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In this paper we prove a conjecture that a D(4)-quintuple does 
not exist using both classical and new methods. Also, we give 
a new version of the Rickert’s theorem that can be applied on 
some D(4)-quadruples.
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1. Introduction

Definition 1. Let n �= 0 be an integer. We call the set of m distinct positive integers 
a D(n)-m-tuple, if the product of any two of its distinct elements increased by n is a 
perfect square.
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One of the most interesting and most studied questions is how large those sets can be. 
In this paper, we will consider D(4)-quintuples {a, b, c, d, e} and without loss of generality 
we will assume that a < b < c < d < e. It is conjectured in [10] that all D(4)-quadruples, 
such that a < b < c < d, are regular, i.e.

d = d+ = a + b + c + 1
2(abc +

√
(ab + 4)(ac + 4)(bc + 4)),

which implies that there does not exist a D(4)-quintuple.
The second author in [13] has proven that an irregular D(4)-quadruple cannot be 

extended to a quintuple with a larger element and in [14] that there are at most 4 ways 
to extend a D(4)-quadruple to a quintuple with a larger element. The best published 
upper bound on the number of D(4)-quintuples is 6.8587 · 1029 found by the authors 
in [2].

The case n = 1 is the most famous and mostly studied. Dujella proved in [7] that a 
D(1)-sextuple does not exist and that there are at most finitely many quintuples. Over 
the years many authors improved the upper bound for the number of D(1)-quintuples and 
finally, very recently, He, Togbé and Ziegler in [16] presented the proof of the nonexistence 
of D(1)-quintuples. To see all details of the history of the problem with all references 
one can visit the webpage [6].

Our approach was to use the methods and approach from [16] and apply them to 
D(4)-quintuples, but modifications were necessary since not all previously proven results 
are comparable in the cases n = 1 and n = 4. One of the main differences is that the result 
from [4, Theorem A.], where the authors proved that b > 3a holds for a D(1)-quintuple, 
cannot be proven for the D(4) case using the analogous methods. But, in the D(4) case 
we have b ≥ a +57

√
a, proven by the second author in [15], which can be used with some 

modifications to prove similar auxiliary results as in [16]. Throughout the paper we will 
give a proof only for statements which differ from the D(1) case, where the modification 
of the proof or some new idea was necessary, or some additional explanation is needed 
because not all of the proofs from [16] have been explained in the way that it is clear 
how to apply the same method in the D(4) case.

One of the sections of the paper will be dedicated to using methods from [3] to get an 
improved version of Rickert’s theorem for D(4)-quadruples and use it to get the bounds 
on elements of a D(4)-quintuple in the last section of the paper which was necessary to 
prove our result.

The last two sections will be dedicated to proving the main result of our paper. Our 
main result is the following theorem.

Theorem 1. There does not exist a D(4)-quintuple.

Let us mention that a stronger version of conjecture, i.e. that all quadruples are 
regular, still remains open.
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2. Known results about elements of a D(4)-m-tuple

For a D(4)-triple {a, b, c}, a < b < c, we define

d± = d±(a, b, c) = a + b + c + 1
2(abc±

√
(ab + 4)(ac + 4)(bc + 4)),

and it is easy to check that {a, b, c, d+} is a D(4)-quadruple, which we will call a regular 
quadruple, and if d− �= 0 then {a, b, c, d−} is also a regular D(4)-quadruple with d− < c. 
Also we will use standard notation r =

√
ab + 4, s =

√
ac + 4 and t =

√
bc + 4.

Lemma 1. Let {a, b, c} be a D(4)-triple and a < b < c. Then c = a + b + 2r or c >
max{ab, 4b}.

Proof. This follows from [12, Lemma 3] and [8, Lemma 1]. �
The next lemma can be proven similarly as [16, Lemma 2].

Lemma 2. Let {a, b, c} be a D(4)-triple and a < b < c. Then abc + c < d+ < abc + 4c.

Results from the next two lemmas will be used in the rest of the paper very often, so 
sometimes we will not reference them.

Lemma 3. [2, Lemmas 2.2 and 2.3] Let {a, b, c, d, e} be a D(4)-quintuple such that a <
b < c < d < e. Then b > 105. Also, if c �= a + b + 2r, then b > 4a.

Lemma 4. [15, Corollary 1.2] If {a, b, c, d, e} is a D(4)-quintuple such that a < b < c <
d < e, then b ≥ a + 57

√
a.

From [13] we also have that an element d in a D(4)-quintuple {a, b, c, d, e} is uniquely 
determined by the triple {a, b, c}.

Lemma 5. If {a, b, c, d, e} is a D(4)-quintuple such that a < b < c < d < e, then d = d+.

3. New version of Rickert’s theorem

In this section we will prove a new version of Rickert’s theorem similar to the one in [3], 
which is essential to find some upper bounds on the elements of D(4)-quintuple when 
c > a +b +2r. Unfortunately, in the D(4) case we could not get all results analogously as 
in [3] for a D(1)-quintuple, but still, these results will be essential for proving our main 
result.

All the results in this section and its proofs are analogous to the ones from [3] so we 
will give them without a proof.
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Theorem 2. Put E′ = max{4(F − E), 4E} and g = gcd(E, F ) and let E, F be in-
tegers with 0 < E/g ≤ F/g − 4, F/g ≥ 5 and N a multiple of EF . Assume that 
N ≥ 59.488E′F 2(F − E)2g−4. Then the numbers

θ1 =
√

1 + 4F
N

and θ2 =
√

1 + 4E
N

satisfy

max
{∣∣∣∣θ1 −

p1

q

∣∣∣∣ , ∣∣∣∣θ2 −
p2

q

∣∣∣∣} >

(
3.53081 · 1027E′FN

Eg2

)−1

q−λ

for all integers p1, p2, q > 0, where

λ = 1 + log(2.500788E−1E′FNg−2)
log(0.04216N2g2E−1F−1(F −E)−2) < 2.

Let {A, B, C} be a D(4)-triple which can be extended to a quadruple with an ele-
ment D. Then there exist positive integers x, y, z such that

AD + 4 = x2, BD + 4 = y2, CD + 4 = z2.

By expressing D from these equations we get the following system of generalized Pell 
equations

Cx2 −Az2 = 4(C −A),

Cy2 −Bz2 = 4(C −B).

Solutions of each of these equations can be expressed with a binary recurrent sequences 
as described in details in [11]. We will denote them z = vm = wn, where m and n are some 
positive integers and we will denote the initial values of these sequences with z0 = v0
and z1 = w0. If this quadruple is contained in a D(4)-quintuple, then from [14] we know 
that m and n are even and z0 = z1 = ±2, so we will consider only that case.

Lemma 6. Suppose that there exist positive integers m and n such that z = v2m = w2n, 
and |z1| = 2, and that C ≥ B2 ≥ 25. Then log z > n logBC.

Proof. This lemma can be proven similarly as [11, Lemma 8] or [3, Lemma 3.1]. �
And finally we use Theorem 2 to get a new version of the Rickert’s theorem.

Lemma 7. Let A, B and C be integers, A′ = max{4(B − A), 4A} and g = gcd(A, B). 
Suppose that there exist integers m ≥ 3 and n ≥ 2 such that z = v2m = w2n, z0 = z1, 
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|z1| = 2 and that 0 < A/g ≤ B/g − 4, B/g ≥ 5 and C ≥ 59.488A′B(B − A)2g−4A−1. 
Then

n <
4 log(8.40335 · 1013(A′) 1

2A
1
2B2Cg−1) log(0.20533A 1

2B
1
2C(B −A)−1g)

log(BC) log(0.016858A(A′)−1B−1(B −A)−2Cg4) .

Proof. It is easy to see if we set E = A, F = B and N = ABC that we can apply 
Theorem 2 and Lemma 6 to get the upper bound on n from the statement of lemma. �

Now we will use these results to prove an upper bound on the element c in a 
D(4)-quintuple in the terms of smaller elements a and b.

Proposition 1. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e. Then

c <
237.952b3

a
.

Proof. If c = a + b + 2r, then c < 4b < 237.952b3a−1.
Let us now assume that c �= a + b +2r and that d ≥ 237.952b4. From Lemmas 1 and 3

we know that b > 105, c > max{ab, 4b} and b > 4a. Then

59.488A′B(B −A)2

Ag4 < 237.952(b− a)3 · b
a
< 237.952b4,

which implies that we can use Lemma 7 for A = a, B = b and C = d. Now we observe

8.40335 · 1013(A′) 1
2A

1
2B2Cg−1 < 8.40335 · 1013b3d,

0.20533A 1
2B

1
2C(B −A)−1g < 0.03423bd,

0.016858A(A′)−1B−1(B −A)−2Cg4 > 0.0042145b−4d,

and get

n <
4 log(8.40335 · 1013b3d) log(0.03423bd)

log(bd) log(0.0042145b−4d) .

It can be shown that the right hand side is decreasing in d and since d ≥ 237.952b4, we 
can now observe

n <
4 log(1.9996 · 1016b7) log(8.14272b5)

log(237.952b5) log(1.002848) .

From the proof of [2, Lemma 3.2.] we know that in a D(4)-quadruple it holds m ≥
0.618034

√
d/b, so

n > 0.309017
√

d
> 0.309017

√
237.952b3/2 > 4.7668b3/2.
b
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By combining the inequalities, we get b < 803, which cannot be true. So we have d <
237.952b4 which implies abc < 237.952b4, i.e.

c <
237.952b3

a
. �

4. An operator on Diophantine triples

An operator on triples, defined for the first time by He, Togbé and Ziegler in [16], has 
been shown to be one of the crucial steps in proving the nonexistence of D(1)-quintuples. 
The same will be true for the D(4) case, so here we define it similarly and state some 
analogous results concerning the operator on D(4)-triples. However, we slightly extend 
their definition.

Definition 2. A D(4)-triple {a, b, c}, a < b < c, is called an Euler or a regular triple if 
c = a + b + 2r.

For a regular triple {a, b, c} it is easy to prove that d+(a, b, c) = rst and s = a + r, 
t = b + r.

The following statements about regular triples will be given without proof, since they 
are easy to prove as in the D(1) case.

Proposition 2. The D(4)-triple {a, b, c} is a regular triple if and only if d−(a, b, c) = 0.

Proposition 3. Let {a, b, c} be a D(4)-triple, such that a < b < c. We have

a = d−(b, c, d+(a, b, c)), b = d−(a, c, d+(a, b, c)), c = d−(a, b, d+(a, b, c)).

Moreover, if {a, b, c} is not a regular triple, then

c = d+(a, b, d−(a, b, c)).

In particular {a, b, d−(a, b, c), c} is a regular D(4)-quadruple.

Now we will define an operator on D(4)-triples. The idea follows from the fact that 
any D(4)-triple can be extended with a larger element to a D(4)-quadruple {a, b, c, d+}. 
Hence, we obtain three new D(4)-triples, {a, b, d+}, {a, c, d+} and {b, c, d+} which we 
may consider to be farther away from a regular triple than the original triple {a, b, c}. 
We can reverse this observation and define the following operator.

Definition 3. We define ∂ to be an operator which sends a non-regular D(4)-triple {a, b, c}
to a D(4)-triple {a′, b′, c′} such that

∂({a, b, c}) = {a, b, c, d−(a, b, c)} \ {max(a, b, c)}.
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If D(4)-triple {a, b, c} is a regular triple, then we define that ∂ sends this triple to the 
same D(4)-triple {a, b, c}, i.e.

∂({a, b, c}) = {a, b, c}.

For D ∈ N0 we can define the operator ∂−D on the set of D(4)-triples recursively as 
follows.

1. For any D(4)-triple {a, b, c} we define

∂0({a, b, c}) = {a, b, c}.

