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Abstract
Tie rods are typically used to transfer axial forces and prevent unwanted displacement on 
vaults, walls, arches, and buttresses in historical buildings. In order to verify their load-bearing 
capacity and to identify potential structural damage risks, it is very important to determine the 
forces transferred by tie rods and the corresponding stresses. Due to the often lack of project 
documentation for historical buildings, determining the axial forces and verifying the load bearing 
capacity can be very challenging. This paper presents the determination of axial forces in tie rods 
and the analysis of seismic actions on it by combining experimental and numerical analysis and 
finite element model updating.

Key words:  operational modal analysis, Finite element model updating, tie-rods, dynamic 
parameters
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1 Introduction

Displacements that occur in historical buildings can be resisted by tie rods that support 
masonry walls, buttresses, arches, and vaults. They are subjected to axial tension and 
are an important element in controlling horizontal forces and displacements caused by 
static and dynamic loads associated with seismic action. In extreme cases, the tie rod 
can reach the maximum load bearing capacity due to high stress or pulling out of the 
anchorage (Figure 1). Both cases may result in a loss of structural integrity. Therefore, 
the value of internal tensile force in such systems is often a topic of discussion. 

Figure 1.  a) Damaged tie-rod (Reaching a maximum bearing capacity) b) Damaged vaults after a 
Construction disaster in a Cathedral of the Assumption of Mary, Zagreb

There are several uncertainties in determining the forces in these elements, which in-
clude complex boundary conditions [1-4], geometric and material properties [5].Several 
approaches are used in estimating the value of forces in tie rods and these are static[6], 
dynamic [7] and mixed approach [8]. In addition to the above approaches, a combination 
of experimental and numerical tests based on the model updating approach is often 
used. Model updating has emerged in the 1990s as a topic of great importance in the 
design, construction and maintenance of mechanical systems and structures. It refers 
to the update of the finite element numerical model to adopt more precise and accurate 
structural dynamic. In this approach, the numerical model is updated based on known 
dynamic parameters obtained through experimental tests. The finite element model 
updating is performed through the correction of material and geometric characteristics 
and boundary conditions. The paper presents an analysis of seismic actions on iron tie 
rods in the Cathedral of St. Jacobs in Šibenik (Figure 2).
Based on the experimental testing and the application of the operational modal analy-
sis, the dynamic parameters - frequencies and mode shapes of the structure and tie 
rods were determined. A local initial model of the reference iron tie rod was developed. 
Based on the dynamic parameters and the application of the corrected analytical equa-
tion [9], the local initial model was updated and the value of the force in the reference tie 
rod was determined. The methodology applied to the reference tie rod was extended to 
other tie rods and thus the values of the forces in the tie rods were determined. 
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Figure 2. a) Cathedral of St. James in Šibenik b) Tie rods in cathedral of St. James in Šibenik 

After updating the local numerical model of the reference tie rod, the initial global model 
of the cathedral was updated by varying the modulus of elasticity of the stone and the 
boundary conditions. An analysis of the internal forces and stresses in the tie rods of the 
updated global model of the cathedral was performed, taking into account the seismic 
action characteristic for Šibenik. In the following, Chapter 2 describes the procedure of 
the performed experimental determination of the dynamic properties of tie rods and 
the cathedral. Chapter 3 describes the performed numerical analysis of the initial and 
updated local and global numerical models of the tie rod and cathedral. Chapter 4 pre-
sents the results of the analysis of the internal forces and stresses in tie rods caused 
by seismic action.

