosti relativnih deformacija između mikrobetona i opečnih kanalica može napisati u obliku:

$$\varepsilon_{cc} = \varepsilon_{bc} \,. \tag{20}$$

Osim uvjeta ravnoteže sila i kompatibilnosti relativnih deformacija potrebno je poznavati i vezu između naprezanja i relativnih deformacija. Relativne deformacije od dugotrajnog opterećenja mikrobetona i opečnih kanalica dobivaju se prema algebarskoj vezi naprezanja i relativnih deformacija (14) iz jednadžbi:

$$\varepsilon_{cc} = \frac{\sigma_{cp0}}{E_c(28)} \cdot \varphi_c(t, t_0) - \frac{\Delta \sigma_{cp,t}}{E_c(28)} \cdot \left[\frac{E_c(28)}{E_c(t_0)} + \varphi_c(t, t_0) \cdot \chi \right],$$
(21)

$$\varepsilon_{bc} = \frac{\sigma_{bp0}}{E_b} \cdot \varphi_b(t, t_0) + \frac{\Delta \sigma_{bp, t}}{E_b} \cdot \left[1 + \varphi_b(t, t_0) \cdot \chi\right], \quad (22)$$

gdje su σ_{cp0} i σ_{bp0} početna naprezanja u mikrobetonu i opečnim kanalicama od unesene sile prednapinjanja.

Rješavanjem jednadžbi (17) do (22) dobivaju se vremenski gubici sile prednapinjanja i izračunavaju se vremenske promjene početnog naprezanja u sastavnim gradivima gredica zbog prednapinjanja. Pri proračunu se može pretpostaviti da će od proizvodnje gredica (rezanja na stazi) do preuzimanja njihove uloge kao dijela stropne konstrukcije proći između 60 i 180 dana, te su vremenski gubici sile prednapinjanja i promjene naprezanja u mikrobetonu i opečnim kanalicama proračunavani u tom vremenu [26]. Utjecaj dodatnih vremenskih deformacija zbog puzanja mikrobetona i opeke može se zanemariti zbog malog tlačnog naprezanja u gredicama koje preostaje nakon rastlačenja gredica pod opterećenjem stropa.

5 Proračun veličina progiba

Valjanost pretpostavki 1 do 4 (vidjeti točku 4.1) dokazana je eksperimentalno i proračunima. Na osnovi tih pretpostavki usvaja se proračunski model za proračun progiba. Uvodi se zamjenjujući "T" presjek (slika 7.) gdje je stropna gredica vlačni element presjeka stropa. Proračun veličine progiba stropa provodi se u funkciji vremena jer će se usporediti s eksperimentalnim rezultatima.

5.1 Zamjenjujući "T" presjek

Iz razloga što se u presjeku ispitanih uzoraka stropa nalaze tri betonska rebra i tlačna ploča uvodi se zamjenjujući "T" presjek (slika 7.) koji se sastoji od tlačne ploče debljine 6 cm i širine 132 cm i zamjenjujućeg rebra debljine tri pojedinačna rebra od po 9 cm, tj. 27,0 cm. $A_{s,id}$ je idealna površina presjeka gredice svedena na čelik.

Slika 7. Zamjenjujući "T" presjek

5.2 Proračun progiba prema metodi predloženoj u ENV 1992-1-1 (EUROCODE 2) [17]

Prednapeta stropna gredica je vlačni element presjeka stropa. Utjecaj gredice kao vlačnog elementa uzima se u obzir preko idealne površine presjeka gredice svedene na čelik. Općenita vrijednost deformiranja, što može biti: progib, zakrivljenost, pomak ili uvijanje, može se odrediti primjenom izraza:

$$\alpha = \zeta \cdot \alpha_{II} + (1 - \zeta) \cdot \alpha_{I}, \qquad (23)$$

gdje je:

 α – jedna od vrijednosti deformiranja

 ζ – koeficijent razdiobe (izraz(24)), ako je $\sigma_s < \sigma_{sr}$ tada se uzima $\zeta = 0$, tj. nema pukotine α_I i α_{II} – odgovarajuće vrijednosti deformiranja za

neraspucani i potpuno raspucani element.