2. We recursively define

∂−D({a, b, c}) = ∂(∂−(D−1)({a, b, c})), for D ≥ 1.

Moreover, we put

d−D(a, b, c) = d−(∂−(D−1)({a, b, c})).

In particular, ∂ = ∂−1 and ∂−2({a, b, c}) = ∂(∂−1({a, b, c})).

Remark. Observe that by using operator ∂ repeatedly, for a fixed triple {a, b, c} we get 
an infinite sequence of D(4)-triples

∂0({a, b, c}), ∂−1({a, b, c}), ∂−2({a, b, c}), . . . , ∂−D({a, b, c}), . . . .

In the next Proposition we will show that for each D(4)-triple this sequence becomes 
stationary after D-th element for some D, which implies that every triple can be obtained 
from a regular triple using extensions with d+ element explained before. Also, we will 
show that the repeating element is a regular triple, and give an upper bound for the 
number D.

Proposition 4. For any fixed D(4)-triple {a, b, c} there exists a minimal nonnegative in-
teger D < log(abc)/ log 5 such that d−(D+1)(a, b, c) = 0.

Proof. For a regular triple {a, b, c} we have that d−(D+1)(a, b, c) = 0 for each D ∈ N0

since ∂−D{a, b, c} = {a, b, c}, so D = 0. For a non-regular triple, the idea is to use the fact 
that c > abd−1(a, b, c) and a′b′c′ = abd−1(a, b, c) < abc/5 since ab ≥ 5. We can see that 
by applying k times the operator ∂ we get a′b′c′ < abc

5k , so we must have d−1(a′, b′, c′) = 0
for some {a′, b′, c′} and the result follows from Proposition 2. �
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Definition 4. For a D(4)-triple {a, b, c} we will say that it has a degree D and that it 
is generated by a regular triple {a′, b′, c′} if D is minimal nonnegative integer such that 
d−(D+1)(a, b, c) = 0 and ∂−D({a, b, c}) = {a′, b′, c′}. If the triple {a, b, c} is of degree D
we will write deg(a, b, c) = D.

Remark. Let us now observe an example of these definitions. The D(4)-triple {1, 5, 12}
generates 3 triples of degree 1, {1, 5, 96}, {1, 12, 96} and {5, 12, 96}, and 9 triples of 
degree 2, one of them is {1, 12, 1365}. It is not hard to see by induction that each 
D(4)-triple generates 3k distinct triples of degree k. More precisely, we can see from 
the definition that all triples of degree 1 are distinct. Let us assume that all triples of 
degree k are distinct and let us observe two triples of degree k + 1, namely {a, b, c}
and {a′, b′, c′}. It is enough to notice that triples ∂−1({a, b, c}) and ∂−1({a′, b′, c′}) of 
degree k are either the same triple or they are distinct. In the former case, we conclude 
as in the case when degree is 1 that {a, b, c} and {a′, b′, c′} are distinct. In the latter 
case, if {a, b, c} and {a′, b′, c′} were not distinct that would imply that ∂−1({a, b, c}) and 
∂−1({a′, b′, c′}) were equal, which would lead to a contradiction.

5. System of Pell equations

Let {a, b, c} be a D(4)-triple, a < b < c, and r, s, t positive integers such that

ab + 4 = r2, ac + 4 = s2, bc + 4 = t2.

Suppose that {a, b, c, d, e} is a D(4)-quintuple, a < b < c < d < e, and as before

ad + 4 = x2, bd + 4 = y2, cd + 4 = z2,

x, y, z ∈ N. Then, there also exist integers X, Y, Z, W such that

ae + 4 = X2, be + 4 = Y 2, ce + 4 = Z2, de + 4 = W 2.

From [13, Theorem 1] we have d = d+, which implies

x = at + rs

2 , y = bs + rt

2 , z = cr + st

2 .

By eliminating e from the equations above, we get a system of generalized Pell equations

aY 2 − bX2 = 4(a− b), (1)

aZ2 − cX2 = 4(a− c), (2)

bZ2 − cY 2 = 4(b− c), (3)

aW 2 − dX2 = 4(a− d), (4)
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bW 2 − dY 2 = 4(b− d), (5)

cW 2 − dZ2 = 4(c− d). (6)

The next lemma, which is a part of Lemma 2 in [10], gives us a description of solutions 
of Pell equations (1)–(6).

Lemma 8. If (X, Y ) is a positive integer solution to a generalized Pell equation

aY 2 − bX2 = 4(a− b),

with ab + 4 = r2, then it is obtained from

Y
√
a + X

√
b = (y0

√
a + x0

√
b)

(
r +

√
ab

2

)n

,

where n ≥ 0 is an integer and (x0, y0) is integer solution of the equation such that

1 ≤ x0 ≤
√

a(b− a)
r − 2 , and 1 ≤ |y0| ≤

√
(r − 2)(b− a)

a
.

By applying this Lemma to the equations (1)–(6) we obtain

Y
√
a + X

√
b = Y

(a,b)
h′

√
a + X

(a,b)
h′

√
b = (Y0

√
a + X0

√
b)

(
r +

√
ab

2

)h′

(7)

Z
√
a + X

√
c = Z

(a,c)
j′

√
a + X

(a,c)
j′

√
c = (Z1

√
a + X1

√
c)

(
s +

√
ac

2

)j′

(8)

Z
√
b + Y

√
c = Z

(b,c)
k′

√
b + Y

(b,c)
k′

√
c = (Z2

√
b + Y2

√
c)

(
t +

√
bc

2

)k′

(9)

W
√
a + X

√
d = W

(a,d)
l′

√
a + X

(a,d)
l′

√
d = (W3

√
a + X3

√
d)

(
x +

√
ad

2

)l′

(10)

W
√
b + Y

√
d = W

(b,d)
m′

√
b + Y

(b,d)
m′

√
d = (W4

√
b + Y4

√
d)

(
y +

√
bd

2

)m′

(11)

W
√
c + Z

√
d = W

(c,d)
n′

√
c + Z

(c,d)
n′

√
d = (W5

√
c + Z5

√
d)

(
z +

√
cd

2

)n′

(12)

where h′, j′, k′, l′, m′, n′ are nonnegative integers, and Y0, Y2, Y4, X0, X1, X3, Z1, Z2, 
Z5, W3, W4, W5 are integers which satisfy appropriate inequalities from Lemma 8. Each 
sequence of solutions can be expressed as a pair of binary recurrence sequences, so for 
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example, a sequence of solutions (Y (a,b)
h′ , X(a,b)

h′ ) to equation (7) satisfy the following 
recursions:

Y
(a,b)
0 = Y0, Y

(a,b)
1 = rY0 + bX0

2 , Y
(a,b)
h′+2 = rY

(a,b)
h′+1 − Y

(a,b)
h′ ,

X
(a,b)
0 = X0, X

(a,b)
1 = rX0 + aY0

2 , X
(a,b)
h′+2 = rX

(a,b)
h′+1 −X

(a,b)
h′ ,

which can easily be proven by induction.
We will now state and prove some lemmas about initial values of the sequences of 

solutions and about its indices h′, j′, l′, k′, m′, n′.

Lemma 9. [14, Lemma 3] If W = W
(a,d)
l′ = W

(b,d)
m′ = W

(c,d)
n′ , then we have l′ ≡ m′ ≡

n′ ≡ 0 ( mod 2). Also,

W3 = W4 = W5 = 2ε = ±2 and X3 = Y4 = Z5 = 2.

In the next lemma we will prove a similar result for the remaining indices and initial 
values of sequences. The proof defers from the one in [16] so we give it in detail.

Lemma 10. We have h′ ≡ j′ ≡ k′ ≡ 0 ( mod 2) and

X0 = X1 = Y0 = Y2 = Z1 = Z2 = 2.

Proof. Let us consider the system of the equations (1) and (5).
From Lemma 8 we have the bound on Y0, |Y0| < b3/4a−1/4, and since Y (a,b)

h′ satisfies 
the recursion

Y
(a,b)
0 = Y0, Y

(a,b)
1 = rY0 + bX0

2 , Y
(a,b)
h′+2 = rY

(a,b)
h′+1 − Y

(a,b)
h′ ,

we easily see that

Y
(a,b)
h′ ≡

{
Y

(a,b)
0 (mod b), h′ even,

Y
(a,b)
1 (mod b), h′ odd.

On the other hand, for Y (b,d)
m′ , from Lemma 9, we have

Y
(b,d)
0 = Y4 = 2, Y

(b,d)
1 = y + εb, Y

(b,d)
m′+2 = yY

(b,d)
m′+1 − Y

(b,d)
m′

and since we know that m′ is even, we obtain Y (b,d)
m′ ≡ 2 ( mod b).

We consider Y (a,b)
h′ = Y

(b,d)
m′ and let us assume that h′ is odd. Then

1(rY0 + bX0) ≡ 2 (mod b)
2
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and since bX0 ≡ 0 ( mod b), we have

bX0 −
1
2(rY0 + bX0) ≡ −2 (mod b),

i.e. 1
2 (bX0 − rY0) ≡ −2 ( mod b). Now, we observe

(bX0 − rY0)(bX0 + rY0) = b2X2
0 − r2Y 2

0 = b(aY 2
0 + 4(b− a)) − abY 2

0 − 4Y 2
0

= 4b(b− a) − 4Y 2
0 .

Since |Y0| < b3/4a−1/4, we have

4b(b− a) − 4Y 2
0 > 4b(b− a) − 4b3/2a−1/2 = 4b(b− a− (b/a)1/2),

and since the right hand side is increasing in b, and from Lemma 4 we know that b ≥
a + 57

√
a, we get

b− a− (b/a)1/2 > 57
√
a−

(
1 + 57√

a

)1/2

> 0.

So we can conclude that bX0 − r|Y0| > 0. On the other hand, we can easily see that 
b2X2

0 − r2Y 2
0 < 4b2, i.e. 1

2 (bX0 − r|Y0|) < b.
Now, let us consider the following two cases:
1.) If Y0 > 0, then 12(bX0−r|Y0|) = 1

2 (bX0−rY0) so we must have 12(bX0−rY0) = b −2. 
Observe that

bX0 + rY0 <
4b2

bX0 − rY0
= 4b2

2b− 4

= 2b + 8b
2b− 4 = 2b + 4 + 16

2b− 4 < 2b + 4.1.

Since b > 105 implies r > 316 and both addends on the right hand side of the inequality 
are positive, the only options for X0 are X0 = 1 and X0 = 2. If X0 = 1, by direct 
computation we can see that there is no Y0 in the bounds given by Lemma 8 that satisfy 
equation (1). For X0 = 2 we get only Y0 = 2. But, then we would have 1

2(2b − 2r) =
b − r = b − 2, i.e. r = 2 which cannot be.

2.) If Y0 < 0, then 1
2 (bX0 − r|Y0|) = 1

2 (bX0 + rY0) so we have 1
2 (bX0 + rY0) = 2. This 

implies

bX0 − rY0 < 2bX0 < 2b
√

a(b− a)
r − 2 < 2b

√
b,

since a < r − 2 (otherwise we would get b ≤ a + 4, which is in a contradiction with 
Lemma 4). We also have that 4b(b −a) − 4Y 2

0 > 4b2 − 4ab − 4b
√
b = 4b(b −a −

√
b), since 

Y 2
0 < b3/2, so we can conclude
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4 = bX0 + rY0 >
4b(b− a−

√
b)

bX0 − rY0
>

4b(b− a−
√
b)

2b
√
b

= 2√
b
(b− a−

√
b),

i.e. 
√
b− 1 − a√

b
< 2.