2 Experimental analyse

Within the experimental analysis of the Cathedral of St. Jacobs in Šibenik by classical 
experimental (EMA) and operational modal analysis (OMA), the dynamic parameters of 
the structure and a certain number of tie rods were determined. The OMA of cathedral 
was conducted by roving three accelerometers in several points on structure and using 
two accelerometers as a referent. Frequency domain decomposition (FDD) were used 
to estimate natural frequency (Table 1.) which were read from the characteristic record 
(Figure 3).
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Figure 3. Characteristic record of frequency domain decomposition for cathedral

Table 1. Experimentally obtained natural frequencies of cathedral

In addition to the natural frequency of the whole structure, dynamic parameters for 24 
tie rods were also obtained. The natural frequencies were determined for 24 tie rods, 
while both the natural frequencies and mode shapes were determined for six tie rods, 
which are the subject of this paper. For the sake of the simplicity, of the tested tie rods, 
one was taken as a reference for which a detailed analysis was conducted. The arrange-
ment of measuring points on the reference tie rod is shown on the Figure 3.

Figure 4. Reference tie rod with measuring points and dimensions

The OMA was performed by roving four accelerometers through two measurement 
stages, using a one as a reference. The tie rod was excited by randomly using a rub-
ber impact hammer. Frequency domain decomposition and enhanced frequency domain 
decomposition were used to estimate the modal parameters (Figure 4). The values of 

Mode Natural frequency [Hz]

1 3,75

2 5,55

3 6,56

4 8,06
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the experimentally obtained natural frequencies for concerned mode shapes were read 
from the characteristics record (Figure 5). 

Figure 5. Experimentally obtained mode shapes for reference tie rod

Figure 6. Characteristic record of frequency domain decomposition for reference tie rod

3 Numerical analysis 

The experimentally obtained results were used to update the numerical models of tie 
rod and cathedral. Both local and global numerical model was developed in SAP2000 
software (Computers and Structures, Walnut Creek, CA, USA). The numerical model of 
the tie rod was developed as the Euler-Bernoulli beam element. In a global model of 
cathedral columns, arches and tie rods were developed as beam element, while walls, 
roof, and floors were developed as a shell-tick element. A detailed description of the 
initial local and global model and the process of their model updating is described in the 
next chapter.

3.1 Tie rod numerical modal 

Based on the available data, a local initial numerical model of the reference tie rod was 
first developed. The performed numerical modal analysis determined the dynamic prop-
erties of the tie rod, which were compared with the experimentally obtained properties. 
The comparison of these two data sets were carried out in the form of comparison of 
numerical values of natural frequencies, overlap of mode shapes and by applying RMSE 
factors [10]. Based on the comparison results, the numerical model was update by add-
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ing rotational springs whose stiffness value was determined by an iterative procedure. 
During the iterative procedure, a change in the RMSE factor values was monitored as a 
function of the spring stiffness values (Figure 6).

Figure 7. Changing the RMSE coefficient values as function of the spring stiffness values

The appropriate spring stiffness for observed mode shapes were selected when the 
RMSE factors reached the minimum values. For the selected spring stiffness, the force 
value in the reference tie rod was determined using a numerical model. Based on the 
well-known equation for determining the axial force [11, 12] the boundary condition 
parameter κ proposed in the literature [11, 12] is adjusted to the corresponding spring 
stiffness of the reference tie rod. Based on a certain dimensionless coefficient κ, known 
experimentally determined values of natural frequency, the values of forces and stress-
es in the remaining tie rods are determined (Table 2).

Table 2. Values of forces and stress level in iron tie rod for the observed mode shapes

2B-C 3B-C 4B-C 5B-C

Mode
Num. κ Pn

[kN]
σn
[MPa]

Pn
[kN]

σn
[MPa]

Pn
[kN]

σn
[MPa]

Pn
[kN]

σn
[MPa]

1 3.534 115,8 38,3 149.6 36.5 132.1 36.7 159.4 34.5

2 6.777 144.7 47.8 158.8 38.8 167.7 46.6 207.9 45.0

Mean values 130.3 43.1 154.2 37.7 149.9 41.6 183.6 39.7

6B-C 7B-C 7-8B 7-8C

Mode
Num. κ Pn 

[kN]
σn 
[MPa]