Koeficijent razdiobe određuje se po izrazu:

$$\zeta = 1 - \beta_1 \cdot \beta_2 \cdot \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2, \qquad (24)$$

gdje je:

- σ_s naprezanje u vlačnoj armaturi na mjestu pukotine
- σ_{sr} naprezanje u vlačnoj armaturi na mjestu i u trenutku pojave prve pukotine ($\sigma_{sr} \leq \sigma_s$),
- β_1 koeficijent kojim se uzima u obzir prionjivost armature i betona
- β_2 koeficijent kojim se uzima u obzir trajanje djelovanja.

Puzanje betona može se uzeti u obzir preko izraza za zamjenjujući modul elastičnosti u slučaju kad se proračunava konačna veličina progiba (za $t = \infty$) pod kvazistalnim djelovanjem (Dodatak 4 ENV-a 1992-1-1)[17]:

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi_{\infty}},$$
(25)

gdje je:

 E_{cm} – sekantni modul elastičnosti betona starog 28 dana,

$$\varphi_{\infty}$$
 – konačni koeficijent puzanja betona $\varphi(\infty,t_0)$ (tablica 3.3 u ENV 1992-1-1).

U slučajevima kad se proračunava deformiranje betona u konačnom vremenu ($t < \infty$), potrebno je poznavati veličinu skupljanja i koeficijente puzanja u funkciji vremena. Vrijednosti skupljanja i koeficijenta puzanja u funkciji vremena mogu se odrediti prema postupku predloženom u Dodatku 1 ENV-a 1992-1-1 [17]. Izraz za zamjenjujući modul elastičnosti tada glasi:

$$E_{c,eff} = \frac{E_c(t_0)}{1 + \varphi(t, t_0)},$$
(26)

GRAĐEVINAR 54 (2002) 12, 705-716

gdje je:

- $E_c(t_0)$ tangentni modul elastičnosti betona u vremenu t_0
- $\varphi(t,t_0)$ koeficijent puzanja betona starosti *t* koji je bio opterećen u trenutku t_0
- t_0 vrijeme nanošenja opterećenja na beton

t – promatrano vrijeme.

Može se, potom, usvojiti da je $E_c(t_0) \approx E_c(28)$ gdje je $E_c(28) \approx 1.05 E_{cm}$.

Pri proračunu veličine progiba opći izraz za deformiranje (23) primjenjuje se za proračun srednje zakrivljenosti:

$$\frac{1}{r_m} = \zeta \cdot \frac{1}{r_{II}} + (1 - \zeta) \cdot \frac{1}{r_I}, \qquad (27)$$

gdje je:

- $\frac{1}{r_{II}}$ zakrivljenost za stanje naprezanja II (betonski presjek s pukotinom), ($\varepsilon_s = \sigma_s/E_s$)
- $\frac{1}{r_I}$ zakrivljenost za stanje naprezanja *I* (betonski

presjek bez pukotina).

Zakrivljenost zbog skupljanja betona bit će:

$$\frac{1}{r_{cs}} = \frac{\varepsilon_{cs} \cdot \alpha_e \cdot S}{I},$$
(28)

gdje je:

 ε_{cs} – vrijednost slobodnog skupljanja betona

- α_e odnos modula elastičnosti čelika i betona
- S statički moment površine armature
- *I* idealni moment tromosti presjeka.

Zakrivljenost zbog skupljanja izračunava se za stanje naprezanja I i II. Ukupna zakrivljenost dobije se po izrazu:

$$\frac{1}{r_{tot}} = \frac{1}{r_m} + \frac{1}{r_{cs,m}} \,. \tag{29}$$

Kada je poznata funkcija zakrivljenosti uzduž elementa

 $\frac{1}{r_{tot,x}}$, progib se pronalazi s pomoću dvostrukog integrala:

$$f = \int \left(\int \frac{1}{r_{tot,x}} dx \right) dx + C_1 x + C_2 , \qquad (30)$$

gdje se konstante C_1 i C_2 odrede iz rubnih uvjeta (konstanta C_1 je bezdimenzijska, dok konstanta C_2 ima dimenziju duljine). Za elemente konstantne visine uvodi se daljnje pojednostavnjenje na način da se zakrivljenost izračuna u samo jednom presjeku, a to je mjesto maksimalnog momenta savijanja, te se pretpostavi da se zakrivljenost mijenja afino s momentom savijanja. Progib se tada proračunava po izrazu:

$$f = K \cdot l^2 \frac{1}{r_{tot}},\tag{31}$$

gdje je K koeficijent ovisan o statičkom sustavu i opterećenju, a l je raspon nosača.