After squaring this expression and solving the quadratic inequality in b we get b <
a + 3

2 (
√

4a + 9 + 3). Again, by Lemma 4 we also have b ≥ a + 57
√
a, and from these two 

inequalities we would get a < 1, a contradiction.
Hence, h′ must be even. From Y0 ≡ 2 ( mod b) and |Y0| < b3/4 we conclude Y0 = 2

and by direct computation from (1) we also get X0 = 2.
Now, we consider the system of equations (2) and (6). The proof is very similar to the 

previous case, so we omit details and only emphasize that here we use c ≥ a + b + 2r to 
get a contradiction in the case that j′ is odd. The same argument is used to prove that 
k′ is even when we consider the system of equations (3) and (6). �

From the previous lemmas we see that equations (7)–(12) actually have form:

Y
√
a + X

√
b = (2

√
a + 2

√
b)

(
r +

√
ab

2

)2h

, (13)

Z
√
a + X

√
c = (2

√
a + 2

√
c)

(
s +

√
ac

2

)2j

, (14)

Z
√
b + Y

√
c = (2

√
b + 2

√
c)

(
t +

√
bc

2

)2k

, (15)

W
√
a + X

√
d = (2ε

√
a + 2

√
d)

(
x +

√
ad

2

)2l

, (16)

W
√
b + Y

√
d = (2ε

√
b + 2

√
d)

(
y +

√
bd

2

)2m

, (17)

W
√
c + Z

√
d = (2ε

√
c + 2

√
d)

(
z +

√
cd

2

)2n

. (18)

6. Gap principle and classical congruences

We have already observed, if there exists a nonnegative integer e such that the 
D(4)-quadruple {a, b, c, d} can be extended to the quintuple {a, b, c, d, e} then the equal-
ities (13)–(18) are satisfied for some nonnegative integers h, j, k, l, m, and n. We will 
now state and prove which relations hold between these indices, but first we will state 
without proof some known relations.

Lemma 11. [12, Lemma 5] If Z = Z
(a,c)
2j = Z

(b,c)
2k , then k − 1 ≤ j ≤ 2k + 1.
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Lemma 12. [14, Lemma 4] If W = W
(a,d)
2l = W

(b,d)
2m = W

(c,d)
2n , then 8 ≤ n ≤ m ≤ l ≤ 2n.

As we can see, so far no one has considered relations between h and other indices. We 
will now prove which relation holds between m and h and improve the relation between 
m and l.

Lemma 13. We have 2l ≤ 3m and m < l, for m ≥ 2.

Proof. From (10) and (11) by expressing solutions explicitly we have

W
(a,d)
l = d + ε

√
ad√

ad

(
x +

√
ad

2

)l

+ −d + ε
√
ad√

ad

(
x−

√
ad

2

)l

,

and

W (b,d)
m = d + ε

√
bd√

bd

(
y +

√
bd

2

)m

+ −d + ε
√
bd√

bd

(
y −

√
bd

2

)m

.

Firstly, let us prove that 2l ≤ 3m by observing that we must have W (a,d)
2l = W

(b,d)
2m .

Notice that x −
√
ad < 1, which implies that also 

(
x−

√
ad√

ad

)2m
< 1 and since −d +

ε
√
ad < 0, we have

−d + ε
√
ad√

ad

(
x−

√
ad√

ad

)2m

>
−d + ε

√
ad√

ad
≥ −d−

√
ad√

ad
.

Moreover, notice that the second addend in the expressions for W (a,d)
l and W (b,d)

m , re-
spectively, is negative since d > b > a, i.e. d >

√
bd >

√
ad. Now, it is easy to see 

that

d + ε
√
ad√

ad

(
x +

√
ad

2

)2l

− d +
√
ad√

ad
< W

(a,d)
2l = W

(b,d)
2m <

<
d + ε

√
bd√

bd

(
y +

√
bd

2

)2m

.

On the other hand,

d +
√
ad√

ad
= 1 + d√

ad
<

(
y +

√
bd

2

)2

<

(
y +

√
bd

2

)2m

,

so we get the inequality
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d + ε
√
ad√

ad

(
x +

√
ad

2

)2l

<

(
d + ε

√
bd√

bd
+ 1

)(
y +

√
bd

2

)2m

which implies that(
x +

√
ad

2

)2l

<

√
a

b
· d + (ε + 1)

√
bd

d + ε
√
ad

(
y +

√
bd

2

)2m

.

From 
√
a/b(d + (ε + 1)

√
bd) ≤

√
a/b(d + 2

√
bd) =

√
a/b · d + 2

√
ad < d + 2

√
ad we have

(
x +

√
ad

2

)2l

<
d + 2

√
ad

d + ε
√
ad

(
y +

√
bd

2

)2m

.

Assume now the opposite, i.e. that 2l ≥ 3m + 1. Then, we have(
x +

√
ad

2

)3m+1

<
d + 2

√
ad

d + ε
√
ad

(
y +

√
bd

2

)2m

and the inequality (x +
√
ad)/2 > (d + 2

√
ad)/(d + ε

√
ad) implies(

x +
√
ad

2

)3

<

(
y +

√
bd

2

)2

.

Since x +
√
ad > 2

√
ad and 

√
bd + 4 <

√
bd + 2/

√
bd, we have y +

√
bd < 2

√
bd +

2/
√
bd < 2

√
bd (1 + 1/(bd)) < 2

√
bd

(
1 + 1/B3

0
)

where B0 < b. Now we get to observe 
the inequality

(
√
ad)3 < (

√
bd)2

(
1 + 1

B3
0

)2

and after squaring, inserting abc < d and canceling we get

a4c < b

(
1 + 1

B3
0

)4

.

For B0 = 105, we see that the inequality cannot be true for a > 1 or for c > 4b. It 
remains to investigate the case where a = 1 and c = a + b + 2r. In this case we have

1 + b + 2
√
b + 4 < b

(
1 + 1

B3
0

)4

and for B0 = 105 we get b > 2.5 · 1029 and that value can be used as a new value for B0. 
After inserting this value we get an inequality which has no positive integer solution b. 
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So each case leads to a contradiction, which implies that our assumption was wrong, i.e. 
we have 2l ≤ 3m.

Now we assume m = l. Similarly as before, we observe that we have

d + ε
√
bd√

bd

(
y +

√
bd

2

)2m

− d +
√
bd√

bd
< W

(b,d)
2m = W

(a,d)
2m

<
d + ε

√
ad√

ad

(
x +

√
ad

2

)2m

and since d +
√
bd < ((y +

√
bd)/2)2, we get

d + ε
√
bd− 1√
bd

(
y +

√
bd

2

)2m

<
d + ε

√
ad√

ad

(
x +

√
ad

2

)2m

and after multiplying and rearranging we get(
y +

√
bd

x +
√
ad

)2m

<

√
b

a
· d + ε

√
ad

d + ε
√
bd− 1

.

But, we have

d + ε
√
ad

d + ε
√
bd− 1

<
d +

√
bd

d−
√
bd

= 1 + 2
√
bd

d−
√
bd

= 1 + 2
d√
bd

− 1

< 1 + 2√
B0 − 1

=
√
B0 + 1√
B0 − 1

,

where the last inequality is true since d/
√
bd =

√
d/b >

√
abc/b =

√
ac >

√
b >

√
B0. 

So, it must hold (
y +

√
bd

x +
√
ad

)2m

<

√
b

a
·
√
B0 + 1√
B0 − 1

.

On the other hand, it is easy to see that(
y +

√
bd

x +
√
ad

)2

>

√
b

a
,

which, with the previous inequality, leads to the conclusion that

(
b
)(m−1)/2

<

√
B0 + 1√ .
a B0 − 1
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From [2, Lemma 3.2] we can conclude that l′ = 2l > 0.61803d1/4 > 0.61803 ·1010/4 > 195. 
Also, from Lemma 11 we have 2l ≤ 4m + 1 so m > 48. Now we observe(

b

a

)47/2

<

√
B0 + 1√
B0 − 1

i.e.

(a + 57
√
a)47/2 < b47/2 <

√
B0 + 1√
B0 − 1

a47/2

and by solving this inequality in a for B0 = 105 we obtain a > 4.484 · 1010 which can be 
used as a new value for B0, since b > a. By iterating this process we get a contradiction, 
this time a contradiction with the upper bound b < 1036 from [2]. We can now conclude 
m �= l. �
Lemma 14. We have h ≥ 2m.

Proof. Similarly as in the previous Lemma, for sequences Y (a,b)
2h and Y (b,d)

2m we have

Y
(a,b)
2h = b +

√
ab√

ab

(
r +

√
ab

2

)2h

+ −b +
√
ab√

ab

(
r −

√
ab

2

)2h

,

Y
(b,d)
2m = εb +

√
bd√

bd

(
y +

√
bd

2

)2m

+ −εb +
√
bd√

bd

(
y −

√
bd

2

)2m

.

If Y = Y
(a,b)
2h = Y

(b,d)
2m , we have

(
1 −

√
b/d

)(
y +

√
bd

2

)2m

<
−b +

√
bd√

bd

(
y +

√
bd

2

)2m

< Y
(b,d)
2m = Y

(a,b)
2h <

<
b +

√
ab√

ab

(
r +

√
ab

2

)2h

≤
(
1 +

√
b/a

)(
r +

√
ab

2

)2h

.

It is easy to see that 
√
d(

√
a+

√
b)√

a(
√
d−

√
b) < r+

√
ab

2 , so we have

(
y +

√
bd

2

)2m

<
1 +

√
b/a

1 −
√
b/d

(
r +

√
ab

2

)2h

<

(
r +

√
ab

2

)2h+1

.

Since

y +
√
bd

2 >
√
bd >

√
ab2c ≥

√
ab2(a + b + 2r) > r2 >

(
r +

√
ab

2

)2

,
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we get (
r +

√
ab

2

)4m

<

(
y +

√
bd

2

)2m

<

(
r +

√
ab

2

)2h+1

,

and it is easy to conclude 4m < 2h + 1, i.e. 2m ≤ h. �
Now, we will shortly prove classical congruences associated with D(4)-quintuples.

Lemma 15. Let {a, b, c, d, e} be a D(4)-quintuple. Then

aεl2 + xl ≡ bεm2 + ym ≡ cεn2 + zn (mod d).

Proof. If we observe the sequence W (a,d)
2l we see that

W2l+2 = xW2l+1 −W2l = x2W2l − (xW2l−1 −W2l−2) −W2l−2 −W2l =

= x2W2l −W2l −W2l−2 −W2l = (x2 − 2)W2l −W2l−2.

As in [10, Lemma 3] it is easy to prove

W
(a,d)
2l ≡ 2ε + d(aεl2 + xl) (mod d2),

and since W = W
(a,d)
2l = W

(b,d)
2m = W

(c,d)
2n , and analogous results hold for all sequences, 

for a D(4)-quintuple we get

aεl2 + xl ≡ bεm2 + ym ≡ cεn2 + zn (mod d). �
Unfortunately, using these congruences and methods from [16] we could not get m >

α
√

d/b for some coefficient α as “large” as the one proved for D(1)-quintuples in [16]. 
Our largest possible α was obtained after adjusting the method from [5, Proposition 3.1], 
which we have also used in [2] to get a similar coefficient for D(4)-quadruples. We omit 
the proof since it is similar to the one given in detail in [5].

Lemma 16. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e, W (a,b)
2l =

W
(b,d)
2m and 3

2m ≥ l > m ≥ 2. Assume that a ≥ A0, b ≥ B0 and d ≥ D0, b > ρa, ρ ≥ 1. 
Then

l > αb−1/2d1/2

for every real number α that satisfy both inequalities

α2 + α(1 + 2B−1
0 D−1

0 ) ≤ 1, (19)
20
9 α2 + α(B0(λ + ρ−1/2) + 2D−1

0 (λ + ρ1/2)) ≤ B0, (20)

where λ =
√

A0+4 .
ρA0+4
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Now we use this result to get lower bounds on indices in the terms of ac.