Pn 
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

1 3.534 122.8 33.0 170.8 54.5 166.3 53.0 215.2 59.8

2 6.777 137.2 36.9 188.7 60.2 208.1 66.4 219.6 61.0

Mean values 130.0 34.9 179.8 57,3 187.2 59.7 217.4 60.4
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3.2 Cathedral numerical model

After the force values in tie rods are determined, the global initial model of the cathedral 
is approached. Based on the known structural characteristics and the available data, 
a global initial model was developed. The natural frequency values were determined 
during the numerical modal analysis performed. The numerically determined values 
were compared with the experimentally one. Based on the comparison results, it was 
concluded that the numerical model needed to be updated. For the known experimen-
tally determined natural frequency values, the initial global model of the cathedral was 
updated by correcting the boundary conditions and the modulus. There were three pos-
sible cases of boundary conditions. The first case was a hinge, the second was a clamp 
and in the third case the boundary condition was simulated as a Winkler spring [13]. The 
natural frequency of the first model was closest to the experimentally obtained values. 
This model was taken as a reference for the next step of the model updating procedure. 
In the second step, the value of the elastic modulus of the stone was iterated on the 
selected numerical model. In this way it was ensured that the numerically determined 
natural frequencies corresponded to those determined experimentally. During the it-
eration, the change in natural frequency as a function of elastic modulus was monitored 
(Figure 9.).

Figure 8. Changing the natural frequency values as function modulus of elasticity

For the sake of simplicity, the first three mode shapes were considered. From the up-
dated numerical model, the corresponding mode shapes were determined (Table 3.). 
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Table 3.  Numerically obtained mode shape of the cathedral for the corresponding experimentally obtained 
values of natural frequencies

The final value of the modulus of elasticity was determined as the mean value of the 
readings for each mode shape (Figure 9.). After the numerical model and its properties 
were obtained, the observed iron tie-rods of the updated global numerical model were 
subjected to axial tension (Table 2). Then, the global numerical model was subjected to 
seismic load according to EN 1998-1:2004 [14] and the values of the force in the tie rod 
were determined for this load case (Table 3).

Mode
Mode shape Mode shape 

descriptionTop view 3D view

1
Bending around 

the X axis, 
symmetric

2
Bending around 

the X axis, 
antimetric

3 2.bending mode 
around X axis
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Table 4. Values of forces and stress level in iron tie rod for the seismic actions in x and y direction

Figure 9.  Comparison of stress level in iron tie-rods for the initial state and seismic actions in x and 
y-direction

4 Conclusion

Tie rods in historic buildings support masonry walls, buttresses, vaults, and arches to 
resist displacement. Consequently, they are subjected to axial tension and are in con-
trolling horizontal forces and displacements caused by static and dynamic loads as-
sociated with seismic actions. The determination of these loads and the corresponding 
stress levels is very important. This paper presents a determination of axial forces and 
analysis of seismic actions on tie rods through a combination of experimental tests, 
numerical analysis and finite element model updating. Based on the experimental tests, 
model updating of local numerical model of tie rod and global model of structure, and 
numerical analysis, it can be concluded that due to the seismic action, the axial forces 
in the tie-rods increases (Figure 9.). Also, the bearing capacity of the observed tie rod 
should not be cancelled because the maximum stress value in the most loaded tie rod 
(tie rod 7-8C) is only 36.1% of the tensile strength of the cast steel.

Tie rod 2B-C 3B-C 4B-C 5B-C

Earthquake
Direction

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

x 152.0 50.26 167.3 40.85 162.7 45.19 244.4 52.85

y 149.9 49.54 192.9 47.10 168.6 46.82 218.4 47.23

Tie rod 6B-C 7B-C 7-8B 7-8C

Earthquake
Direction

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

Pn
[kN]

σn 
[MPa]

x 150.8 40.51 209.6 66.83 218.2 69.58 [kN] 70.39

y 164.0 44.06 214.9 68.53 223.8 71.35 259.9 72.18
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