Vremensko povećanje progiba nosača ovisi prvenstveno o koeficijentu puzanja $\varphi(t, t_0)$ (15), a zatim i o veličini skupljanja (16).

5.3 Proračun progiba po metodi D. E. Bransona predloženoj u ACI-propisima [1]

U postupku se uvodi zamjenjujući moment tromosti kojim se obuhvaća raspucanost vlačne zone te sudjelovanje betona u nosivosti na vlak između dviju pukotina. Za kratkotrajno djelovanje bit će:

$$I_e = \left(\frac{M_{cr}}{M_a}\right) \cdot I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] \cdot I_{cr}, \qquad (32)$$

gdje je:

 $M_{cr} = \frac{f_r \cdot I_g}{y_t}$, moment savijanja koji presjek može

nositi neposredno prije pojave pukotina,

I_g	_	moment tromosti punog betonskog
		presjeka s obzirom na težište presje-
		ka (zanemarena armatura)
Icr	_	idealni moment tromosti presjeka na
		mjestu pukotine

 $f_r = 0.62\sqrt{f_{ck}}$ – vlačna čvrstoća betona pri savijanju (f_{ck} u N/mm²)

y_t – udaljenost vlačnog ruba od težišta presjeka.

Za elemente konstantne visine progib pod kratkotrajnim djelovanjem će biti:

$$f_k = K \cdot \frac{M_k \cdot l^2}{I_e \cdot E_{cm}},\tag{33}$$

gdje je:

- K koeficijent ovisan o statičkom sustavu i opterećenju
- M_k maksimalni moment savijanja od kratkotrajnog stalnog i promjenjivog djelovanja (g + q)
- $E_{\it cm}~$ sekantni modul elastičnosti betona starog 28 dana
- I_e zamjenjujući moment tromosti.

Progib od dugotrajnog djelovanja proračunava se iz pretpostavke linearne ovisnosti između kratkotrajnih i dugotrajnih deformacija i linearne razdiobe deformacija po visini presjeka:

$$f_d = K_r \cdot \varphi(t, t_0) \cdot f_{kd} , \qquad (34)$$

gdje je:

 $\varphi(t,t_0)$ – koeficijent puzanja betona

 f_{kd} – progib od dugotrajnog djelovanja (g) izračunan prema postupku za kratkotrajno djelovanje (33).

Izraz za kombinirani koeficijent K_r , kojim se uzima u obzir preraspodjela tlačnih naprezanja zbog puzanja, skupljanja i raspucavanja pod dugotrajnim djelovanjem proračunava se prema izrazu:

$$K_r = 1, 0 - 0, 6 \cdot \frac{A_{s2}}{A_{s1}} \ge 0, 4$$
, (35)

gdje je A_{s1} površina vlačne, a A_{s2} površina tlačne armature.

U postupku prognoze progiba po usvojenom proračunskom modelu idealna površina presjeka prednapete gredice svodi se na čelik i u proračunu se tretira kao armatura.

Autor metode D. E. Branson u [1] navodi da se kod jače armiranih elemenata postiže veća točnost predviđanja veličine progiba ako se umjesto momenta tromosti neraspucanog betonskog presjeka betona bez armature I_g u izraz (24) uvrsti idealni moment tromosti presjeka bez pukotine I_{idl} . Ta se preporuka usvaja za ovaj proračun. U metodi D. E Bransona predviđeno je da se veličina zamjenjujućeg momenta tromosti I_e nalazi između momenta tromosti neraspucanog betonskog presjeka i idealnog momenta tromosti presjeka s pukotinom, što se prikazuje nejednadžbom:

$$I_{cr} \le I_e \le I_g \ . \tag{36}$$

Koeficijenti puzanja proračunavaju se u funkciji vremena [17]. Prednapeta opečna gredica se kao i u točki 5.2 smatra vlačnim elementom presjeka stropa, sa svojim težištem i površinom.

I kod ovog postupka vremensko povećanje progiba nosača ovisi o koeficijentu puzanja $\varphi(t, t_0)$.