Lemma 17. Let {a, b, c, d, e} be a D(4)-quintuple. Then l > 0.499997
√
ac, j > m >

0.333331
√
ac and h > 0.666662

√
ac.

Proof. By inserting ρ = 1, A0 = 1, B0 = 105 and D0 = 1010 in the inequalities from 
Lemma 16 we compute that α = 0.499997 satisfies both inequalities (19) and (20). The 
statement now follows from Lemmas 12, 13 and 14 and the fact that d > abc. �
7. Linear forms in logarithms

In this section we use different methods to find a good upper bound on the index 
h and the product ac in a D(4)-quintuple. Even though many authors usually apply 
Matveev’s theorem on a linear form in logarithms from [18], we will use Aleksentsev’s 
version of the theorem from [1] as authors in [5] did and which we also applied in [2]
because it will give us slightly better bounds.

For any non-zero algebraic number γ of degree D over Q, with minimal polynomial 
A 

∏D
j=1

(
X − γ(j)) over Z, we define its absolute logarithmic height as

h(γ) = 1
D

⎛⎝logA +
D∑

j=1
log+

∣∣∣(γ(j))
∣∣∣
⎞⎠ ,

where log+ α = log max {1, α}.

Theorem 3 (Aleksentsev). Let Λ be a linear form in logarithms of n multiplicatively 
independent totally real algebraic numbers α1, . . . , αn, with rational integer coefficients 
b1, . . . , bn. Let h(αj) denote the absolute logarithmic height of αj for 1 ≤ j ≤ n. Let d be 
the degree of the number field K = Q(α1, . . . , αn), and let Aj = max (dh(αj), | logαj |, 1). 
Finally, let

E = max
(

max
1≤i,j≤n

{
|bi|
Aj

+ |bj |
Ai

}
, 3

)
. (21)

Then

log |Λ| ≥ −5.3n
1−2n

2 (n + 1)n+1(n + 8)2(n + 5)31.44nd2(logE)A1 · · ·An log(3nd).

Let us define the linear form in logarithms

Λ1 := 2h log r +
√
ab

2 − 2j log s +
√
ac

2 + log
√
c(
√
a +

√
b)√

b(
√
a +

√
c)
.

Analogously as in [16, Lemma 17] we can find the bounds for Λ1.
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Lemma 18. We have 0 < Λ1 <
(

s+
√
ac

2

)−4j
.

To apply Theorem 3 first we must find values of the parameters, and we can easily 
see that

n = 3, d = 4, b1 = 2h, b2 = −2j, b3 = 1;

α1 = r +
√
ab

2 , α2 = s +
√
ac

2 , α3 =
√
c(
√
a +

√
b)√

b(
√
a +

√
c)
.

As in [16, Lemma 19], it can be easily shown that α1, α2 and α3 are multiplicatively 
independent. Also, it is not difficult to see that h(α1) = 1

2 logα1 and h(α2) = 1
2 logα2. 

The minimal polynomial of α3 is

p3(X) = b2(c− a)2X4 − 4b2c(c− a)X3+

2bc(3bc− a2 − ac− ab)X2 − 4bc2(b− a)X + c2(b− a)2

divided by the greatest common divisor of its coefficients, which we will denote with g. 
The zeros of the polynomial p3(X) are β1 =

√
c(−√

a+
√
b)√

b(
√
a+

√
c) , β2 =

√
c(
√
a+

√
b)√

b(−√
a+

√
c) , β3 =

√
c(−√

a+
√
b)√

b(−√
a+

√
c) and α3. It holds

β1 < β3 < 1

and

1 < α3 < β2,

which implies

h(α3) = 1
4

(
log b2(c− a)2

g
+ logα3 + log β2

)
≤ 1

4
(
log(b2(c− a)2) + logα3 + log β2

)
.

We can observe that

h(α3) ≤
1
4

(
log(b2(c− a)2) + log c(

√
a +

√
b)2

b(c− a)

)

= 1
4 log(cb(c− a)(

√
a +

√
b)2)

<
1
4 log c4 = log c.
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Since the function on the right hand side of the inequality in Theorem 3 is decreasing in 
A3 we can take

A1 = 41
2 logα1 = 2 logα1, A2 = 2 logα2, A3 = 4 log c = log c4.

Observe that A1 < A2 < A3 and j < h, so we have E = max
{

2h
log α1

, 3
}

. Since 

0.66
√
ac > 0.66r > log r3, which is true for every r > 10, we have h > 0.66

√
ac >

3 log r > 3 logα1 which implies 2h/logα1 > 3, i.e. we can take E = 2h/logα1 and apply 
Theorem 3 to get,

log |Λ1| > −5.3n0.5−n(n + 1)n+1(n+8)2(n + 5)31.44nd2 log 2h
logα1

· 2 logα1 · 2 logα2 · 4 log c · log(3nd).

On the other hand, from Lemma 18 and the fact that |b1|A1 < |b2|A2 we have

log |Λ1| < −4j logα2 < −4h logα1,

which now implies

4h logα1 < 5.3n0.5−n(n + 1)n+1(n+8)2(n + 5)31.44nd2 log 2h
logα1

· 2 logα1 · 2 logα2 · 4 log c · log(3nd).

We put n = 3, d = 4 and get

h

log 2h− log log
√

105
< 6.005175 · 1011 logα2 log c,

where we have used α1 >
√
ab >

√
105. Now we use that α2 <

√
ac + 4, c ≤ ac and since 

the left hand side of the inequality is increasing in h we can use h > 0.666662
√
ac to get

ac < 1.08915 · 1034 (22)

and

h < 6.95745 · 1016. (23)

We collect these observations in the next Proposition.
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Proposition 5. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e, then 
ac < 1.08915 · 1034 and h < 6.95745 · 1016. Moreover,

h

log 2h− log log
√

105
< 6.005175 · 1011 logα2 log c.

To get a sharper bound on ac and h, which we need later, we will use the Proposi-
tion 5 together with a tool due to Mignotte [19] in combination with Laurent’s theorem. 
Laurent’s theorem is needed to resolve some cases in Mignotte’s theorem. First, we will 
state Mignotte’s theorem and show how can it be applied to D(4)-quintuples. We aim to 
give the most general algorithm to find appropriate parameters, so it can be clear how 
we can easily repeat the procedure multiple times to get better results.

Theorem 4 (Mignotte). We observe three non-zero algebraic numbers α1, α2 and α3, 
which are either all real and greater than 1 or all complex of modulus one and all dif-
ferent from 1. Moreover, we assume that either the three numbers α1, α2 and α3 are 
multiplicatively independent, or two of these numbers are multiplicatively independent 
and the third one is a root of unity. Put

D = [Q(α1, α2, α3) : Q]/[R(α1, α2, α3) : R].

We also consider three positive coprime rational integers b1, b2, b3, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of αi are arbitrary determinations of the logarithm, but which are 
all real or all purely imaginary. And we assume also that

b2| logα2| = b1| logα1| + b3| logα3| ± |Λ|.

We put

d1 = gcd(b1, b2), d3 = gcd(b3, b2), b1 = d1b
′
1, b2 = d1b

′
2 = d3b

′′
2 , b3 = d3b

′′
3 .

Let ρ > e be a real number and put λ = log ρ. Let a1, a2 and a3 be real numbers such 
that

ai ≥ ρ| logαi| − log |αi| + 2Dh(αi), i = 1, 2, 3,

and assume further that

Ω := a1a2a3 ≥ 2.5, and A := min{a1, a2, a3} ≥ 0.62.

Let K, L and M be positive integers with



M. Bliznac Trebješanin, A. Filipin / Journal of Number Theory 194 (2019) 170–217 191
L ≥ 4 + D, K = �MΩL	, where M ≥ 3.

Let 0 < χ ≤ 2 be fixed. Define

c1 = max
{

(χML)2/3,
√

2ML/A
}
,

c2 = max
{

21/3(ML)2/3,
√
M/AL

}
,

c3 = (6M2)1/3L,

and then put

R1 = �c1a2a3	, S1 = �c1a1a3	, T1 = �c1a1a2	,
R2 = �c2a2a3	, S2 = �c2a1a3	, T2 = �c2a1a2	,
R3 = �c3a2a3	, S3 = �c3a1a3	, T3 = �c3a1a2	.

Let also

R = R1 + R2 + R3 + 1, S = S1 + S2 + S3 + 1, T = T1 + T2 + T3 + 1.

Define

c0 = max
{

R

La2a3
,

S

La1a3
,

T

La1a2

}
.

Finally, assume that(
KL

2 + L

4 −1 − 2K
3L

)
λ + 2D log 1.36

≥ (D + 1) logL + 3gL2c0Ω + D(K − 1) log b̃ + 2 logK, (24)

where

g = 1
4 − K2L

12RST
, b′ =

(
b′1
a2

+ b′2
a1

)(
b′′3
a2

+ b′′2
a3

)
, b̃ = e3c20Ω2L2

4K2 × b′.

Then either

log |Λ| > −(KL + log(3KL))λ, (25)

or (A1) there exist two non-zero rational integers r0 and s0 such that

r0b2 = s0b1

with
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|r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)
M− T1

where

M = max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV},
V =

√
(R1 + 1)(S1 + 1)(T1 + 1),

or (A2) there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0 such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ δ · (R1 + 1)(S1 + 1)
M− max{R1, S1}

,

|s1t1| ≤ δ · (S1 + 1)(T1 + 1)
M− max{S1, T1}

,

|r1t2| ≤ δ · (R1 + 1)(T1 + 1)
M− max{R1, T1}

,

where δ = gcd(r1, s1). Moreover, when t1 = 0 we can take r1 = 1, and when 
t2 = 0 we can take s1 = 1.

We consider the linear form

Λ = −Λ1 = 2j logα2 − 2h logα1 − logα3.

It is important to notice that we have c > b > 105.
As before we have

D = 4, b1 = 2h, b2 = 2j, b3 = 1,

and we can again take

h(α1) = 1
2 logα1, h(α2) = 1

2 logα2, h(α3) < log c.

Observe that

logα3 < log
(

1 +
√

a

b

)
< log 2 < 0.694.

Now we have to choose ai ≥ ρ| logαi| − log |αi| + 2Dh(αi) for i ∈ {1, 2, 3}. In each case 
we have | logαi| = log |αi| = logαi. Let i = 1, then
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a1 ≥ ρ logα1 − logα1 + 4 · logα1 = (ρ + 3) logα1

and a similar observation is true for i = 2. For i = 3 we have

a3 ≥ ρ logα3 − logα3 + 2 · 4 · log c,

so we see that we can take

a1 = (ρ + 3) logα1

a2 = (ρ + 3) logα2

a3 = 8(log c + 0.08675(ρ− 1)).

For the simplicity of the proof we will give intervals for parameters M , L and ρ, but 
we will not give their explicit values, because we will search within these intervals to 
find the values which give us the best possible bound on index h. From now on, when 
ever is needed, we assume that χ = 2, ρ ∈ [5.5, 14], L ∈ [700, 1500], and M ∈ [3, 10]. 
These intervals were chosen since they seemed sufficient, after observing some random 
values, for finding an optimal value for upper bound on h and also because they satisfy 
all conditions needed, as we will prove.

Now, let us observe which conditions these parameters must satisfy so we can use 
Theorem 4.

It is easy to see that we always have a1 < a2, so A = min{a1, a2, a3} = min{a1, a3}. 
If A = a1 we have A = (ρ + 3) logα1 > 5 log

√
ab, and if A = a3 then A > 8 log c, 

so in either case it is A ≥ 0.62. Moreover, it is also easy to see that we always have 
Ω = a1a2a3 > 2.5.

The values c1, c2 and c3 can easily be calculated for specific values of the parameters.
We get an upper bound for c0 after observing that

R

La2a3
= R1 + R2 + R3 + 1

La2a3
<

c1 + c2 + c3 + 1
L

and since the same is true for S and T , we have c0 < (c1 + c2 + c3 + 1)/L.
Also

Ω = a1a2a3 = 8(ρ + 3)2 logα1 logα2(log c + 0.08675(ρ− 1))

and

K = �MΩL	 = �8ML(ρ + 3)2 logα1 logα2(log c + 0.08675(ρ− 1))	.

To see when inequality (24) holds, let us observe it part by part:
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We have MΩL − 1 < K ≤ MΩL so(
KL

2 +L

4 − 1 − 2K
3L

)
λ + 2D log 1.36 >

> MΩL

(
L

2 − 2
3L

)
λ−

(
L

2 − 2
3L

)
λ +

(
L

4 − 1
)
λ + 2D log 1.36

= 8ML(ρ + 3)2
(
L

2 − 2
3L

)
λ logα1 logα2 log c

+ 8ML(ρ + 3)2
(
L

2 − 2
3L

)
λ · 0.08675(ρ− 1) logα1 logα2

+
(
L

4 − 1
)
λ + 2D log 1.36 −

(
L

2 − 2
3L

)
λ.

On the other hand, for the expressions on the right hand side of the inequality (24) it 
holds:

1. Since we can use ac < 1.08915 · 1034 we get a numerical value

(D + 1) logL + 2 logK ≤ 5 logL + 2 log(8ML(ρ + 3)2 log2 √ac + 4 log ac).

2. Also, from g = 1/4 − (K2L)/(12RST ) < 1/4 we get

3gL2c0Ω <
3
4L

2c0Ω ≤ 3
4L

2c0 · 8(ρ + 3)2 logα1 logα2 log c

+ 3
4L

2c0 · 8 · 0.08675(ρ− 1)(ρ + 3)2 logα1 logα2.

3. To approximate the last part of the right hand side of the inequality, observe that 
from inequalities logα3 < 2 logα1 and Λ1 > 0 we have 2(h +1) logα1−2j logα2 > 0, 
which gives us

b2
a1

<
b1 + 2
a2

.

Also, since 2 logα2 > log c and ρ ≥ 5.5, we have b3/a2 < 2/a3 and since j < h we 
get

b′ <
(4h + 2)(2h + 2)

8(ρ + 3) logα2 log c .

Using c > 105, h < 6.95745 · 1016 and values of the parameters, we can calculate an 
upper bound for b′.
Then we have

K
>

MΩL− 1
> ML− 1
Ω Ω



M. Bliznac Trebješanin, A. Filipin / Journal of Number Theory 194 (2019) 170–217 195
and

log b̃ < log
(
c20
4 e3 1

(ML− 1)2L
2b′

)
.

Finally,

D(K − 1) log b̃ < 4MΩL log b̃

= 32ML(ρ + 3)2 log b̃ logα1 logα2 log c

+ 32ML(ρ + 3)2 log b̃ · 0.08675(ρ− 1) logα1 logα2.

As we can see from above, we have expressions of the form logα1 logα2, logα1 logα2 ×
log c and numerical values, and to see if some selected values of the parameters M , L
and ρ satisfy inequality (24) it is enough to compare coefficients of these expressions. For 
each selection of values for the parameters M , L and ρ which satisfy these conditions, 
we can apply Theorem 4 and have that either cases (A1) or (A2) hold or inequality (25)
holds. Let us first consider this inequality. We then have

log | − Λ1| > −(KL + log(3KL))λ

≥ −(ML2Ω + log(3ML2Ω)) log ρ,

and on the other hand,

log | − Λ1| < −4j logα2 < −4h logα1

which holds since Lemma 18, so

4h logα1 < (ML2Ω + log(3ML2Ω)) log ρ.

Notice that ML2Ω > 8ML2(ρ + 3)2 log
√
ab log

√
ac log c > 3.81 · 1010, and for x >

3.81 · 1010 we have log 3x < 6.7 · 10−10x, so we observe

4h logα1 < ML2Ω(1 + 6.7 · 10−10) log ρ,

i.e.

h < 2ML2(ρ + 3)2 log ρ(1 + 6.7 · 10−10)
(

1 + 0.08675
log 105 (ρ− 1)

)
logα2 log c.

From now on, to shorten an expression x, with G(x) we will denote the numerical 
value we get by inserting the values of the parameters χ, M, L, ρ, and later also the 
values of the parameters � and μ, in the part of the expression for the upper bound of 
x which doesn’t contain elements of a triple {a, b, c}. In this expression with G(h(1)) we 
denote
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G(h(1)) := 2ML2(ρ + 3)2 log ρ(1 + 6.7 · 10−10)
(

1 + 0.08675
log 105 (ρ− 1)

)
,

so we have h < G(h(1)) · logα2 log c.
If the inequality (25) does not hold, then one of the cases (A1) or (A2) holds.
Notice that M > χV > χc

3/2
1 a1a2a3. For each ai we calculate the lower bounds

a2 > a1 > (ρ + 3) log 105/2 := A1,2, a3 > 8(log 105 + 0.08675(ρ− 1)) := A3.

Observe that since a2 > a1, it always holds max{R1, S1} = R1. On the other hand, the 
values of max{S1, T1} and max{R1, T1} depend on the values of a triple {a, b, c}, so we 
must address these cases separately.

Let us denote and observe

B1 := (R1 + 1)(S1 + 1)
M− max{R1, S1}

<
(c1a2a3 + 1)(c1a1a3 + 1)
χc

3/2
1 a1a2a3 − c1a2a3

=
1 + 1

c1a2a3
χ
2 − 1

2c1/2
1 a1

(
0.5c1/21 + 1

2c1/21 a1a3

)
a3

<
1 + 1

c1A1,2A3
χ
2 − 1

2c1/2
1 A1,2

(
0.5c1/21 + 1

2c1/21 A1,2A3

)
8
(

1 + 0.08675
log 105 (ρ− 1)

)
log c

=: G(B1) · log c.

Let us assume that max{S1, T1} = S1. Then

B2 := (S1 + 1)(T1 + 1)
M− max{S1, T1}

<
(c1a1a3 + 1)(c1a1a2 + 1)
χc

3/2
1 a1a2a3 − c1a1a3

=
1 + 1

c1a1a3
χ
2 − 1

2c1/2
1 a2

(
0.5c1/21 + 1

2c1/21 a2
2

)
a2

<
1 + 1

c1A1,2A3
χ
2 − 1

2c1/2
1 A1,2

(
0.5c1/21 + 1

2c1/21 A2
1,2

)
(ρ + 3) logα2

=: G(B(1)
2 ) · logα2.

On the other hand, if max{S1, T1} = T1, then

B2 = (S1 + 1)(T1 + 1)
M− max{S1, T1}

<
(c1a1a3 + 1)(c1a1a2 + 1)
χc

3/2
1 a1a2a3 − c1a1a2

=
1 + 1

c1a1a2
χ
2 − 1

1/2

(
0.5c1/21 + 1

2c1/2a2a3

)
a2
2c1 a3 1
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<
1 + 1

c1A2
1,2

χ
2 − 1

2c1/2
1 A3

(
0.5c1/21 + 1

2c1/21 A1,2A3

)
(ρ + 3) logα2

=: G(B(2)
2 ) · logα2,

where we gave these expressions in the form where it is clear that they are decreasing in 
variables a1, a2 and a3, so we can use lower bounds of these variables to get an upper 
bound on B2. Observe that

G(B(1)
2 ) =

(c1A1,2A3 + 1)(c1A2
1,2 + 1)

χc
3/2
1 A2

1,2A3 − c1A1,2A3
, G(B(2)

2 ) =
(c1A1,2A3 + 1)(c1A2

1,2 + 1)
χc

3/2
1 A2

1,2A3 − c1A2
1,2

,

and since these expressions only differ in their denominators, it is easy to see that if 
A3 > A1,2, then G(B(1)

2 ) > G(B(2)
2 ). Inequality A3 > A1,2 will hold for ρ ∈ [5.5, 14], 

which is a reason why we have chosen that interval for our observations.
Now we define G(B2) = max{G(B(1)

2 ), G(B(2)
2 )}, so

B2 < G(B2) · logα2.

Similarly, first we will assume that max{R1, T1} = R1, so

B3 := (R1 + 1)(T1 + 1)
M− max{R1, T1}

<
(c1a2a3 + 1)(c1a1a2 + 1)
χc

3/2
1 a1a2a3 − c1a2a3

=
1 + 1

c1a2a3
χ
2 − 1

2c1/2
1 a1

(
0.5c1/21 + 1

2c1/21 a1a2

)
a2

<
1 + 1

c1A1,2A3
χ
2 − 1

2c1/2
1 A1,2

(
0.5c1/21 + 1

2c1/21 A2
1,2

)
(ρ + 3) logα2

=: G(B(1)
3 ) · logα2,

and if max{R1, T1} = T1, then

B3 = (R1 + 1)(T1 + 1)
M− max{R1, T1}

<
(c1a2a3 + 1)(c1a1a2 + 1)
χc

3/2
1 a1a2a3 − c1a1a2

=
1 + 1

c1a1a2
χ
2 − 1

2c1/2
1 a3

(
0.5c1/21 + 1

2c1/21 a2a3

)
a2

<
1 + 1

c1A2
1,2

χ
2 − 1

2c1/2
1 A3

(
0.5c1/21 + 1

2c1/21 A1,2A3

)
(ρ + 3) logα2

=: G(B(2)
3 ) · logα2.
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Analogously, G(B3) = max{G(B(1)
3 ), G(B(2)

3 )} and

B3 < G(B3) · logα2.

Notice that since we have chosen the same lower bounds on a1 and a2, we have G(B(1)
2 ) =

G(B(1)
3 ) and G(B(2)

2 ) = G(B(2)
3 ), and also G(B2) = G(B3).

Now, let us consider the case (A2). Here we have some integers r1, s1, t1 and t2, such 
that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

and

|r1s1| ≤ δB1, |s1t1| ≤ δB2, |r1t2| ≤ δB3, δ = gcd(r1, s1).

We have r1 = δr′1 and s1 = δs′1. Since b1 = 2h, b2 = 2j and b3 = 1 we also have

s′1t1 · 2h + δr′1s
′
1 = r′1t2 · 2j,

and

|δr′1s1| ≤ B1, |s′1t1| ≤ B2, |r′1t2| ≤ B3.

First, let us consider the case when t2 = 0. Then gcd(s1, t2) = s1 = 1 and from (t1b1 +
r1b3)s1 = 0, since s1 �= 0, we get t1b1 = −r1b3, i.e. 2ht1 = −r1. Since gcd(r1, t1) = 1, we 
conclude that t1 = ∓1 and r1 = ±2h. Also, we see from the observations stated before 
that

|r1s1| = 2h ≤ B1 <

(
c1A1,2 + 1

A3

)
(c1A1,2A3 + 1)

χc
3/2
1 A2

1,2A3 − c1A1,2A3
a3.

Since χ = 2 and A = min{a1, a3} > 1, we have that

c1 = max
{

(χML)2/3,
√

2ML/A
}

= (2ML)2/3.

If we use minimal and maximal values of our parameters M i L, we get

260 < c1 < 966.

Using these values and lower bounds A1,2 > 48.9, A3 > 8 log 105 > 92.1 and the fact 
that a3 < 8(1 + 13 · 0.08675/log 105) log c, we get the inequality

B1 < 979.86 log c.
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So, we see that the inequality 2h < 979.86 log c holds. From Proposition 17 we have that 
h > 0.666662

√
ac ≥ 0.666662

√
c, which implies

√
c < 734.91 log c.

Solving this inequality, we get c < 1.9701 · 108. We will see that this upper bound is 
much lower than the upper bound we will get in the case that t2 �= 0.