6 Usporedba teorijskih i izmjerenih veličina progiba

Prikazuje se tablična i grafička usporedba teorijskih i eksperimentalno utvrđenih (izmjerenih) veličina progiba uzoraka stropova. Eksperimentalno utvrđene veličine progiba uspoređuju se s teorijski izračunanima. Na slici 8. prikazana je usporedba proračunanih veličina progiba po dvije opisane metode s rezultatima mjerenja.

Granični progib ($l_{eff}/250$) za stropni uzorak raspona 5,10 m je 2,04 cm, dok je za stropni uzorak raspona 6,50 m 2,60 cm. Granična veličina progiba premašena je kod

Slika 8. Odnos izmjerenih i teorijskih veličina progiba za stropni uzorak duljine L = 5,25 m i raspona l_{eff} = 5,10 m

uzorka raspona 6,50 m nakon 60 dana ispitivanja (2,664 cm), a najveća izmjerena veličina progiba (nakon 168 dana) jest 3,124 cm. Stropni uzorak raspona 6,50 m nije zadovoljio granično stanje deformiranja pod dugotrajnim djelovanjem. Najveća izmjerena veličina progiba uzorka raspona 5,10 m nakon 164 dana ispitivanja jest 1,53 cm i manja je od granične. Proračunska procjena za $t = \infty$ [26] daje veličinu progiba 2,11 cm, što je približno jednako graničnoj veličini progiba.

7 Zaključak

Stropni uzorci raspona 6,50 m nisu zadovoljili s obzirom na uporabljivost (progibi) niti s obzirom na kriterije nosivosti za pretpostavljeno proračunsko opterećenje. U radu [26] su uz pomoć opisanih ispitivanja potvrđene metode proračuna progiba utvrđena i ograničenja primjene istraživanog stropnog sustava s obzirom na granično stanje deformiranja. Na temelju tog razmatranja za-

LITERATURA

- Branson, D. E.: Design Procedures for Computing Deflections, ACI Journal, Title No. 65.-63., September 1968.
- [2] Ržanicin, A. R.: *Teorija puženja materijala*, Građevinska knjiga, Beograd, 1974.
- [3] Nevil, A. M.: Svojstva betona, Građevinska knjiga, Beograd 1976.
- [4] HRN U.M1.027 Beton, određivanje puzanja (tečenja), 1983.
- [5] Lewis, Y.; Cerny, L.: Post-Tensioned Concrete Masonry Beams, Third North American Masonry Conference, The Masonry Society Proceedings, 77-1-77-10, Arlington, Texas, June 1985.
- [6] CEB Design Manual on Cracking and Deformations, Bulletin D'Information N° 158-E, Comité Euro-International du Béton (CEB), Laussanne 1985, str. 2.1-2.65.
- [7] Matthys, J. H.; Chanprichar, B.: An Ultimate Investigation of Reinforced Brick Masonry Beams, Third North American Masonry Conference, The Masonry Society Proceedings, 69-1-69-14, Arlington, Texas, June 1985
- [8] Montague, T. I.; Phips, M. E.: Prestressed Concrete Blockwork Diaphragm Walls, Third North American Masonry Conference, The Masonry Society Proceedings, 79-1-79-14, Arlington, Texas, June 1985

GRAĐEVINAR 54 (2002) 12, 705-716

ključuje se da je granični raspon za primjenu ovog stropnog sustava u uobičajenim uvjetima uporabe $l_{eff} = 5,0$ m. Granica primjene ovog stropnog sustava mogla bi se povećati uzimanjem u obzir djelomične upetosti stropova, roštiljnog djelovanja stropne konstrukcije (poprečna rebra za ukrućenje) i sl.

Stvarne (eksperimentalno utvrđene) veličine progiba pod dugotrajnim djelovanjem u funkciji vremena dobro se podudaraju s teorijski proračunanima po ENV 1992-1-1 [17], iz čega se zaključuje da su ispravno određene geometrijske karakteristike presjeka, svojstva gradiva (mjerenjem i teorijski), a koeficijenti puzanja i vrijednosti skupljanja u funkciji vremena dobiveni teorijskim izrazima po ENV 1992-1-1 podudaraju se sa stvarnim vremenskim deformacijama betona.

Metoda proračuna progiba prema D. E. Bransonu predložena ACI propisima [1] daje rješenja koja se ne podudaraju s eksperimentalno utvrđenim veličinama progiba. Veličine progiba dobivene po toj metodi su 30% do 40% veće od izmjerenih, što znači da daje konzervativnija rješenja.