Now, let us assume that t2 �= 0. We can multiply the linear form Λ1 with factor 
r′1t2 �= 0, and after rearranging we get a linear form in two logarithms

r′1t2Λ1 = 2h log
(
α
r′1t2
1 · α−s′1t1

2

)
− log

(
α
δr′1s

′
1

2 · α−r′1t2
3

)
, (26)

where δ = gcd(r1, s1), r′1 = r1/δ and s′1 = s1/δ. We would like to apply the next result 
from [17] to this linear form in two logarithms.

Theorem 5 (Laurent). Let a′1, a′2, h′, � and μ be real numbers with � > 1 and 1/3 ≤ μ ≤ 1. 
Set

σ = 1 + 2μ− μ2

2 , λ′ = σ log �, H = h′

λ′ + 1
σ
,

ω = 2
(

1 +
√

1 + 1
4H2

)
, θ =

√
1 + 1

4H2 + 1
2H .

Consider the linear form

Λ = b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Suppose that γ1 are γ2 multiplicatively independent. 
Put D = [Q(γ1, γ2) : Q]/[R(γ1, γ2) : R], and assume that

h′ ≥ max
{
D

(
log

(
b1
a′2

+ b2
a′1

)
+ log λ′ + 1.75

)
+ 0.06, λ′,

D log 2
2

}
,

a′i ≥ max{1, �| log γi| − log |γi| + 2Dh(γi)}, i = 1, 2,

a′1a
′
2 ≥ λ′ 2.

Then

log |Λ| ≥ −C

(
h′ + λ′

σ

)2

a′1a
′
2 −

√
ωθ

(
h′ + λ′

σ

)
− log

(
C ′

(
h′ + λ′

σ

)2

a′1a
′
2

)

with
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C = μ

λ′ 3σ

(
ω

6 + 1
2

√
ω2

9 + 8λ′ω5/4θ1/4

3
√
a′1a

′
2H

1/2
+ 4

3

(
1
a′1

+ 1
a′2

)
λ′ω

H

)2

,

C ′ =

√
Cσωθ

λ′ 3μ
.

To apply Theorem 5 on the linear form (26) first we must check that the conditions 
of the theorem are satisfied. Since α1, α2 and α3 are multiplicatively independent, so are 
γ1 and γ2.

Since we have from the inequality (25) that h < G(h(1)) · logα2 log c, it is sufficient to 
assume that h ≥ G(h(1)) · logα2 log c and aim to find the best possible upper bound on 
h in this case.

Notice that,

h(γ1) ≤ 0.5B1 logα2 + B2 log c

< (0.5G(B1) + G(B2)) logα2 log c =: G(h(γ1)) · logα2 log c,

h(γ2) ≤ 0.5B2 logα1 + 0.5B3 logα2

< B3 logα2 < G(B3) · log2 α2 =: G(h(γ2)) · log2 α2,

| log γ1| ≤ B1 logα2 + 0.694B3

≤
(
G(B1) + 0.694G(B3)

log 105

)
logα2 log c =: G(| log γ1|) · logα2 log c

and

| log γ2| <
B2 + | log γ1|

2h <
G(B2) logα2 + G(| log γ1|) · logα2 log c

2h

<

(
G(B2)
log 105 + G(| log γ1|)

)
logα2 log c

2G(h(1)) · logα2 log c

=
G(B2)
log 105 + G(| log γ1|)

2G(h(1))
=: G(| log γ2|).

Now we would like to find which condition must parameters � and μ satisfy in order to 
apply Theorem 5 and to get the lowest possible upper bound on h. First we must choose 
a′i, i = 1, 2, such that

a′i ≥ | log γi|(� + 1) + 8h(γi), i = 1, 2.

We see that we can set

a′1 = (G(| log γ1|)(� + 1) + 8G(h(γ1))) logα2 log c =: G(a′1) logα2 log c,
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and

a′2 =
(
G(| log γ2|)
log2 105/2

(� + 1) + 8G(h(γ2))
)

log2 α2 =: G(a′2) log2 α2.

We have

b1
a′2

+ b2
a′1

≤
2

G(a′
2)

+ 2h
G(a′

1)

logα2 log c ≤
h
(

2
210.81·G(a′

2) + 2
G(a′

1)

)
logα2 log c

where we used that since c > 105 then h > 0.666662
√
ac > 0.666662

√
105 > 210.81. 

Denote

G(F ) = 2
210.81 ·G(a′2)

+ 2
G(a′1)

and

F := G(F ) · h
logα2 log c .

Since we will observe only values � ≤ 100, and since (D log 2)/2 = 2 log 2 < 1.4 and 
λ′ < 3

2 log � < 7 we can take

h′ = 4(logF + log λ′) + 7.06.

Since we assumed that h ≥ G(h(1)) logα2 log c, we now have F > G(F ) · G(h(1)) which 
implies

H = h′

λ′ + 1
σ

>
4 log(G(F ) ·G(h(1)))

λ′ + 1
σ
.

Using this, for specific values of the parameters � and μ we can calculate ω, θ, C and C ′

and by Theorem 5 we have

log |r′1t2Λ1| > −C

(
h′ + λ′

σ

)2

a′1a
′
2 −

√
ωθ

(
h′ + λ′

σ

)
− log

(
C ′

(
h′ + λ′

σ

)2

a′1a
′
2

)
.

Assume that C ′ ≤ 3C (which will be true in all our cases), then log 3x < 10−3x holds 
for x ≥ 10343, and in all our cases we will have a′1a

′
2 > 10343 and also 

√
ωθ < 3. Since 

we also have 
(
h′ + λ′

σ

)
> 1, we can observe the inequality

log |r′1t2Λ1| > −C ·G(a′1) ·G(a′2)(1.001 + 3 · 10−4C−1)
(
h′ + λ′)2

(logα2)3 log c.

σ
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We wish to find a minimal positive real number k for which the inequality logα2 <

k · logα1 holds. If we use that 
√
ac < α2 and α1 <

√
ab + 4 we get ac < (ab + 4)k. From 

Proposition 1 we have ac < 237.952b3, and since b > 105 we find that the inequality 
holds for k = 3.4753.

Now, we see that we also have

log |r′1t2Λ1| < logB3 − 4j logα2 < logB3 − 4h logα1,

and since logα2 < 3.4753 logα1, hence

h <
3.4753

4

(
C ·G(a′1) ·G(a′2)(1.001 + 3 · 10−4C−1) + logB3

log 105(log 105/2)3

)
·

·
(
h′ + λ′

σ

)2

log2 α2 log c

=: G(h(2))
(
h′ + λ′

σ

)2

log2 α2 log c.

Multiplying this expression with G(F )
log α2 log c yields

F < G(h(2)) ·G(F )
(

4 logF + 4 log λ′ + 7.06 + λ′

σ

)2

logα2

and if we insert logα2 < log
√
ac + 4 and an upper bound for ac we will get an upper 

bound for F , denote it with F1, i.e. F < F1. Now from the definition of F we have

h <
F1

G(F ) logα2 log c,

which gives us an upper bound on h and our goal is to minimize the numerical value 
F1/G(F ).

As in [16], it is not difficult to see that in the case (A1) one obtains smaller values 
than in the case (A2) and therefore smaller upper bounds, so we see it is not necessary 
to calculate it.

Now, it remained to implement the described algorithm for the inequality (25) and 
the case (A2). We observed these values of the parameters, χ = 2 fixed, ρ ∈ [5.5, 14] with 
step 0.5, L ∈ [700, 1500] with step 1, M ∈ [3, 10] with step 0.1 and after calculating the 
upper bound on h by Theorem 4, we also consider all values � ∈ [40, 85] with step 1 and 
μ ∈ [0.44, 0.76] with step 0.01 such that the coefficient G(h(2)) is the least possible one.

In the first turn we used ac < 1.08915 ·1034 and h < 6.95745 ·1016, and the best value 
was obtained for the parameters ρ = 11.5, M = 4.7 and L = 1043 where we got h <
5.66642 ·109 logα2 log c, and for � = 59 and μ = 0.63 we got h < 4.85941 ·1010 logα2 log c
in the case (A2). From this we have ac < 2.42372 · 1028 and h < 1.03788 · 1014.
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Now these new upper bounds can be used for the second turn and the best value is 
obtained for the parameters ρ = 11, M = 4.6, L = 901 where we got h < 4.13857 ·
109 logα2 log c, and for � = 59, μ = 0.63 we got h < 3.53075 · 1010 logα2 log c. From this 
we obtain ac < 1.22705 · 1028 and h < 7.38475 · 1013.

We repeat the process three more times, and finally get that ac < 1.17732 · 1028, 
h < 3.46289 · 1010 logα2 log c and h < 7.23357 · 1013. This upper bound will be good 
enough for final steps of the proof so we state the next proposition.

Proposition 6. Let {a, b, c, d, e} be a D(4)-quintuple, such that a < b < c < d < e. Then 
ac < 1.17732 · 1028. Also, h < 3.46289 · 1010 logα2 log c and h < 7.23357 · 1013.

8. D(4)-quintuples with regular triples

Let {a, b, c, d, e} be a D(4)-quintuple with a < b < c < d < e. We have seen that 
d = a + b + c + 1

2 (abc + rst) and

ad + 4 = x2, bd + 4 = y2, cd + 4 = z2,

x = at + rs

2 , y = rt + bs

2 , z = cr + st

2 .

If {a, b, c} is a regular triple, i.e. c = a + b + 2r, then we also have s = a + r, t = b + r

and d = rst and by a simple calculation we can see that

x = rs− 2, y = rt− 2, z = st + 2.

These relations will be helpful in proving some special claims about D(4)-quintuples 
with c = a + b + 2r.

Lemma 19. If {a, b, c, d, e} is a D(4)-quintuple, a < b < c < d < e, such that c = a +b +2r, 
then 2n > r.

Proof. From Lemma 15 we have

aεl2 + xl ≡ cεn2 + zn (mod d).

Assume that equality holds, i.e. aεl2 +xl = cεn2 +zn. Since x2 = ad +4 and z2 = cd +4, 
if we multiply the equality by zn + xl we get

(al2 − cn2)(ε(zn + xl) + d) = 4(n2 − l2),

which implies al2 − cn2|4(n2 − l2). By Lemma 12 we have n < l ≤ 2n (it is easy to 
check that n = l cannot hold), so we have n �= l and 1/2 ≤ n/l < 1, which gives us 
al2 − cn2 ≤ 4(l2 − n2) and
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∣∣∣∣ac −
(n
l

)2
∣∣∣∣ ≤ 4

c

(
1 −

(n
l

)2
)
.

Since c = a + b + 2r > a + a + 2a = 4a, we also have a/c < 1/4 ≤ (n/l)2, so

1
4 − a

c
<

(n
l

)2
− a

c
≤ 4

c

(
1 −

(n
l

)2
)

≤ 3
c
,

i.e. it must be c < 4a + 12. But, by Lemma 4 we have b ≥ a + 57
√
a which would then 

imply

4a + 57
√
a < a + b + 2r < 4a + 12,

and this leads to a contradiction since a ≥ 1. We can now conclude that our assumption 
was wrong, equality does not hold, so we have

d < |al2 − xl − cn2 + zn| ≤ |al2 − cn2| + |xl − zn|.

It can be easily seen that |al2−cn2| < cn2 and |xl−zn| < zn, so we have that d < cn2+zn. 
Assume that n ≤ r/2. Since d = rst = r(a + r)(b + r) and z = st +2 = (a + r)(b + r) +2, 
we have

r(a + r)(b + r) < (a + b + 2r)r
2

4 + ((a + r)(b + r) + 2)r2

and after canceling and rearranging we see that this cannot be true. We can now conclude 
n > r/2. �

The next Lemma can be proved similarly as [16, Lemma 19] so we omit a proof.

Lemma 20. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e and 
c = a + b + 2r. Then

8l ≡ 2(1 − (−1)j)(−εc) (mod s), 8n ≡ 2(1 − (−1)j)εa (mod s)

8m ≡ 2(1 − (−1)k)(−εc) (mod t), 8n ≡ 2(1 − (−1)k)εb (mod t),

where ε = ±1.

Lemma 21. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e and 
c = a + b + 2r. Then, at least one of the following congruences holds

i) 8l ≡ 8n ≡ 0 ( mod s),
ii) 8m ≡ 8n ≡ 0 ( mod t),
iii) 8n ≡ −4εr

(
mod st

gcd(s,t)

)
, and gcd(s, t) ∈ {1, 2, 4}.
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Proof. If j is even, then 1 − (−1)j = 0 implies 8l ≡ 8n ≡ 0 ( mod s) and i) holds.
If k is even, then 1 − (−1)k = 0 implies 8m ≡ 8n ≡ 0 ( mod t) and ii) holds.
If both j and k are odd, then

8l ≡ 4(−εc) (mod s), 8n ≡ 4εa (mod s),

8m ≡ 4(−εc) (mod t), 8n ≡ 4εb (mod t).

From s = a + r and t = b + r we have a ≡ −r ( mod s) and b ≡ −r ( mod t), so

8n ≡ −4εr (mod s), 8n ≡ −4εr (mod t),

i.e.

8n ≡ −4εr
(

mod st

gcd(s, t)

)
.

Since c = s + t we can see that gcd(s, t) = gcd(s, s + t) = gcd(s, c), and from ac + 4 = s2

we conclude gcd(s, c)|4, which proves the statement of the lemma. �
We would like to use these results to obtain some effective bounds on elements {a, b, c}

in order to use Baker–Davenport reduction.
Set

β1 = x +
√
ad

2 , β2 = y +
√
bd

2 , β3 = z +
√
cd

2

β4 =
√
c(ε

√
a +

√
d)

√
a(ε

√
c +

√
d)

, β5 =
√
c(ε

√
b +

√
d)√

b(ε
√
c +

√
d)

,

and consider the following linear forms in logarithms

Λ2 = 2l log β1 − 2n log β3 + log β4,

Λ3 = 2m log β2 − 2n log β3 + log β5.

From [12] we have the next lemma, and to avoid confusion, we would like to empha-
size that vm and wn here denote sequences connected to the extension of a triple to a 
quadruple, as in Section 3.

Lemma 22 (Lemma 10 in [12]). Let {a, b, c, d} be a D(4)-quadruple. If vm = wn, 
m, n �= 0, then

0 < m

(
s +

√
ac

2

)
−n log

(
t +

√
bc

2

)
+ log

√
b(x0

√
c + z0

√
a)

√
a(y1

√
c + z1

√
b)

< 2ac
(
s +

√
ac

2

)−2m

.
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We apply this lemma to D(4)-quadruples {a, b, d, e} and {b, c, d, e} to get upper bounds 
on Λ2 and Λ3.

Lemma 23. 0 < Λ2 < 2adβ−4l
1 and 0 < Λ3 < 2bdβ−4m

2 .

Now we will consider each case of Lemma 21 to get upper bounds on some elements 
of a D(4)-quintuple.

Lemma 24. If 8l ≡ 8n ≡ 0 ( mod s), then s ≤ 201884.

Proof. It is easy to see that l ≡ n ≡ 0 ( mod s
gcd(s,8) ), so l = s

gcd(s,8) l1 and n = s
gcd(s,8)n1

for some l1, n1 ∈ N. Denote s′ = s
gcd(s,8) . We have

Λ2 = 2s′l1 log β1 − 2s′n1 log β3 + log β4 = log β4 − 2s′ log βn1
3

βl1
1
.

We can take

D = 4, b1 = 2s′, b2 = 1, γ1 = βn1
3

βl1
1
, γ2 = β4.

As before, it is not hard to check that γ1 and γ2 are multiplicatively independent. The 
conjugates of γ1 are

βn1
3

βl1
1
,

β−n1
3

βl1
1

,
βn1

3

β−l1
1

,
β−n1

3

β−l1
1

and depending on whether βn1
3 > βl1

1 or βn1
3 < βl1

1 we have

h(γ1) = 1
4

(∣∣∣∣∣log βn1
3

βl1
1

∣∣∣∣∣ +

∣∣∣∣∣log βn1
3

β−l1
1

∣∣∣∣∣
)

= n1

2 log β3

or

h(γ1) = 1
4

(∣∣∣∣∣log β−n1
3

β−l1
1

∣∣∣∣∣ +

∣∣∣∣∣log βn1
3

β−l1
1

∣∣∣∣∣
)

= l1
2 log β1.

By Lemma 23

0 < log β4 − 2s′ log βn1
3

βl1
1

< 2adβ−4l
1 ,

so we have ∣∣∣∣∣log βn1
3

βl1

∣∣∣∣∣ < 1
2s′ (log β4 + 2adβ−4l

1 ) < 1
2s′

(
log β4 + 2

ad

)
.

1
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It also holds

β4 =
√

c

a

(
1 − ε

√
c−√

a√
d + ε

√
c

)
≤

√
c

a

(
1 +

√
c√

d−√
c

)
< 2

√
c

a
,

which implies∣∣∣∣∣log βn1
3

βl1
1

∣∣∣∣∣ < log 2
√

c
a

2s′ + 2
2s′ad <

log 2s
2s′ + 1

s′ad
= gcd(s, 8)

(
log 2s

2s + 1
sad

)
.

We may assume r > 104, otherwise s = a + r < 2r < 20000, so we also have s > 104 and 
d = rst > r3 > 1012. Now we see∣∣∣∣∣log βn1

3

βl1
1

∣∣∣∣∣ < gcd(s, 8)
(

log(2 · 104)
2 · 104 + 1

104 · 1012

)
< 5 · 10−4 gcd(s, 8) < 0.004.

Also ∣∣∣∣n1

2 log β3 −
l1
2 log β1

∣∣∣∣ < 0.002

and

h(γ1) <
l1
2 log β1 + 0.002.

The absolute values of the conjugates of γ2 = β4 are all greater than 1 and a minimal 
polynomial can be calculated analogously as for α3 from the previous section so we have

h(γ2) ≤
1
4 log

(
a2(d− c)2 · c

2

a2 · (d− a)2

(d− c)2

)
<

1
2 log(cd) < log β3.

Now, we can apply Theorem 5 and choose for the parameters � = 61 and μ = 0.7. We 
have σ = 0.955 and 3.92 < λ′ < 3.93 and take

a′1 := 4l1 log β1 + 0.264 ≥ 8h(γ1) + �| log γ1| − log |γ1|.

Since c = a + b + 2r < 4b we have d > abc > c2/4 which implies β3 >
√
cd > 1

2c
3/2.

We can choose

a′2 := 28 log((1.264)3β3) > 60 log
(

1.264 · 1
3
√

2
√
c

)
+ 8 log((1.264)3β3) ≥

≥ �| log γ2| − log |γ2| + 8h(γ2).

From the assumption that r > 104 we have a′1 > 56 and a′2 > 560, so we see that our 
choice of parameters is valid and we can apply the theorem.
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Table 1

gcd(s, 8) 1 2 4 8
h′ 25.508 22.736 19.963 17.191
H 7.537 6.832 6.126 5.421
ω 4.005 4.006 4.007 4.0085
θ 1.07 1.076 1.085 1.097
C 0.02276 0.02284 0.02294 0.02307
C′ 0.04696 0.04722 0.04753 0.04792

Set

b′ := 2s′

a′2
+ 0.018 >

b1
a′2

+ b2
a′1

and similarly as in the previous section

h′ = 4 log b′ + 12.6.

Since β3 = z+
√
cd

2 < z and z = st + 2 < s3 + 2 we have

h′ > 4 log
(

s′

14 log((1.264)3(s3 + 2))

)
+ 12.6.

Now for all four possible values of gcd(s, 8) we calculate values from the Theorem 5
which are shown in Table 1.

Define also B := 1
4

(
h′ + λ′

σ

)
< log b′ + 4.187 which now yields

log |Λ2| ≥ −C

(
h′ + λ′

σ

)2

a′1a
′
2 −

√
ωθ

(
h′ + λ′

σ

)

− log
(
C ′

(
h′ + λ′

σ

)2

a′1a
′
2

)
≥ −C · 16B2a′1a

′
2 −

√
ωθ · 4B − log(C ′ · 16B2a′1a

′
2)

≥ −0.3692B2a′1a
′
2 − 8.388B − log(0.7668B2a′1a

′
2).

On the other hand, from Lemma 23 we have

log |Λ2| < −4s′l1 log β1 + log 2ad = −s′(a′1 − 0.264) + log 2ad,

therefore

s′(a′1 − 0.264) < 0.3692B2a′1a
′
2 + 8.388B + log(0.7668B2a′1a

′
2) + log 2ad.

From a′1 > 56 we have a′1 − 0.264 > 0.9952a′1, so now we can observe
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2s′

a′2
< 0.74197B2 + 16.857

a′1a
′
2
B + 2.01

a′1a
′
2

log(0.7668B2a′1a
′
2) + 2.01

a′1a
′
2

log 2ad,

i.e.

b′ < 0.74197B2 + 16.857
a′1a

′
2
B + 2.01

a′1a
′
2

log(0.7668B2a′1a
′
2) + 2.01

a′1a
′
2

log 2ad + 0.018.

Each addend on the right hand side of the inequality can be compared to B2 and it leads 
to the inequality

b′ < 0.742116B2 + 0.02133 < 0.742116(log b′ + 4.187)2 + 0.0213,

and from this we get b′ < 48.28 which implies

s′ < 24.131a′2 < 675.668 log((1.264)3(s3 + 2)).

For each gcd(s, 8) ∈ {1, 2, 4, 8} we get that the upper bound for s is equal to S1 ∈
{20610, 44324, 94814, 201884} respectively, i.e. s ≤ 201884. �

Similarly we can prove the next lemma.

Lemma 25. If 8m ≡ 8n ≡ 0 ( mod t), then t ≤ 127293.

Now we consider the last case from the Lemma 21.

Lemma 26. If 8n ≡ −4εr
(
mod st

gcd(s,t)

)
, gcd(s, t) ∈ {1, 2, 4}, then r < 9164950.

Proof. By Lemma 19 we see that n > r/2 which implies 8n + 4r > 8n − 4r > 0, and 
depending on ε, we have 8n ±4r ≥ st

gcd(s,t) ≥ st
4 . So, it always holds n ≥ st−16r

32 ≥ c(r−8)
32 . 

By Lemmas 14 and 12 we have h > 2m > 2n, which yields h > c(r−8)
16 .

Moreover, from Proposition 6 we have

h < 3.46289 · 1010 logα2 log c.

Since

α2 <
√
ac + 4 =

√
16a
r − 8 · c(r − 8)

16 + 4 <

√
16c(r − 8)

16 + 4

and

c = 16
r − 8

c(r − 8)
16 <

16
105/2 − 8

c(r − 8)
16 <

16
308

c(r − 8)
16 ,

we have
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c(r − 8)
16 < 3.46289 · 1010 log

(√
16c(r − 8)

16 + 4
)

log
(

16
308

c(r − 8)
16

)
.

By direct calculation we get

c(r − 8)
16 < 1.57493 · 1013

and since r2 − 3 + 2r ≥ c > 3r we have r < 9164950 and

h < 3.46289 · 1010 log(2r) log(r2 − 3 + 2r) < 1.85682 · 1013. �
From Lemmas 24, 25 and 26 we see that there are only finitely many triples {a, b, c}

left to check whether they are contained in a D(4)-quintuple. In order to deal with these 
remaining cases we will use a Baker–Davenport reduction method over a linear form

Λ1 := 2h log r +
√
ab

2 − 2j log s +
√
ac

2 + log
√
c(
√
a +

√
b)√

b(
√
a +

√
c)
.