Zaključuje se da je metodom proračuna progiba po ENV 1992-1-1 primijenjenom na način predložen u ovome radu moguće obuhvatiti sva bitna svojstva stropnog sustava koja mogu utjecati na vremenski rast i konačnu veličinu progiba. Proračun se zasniva na metodi predloženoj u ENV 1992-1-1, jednostavan je za primjenu, a obuhvaća sva bitna svojstva istraživanoga stropnog sustava koja utječu na veličinu progiba.

- [9] Subhash C. A.; Bhushan, D.: A Numerical Technique for Computation of Creep Effects in Masonry Walls, Third North American Masonry Conference, The Masonry Society Proceedings, 75-1-75-14, Arlington, Texas, June 1985
- [10] Hendry, A. W.: Testing Methods in Masonry Engineering, Fourth North American Masonry Conference, The Masonry Society Proceedings, 49-1-49-13, Los Angeles, August 1987
- [11] Pravilnik o tehničkim normativima za beton i armirani beton, Službeni list br. 11, Beograd 1987.
- [12] Tomičić, I.: Betonske konstrukcije, Školska knjiga, Zagreb 1988, str. 493.-548.
- [13] Morić, D., Sorić, Z.: O mogućnosti primjene armature GA 500/560 kao dodatne armature za polumontažne stropne konstrukcije, Građevinar 2/89 str. 83. –89., Zagreb 1989.
- [14] Beslać, J., Halavanja I.: Priručnik za beton svojstva i osiguranje kvalitete, DGKH, Serija Priručnici, Zagreb 1990., str. 55.-215.
- [15] Sorić, Z.; Morić, D.: Reinforcement Bond and Slip Masonry-Concrete Floor Diaphragm, Proceedings of the 5th North American Masonry Conference, University of Illinois at Urbana-Champaign, Volume IV, pp. 1511 to 1522, June 3-6 1990

Stropovi od opečnih gredica

- [16] Sorić, Z.; Morić, D.: Izvještaj o ispitivanju trajnog progiba (puzanja) pod dugotrajnim opterećenjem stropne konstrukcije, Građevinski institut, RN 2113-1-210697/90, Br. 21-1175/90, Zagreb, srpanj 1990.
- [17] ENV 1992-1-1: Eurocode 2 Design of Concrete Structures -Part 1: General Rules and Rules for Buildings, CEN, Brussels, 1991.
- [18] Tomičić, I.: Priručnik za proračun armiranobetonskih konstrukcija, drugo dopunjeno izdanje, DHGK, Zagreb 1993, str. 206-214, 463-494.
- [19] ENV 1991-1: Eurocode 1 Basis of Design and Actions of Structures - Part 1: Basic of Design, CEN, Brussels, 1994.
- [20] Litzner, H.U.: Design of Concrete Structures to ENV 1992 Eurocode 2, Concrete Structures Euro-Design Handbook, Offprint 1994/96, Ernst & Sohn, Berlin, 1994.
- [21] ENV 1991-2-1: Eurocode 1 Basis of Design and Actions on Structures – Part 2.1: Actions on Structures-Densities, selfweight and imposed loads, CEN, Brussels, 1995.

- [22] ENV 1992-1-3: Proračun konstrukcija od armiranog i prednapetog betona; Opća pravila – elementi i konstrukcije od predgotovljenoga betona: prijevod engleske verzije, CEN, Europski komitet za normizaciju, Bruxelles, 1995.
- [23] Tomičić, I.: Betonske konstrukcije, DHGK, Zagreb 1996, str. 207.-214., 341.-396., 457.-485.
- [24] prEN 206-1/25 (CEN/TC104/SC1) N236 05/1999: Prijevod engleske verzije, CEN, Europski komitet za normizaciju, Bruxelles, svibanj 1999.
- [25] Sorić, Z.: Zidane konstrukcije I, HSGI, Zagreb, 1999, str. 71-74, 145.-153.
- [26] Grandić, D.: Progibi polumontažnih stropova s prednapetim opečnim gredicama pod dugotrajnim djelovanjem, magistarski rad, Građevinski fakultet Sveučilišta u Zagrebu, studeni 2001.