More explicitly, a modification of the Baker–Davenport reduction method, from [9], which 
we will use is stated next.

Lemma 27 (Dujella, Pethő). Assume that M is a positive integer. Let p/q be the con-
vergent of the continued fraction expansion of a real number κ such that q > 6M and 
let

η = ‖μq‖ −M · ‖κq‖,

where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then the inequality

0 < Jκ−K + μ < AB−J

has no solution in integers J and K with

log(Aq/η)
logB ≤ J ≤ M.

Consider the inequality c(r−8)
16 < 1.57493 ·1013 from the proof of Lemma 26. For a fixed 

a we can calculate maximal r by putting c = a + r2−4
a + 2r, and for smaller values of a

we get a much better bound on r than the one calculated in the lemma. For example, for 
a = 1 we have r ≤ 63164. Of course, we must also consider the bounds from Lemmas 24
and 25, where we have a + r = s ≤ 201884 and b + r = t ≤ 127293.

As we said before, we will apply Lemma 27 to the linear form in logarithms Λ1, so we 
take J = 2h, M = 2 · 1.85682 · 1013. It took approximately 29 hours and 45 minutes to 
run the algorithm in Wolfram Mathematica 11.1 package on the computer with Intel®
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Core™ i7-4510U CPU @2.00-3.10 GHz processor and in each case we got J = 2h < 5
which cannot be true since 2h > 2 ·0.666662

√
ac > 2 ·0.666662 ·105/2 > 421. This proves 

our next theorem.

Theorem 6. A regular D(4)-triple {a, b, a +b +2r} cannot be extended to a D(4)-quintuple.

9. D(4)-quintuples with non-regular triples

It remains to show that a non-regular D(4)-triple cannot be extended to a quintuple. 
In the proof of the next two theorems we follow the methods used in Theorems 8 and 9 
from [16], but as we also said before, results similar to those from [3], which we need in 
order to prove these Theorems, could not be proven for every D(4)-quintuple and here 
we will show how our results from Section 3 can again be used in proving some special 
results for D(4)-quintuples for which c is not minimal, i.e. c �= a + b + 2r.

Theorem 7. A D(4)-triple {a, b, c} for which deg(a, b, c) = 1 cannot be extended to a 
D(4)-quintuple.

Proof. By Lemma 1 we have c > max{ab, 4b}, and by Lemma 3 we also know b > 4a. 
Moreover, by the definition of the degree of a triple we know that {d−1, a, b, c} is a regular 
quadruple. Also, {d−1, a, b} is a regular triple, so if d−1 > b, we have d−1 = a + b + 2r, 
and if d−1 < b, it can be easily shown that d−1 = a +b −2r. So, we have d−1 = a +b ±2r
and c = d+(a, d−1, b) = r(r ± a)(b ± r).

For d−1 we have

d−1 ≥ a + b− 2r ≥ a + b− 2
√

b2

4 + 4 > a− 1,

i.e. d−1 ≥ a so c > abd−1 ≥ a2b.
We will now apply Lemma 7 to show that if b ≤ max{81a, 18.0793a3/2} then we 

cannot extend a triple {a, b, c} of degree 1 to a D(4)-quintuple. For the remaining cases, 
where b > max{81a, 18.0793a3/2}, we will have more efficient bounds on the elements a
and r and will be able to apply Baker–Davenport reduction.

First, we assume that 4a < b ≤ 81a. Since c > a2b and 105 < b < 81a, we have 
a > 105/81 and c > 105/81 · ab so we get

d > abc >
105

81 abab ≥ 105

81
b2

812 b
2 = 105

813 b
4 > 18816b3.

On the other hand, since b > 4a we have b − a > 3a and A′ = max{4(B − A), 4A} =
4(B −A), which yields
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59.488A′B(B −A)2

Ag4 = 237.952(b− a)3b
ag4 < 237.952(b− a)3b

a

≤ 237.952
(

80
81

)3

· 81b3 < 18570b3,

so the conditions of the Lemma 7 are satisfied if we consider an extension of a D(4)-triple 
{a, b, d} to a D(4)-quadruple. For the index n, (which refers to an extension to a quadru-
ple and not a quintuple), we have by Lemma 7 that

n <
4 log(8.40335 · 1013(A′) 1

2A
1
2B2Cg−1) log(0.20533A 1

2B
1
2C(B −A)−1g)

log(BC) log(0.016858A(A′)−1B−1(B −A)−2Cg4) .

We can use 3
4b < b − a < 80

81b and 1 ≤ g = gcd(a, b) ≤ a and we observe expressions

8.40335 · 1013(A′) 1
2A

1
2B2Cg−1 < 8.35132 · 1013b3d,

0.20533A 1
2B

1
2C(B −A)−1g < 0.03423bd,

0.016858A(A′)−1B−1(B −A)−2Cg4 > 0.0000544b−3d,

thus we have

n <
4 log(8.35132 · 1013b3d) log(0.03423bd)

log(bd) log(0.000054b−3d) .

The function on the right hand side of the inequality is decreasing with d for d > 0, and 
since d > 10581−3b4 > 0.1881676b4 we obtain

n <
4 log(1.571449 · 1013b7) log(0.006441b5)

log(0.1881676b5) log(0.000010161b) .

Similarly as in Proposition 1, we have

n ≥ m

2 > 0.309017
√
ac > 0.309017

√
b

81
105

81
b

81b > 0.134046b3/2.

By combining these two inequalities we get b < 98416 < 105 which cannot be true. This 
means that our assumption was wrong and we have b > 81a.

Now we have an even better lower bound

d−1 > a + b− 2
√

b2

81 + 4 > a + b− 2
9
√

b2 + 324 > a + b− 2
9(b + 1) > 7

9b

so

c > abd−1 >
7
9ab

2

and ac > 7 (ab)2.
9
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Assume now that 81a < b ≤ 18.0793a3/2. Obviously a ≥ 18.0793−2/3b2/3. Observe 
that

59.488A′B(B −A)2

Ag4 = 237.952(b− a)3b
ag4 < 1639.12b10/3.

On the other hand, since d−1 > 7
9b >

7
9105, we have

d > abc > d−1a
2b2 ≥ d−118.0793−4/3b10/3 > 1639.129b10/3,

so we can use Lemma 7 on triples {a, b, d} where 81a < b < 18.0793a3/2. Notice that 
A′ = 4(B −A) < 4B and 1 ≤ g ≤ a < b/81 so we use

8.40335 · 1013(A′) 1
2A

1
2B2Cg−1 < 1.86742 · 1013b3d

0.20533A 1
2B

1
2C(B −A)−1g < 0.0002852bd

0.016858A(A′)−1B−1(B −A)−2Cg4 > 0.000611b−10/3d,

to obtain

n <
4 log(1.86742 · 1013b3d) log(0.0002852bd)

log(bd) log(0.000611b−10/3d)
.

Moreover

d > abc > d−1a
2b2 >

7
918.0793−4/3b4/3b3 > 0.01639b13/3

and since the function on the right hand side of inequality is decreasing with d, we can 
insert this lower bound on d and get

n <
4 log(3.0608 · 1011b22/3) log(4.6743 · 10−6b16/3)

log(0.01639b16/3) log(1.001429 · 10−5b)
.

On the other hand,

n ≥ m

2 > 0.309017
√
ac > 0.272527ab > 0.272527 · 18.0793−2/3b2/3b

> 0.03956b5/3

which gives us b ≤ 99861 after combining the inequalities. This, of course, leads to a 
contradiction which means that we must have b > 18.0793a3/2.

From b > 18.0793a3/2 we have

a5/2 <
r2 − 4

.
18.0793
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Since by Proposition 6, we have ac < 1.17732 · 1028, this implies 7
9 (ab)2 < 1.17732 · 1028

i.e. ab < 1.23033 · 1014, which gives us r ≤ 11091997 and a ≤ 135873.
With these upper bounds, we again apply Baker–Davenport reduction on a linear 

form in logarithms Λ1, with J = 2h, M = 2 · 7.23357 · 1013. For each {a, b} we check 
two options for c, namely c = r(r ± a)(b ± r). It took 11 days and 18 hours to check 
all possibilities and in each case we had J = 2h < 5, which again cannot be true. This 
proves our theorem. �

All the remaining cases are covered in the next theorem which concludes the proof of 
Theorem 1.

Theorem 8. A D(4)-triple {a, b, c} such that deg(a, b, c) ≥ 2 cannot be extended to a 
D(4)-quintuple.

Proof. From the assumption that deg(a, b, c) ≥ 2 we have that numbers d−1 = d−(a, b, c)
and d−2 = d−(a, b, d−1) are positive integers. Moreover, here we also have b > 4a, b > 105

and c > max{ab, 4b}.
Since from Proposition 1 we have an upper bound on c, we will separate our investi-

gations into four subintervals

c ∈
〈
ab, a

1
2 b

3
2

]
∪

〈
a

1
2 b

3
2 , ab2

]
∪

〈
ab2, ab

5
2

]
∪

〈
ab

5
2 ,

237.952b3

a

]
.

Case I: c ∈
〈
ab, a

1
2 b

3
2

]
.

Since c = d+(a, b, d−1), we have c > abd−1 and ad−1 < (ab)1/2, i.e. ab > (ad−1)2.
On the other hand, ac > (ab)(ad−1) > (ad−1)3, therefore

r(a,d−1) =
√
ad−1 + 4 <

√
(1.17732 · 1028)1/3 + 4 < 47697,

and since d−1 �= 0, we also have r(a,d−1) ≥ 3. Our goal is to find for all r ∈ [3, 47696]
all possible pairs {a, d−1}. Moreover, since {a, d−1, b} is a D(4)-triple, b is obtained as a 
solution of the generalized Pell equation

AV2 − BU2 = 4(A− B)

where AB + 4 = R2, A < B are positive integers. We know that all solutions of this 
equation are of the form

V
√
A + U

√
B = (V0

√
A + U0

√
B)

(
R +

√
AB

2

)q

,

where q ≥ 0 is integer and (U0, V0) is a solution which satisfies
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0 ≤ U0 ≤
√

A(B −A)
R− 2 , 1 ≤ |V0| ≤

√
(R− 2)(B −A)

A .

Solutions can also be expressed as binary recurrence sequences

U0, U1 = U0R + V0A
2 , Um+2 = RUm+1 − Um.

Then we see that b = (U2 − 4)/A = (V2 − 4)/B, so it also must be true that A divides 
U2−4. Since a2b < ac < 1.17732 ·1028 we have b < 1.17732 · 1028a−2 ≤ 1.17732 · 1028A−2, 
so

U <

√
1.17732 · 1028

A + 4, |V| <
√
B1.17732 · 1028

A2 + 4.

Now, we describe an algorithm in which for each R = r(a,d−1) ∈ [3, 47696] we search for 
divisors d′ of R2 − 4 such that 1 ≤ d′ ≤ R and we set A = d′ and B = (R2 − 4)/A. 
For a fixed pair (A, B) we find all possible solutions (U0, V0) within the given bounds 
and for each pair we compute the quantities Um until the upper bound for U is reached. 
For each U we check if A|U2 − 4 and then take b = (U2 − 4)/A and for each possibility 

(a, d−1) ∈ {(A, B), (B, A)} we can compute c = d+(a, b, d−1) and if c ∈
〈
ab, a

1
2 b

3
2

]
we can 

do Baker–Davenport reduction for the triple {a, b, c} with parameters as in Theorem 2. 
It took 7 hours and 54 minutes to check all possibilities and we got J < 5 in each case.

Case II: c ∈
〈
a

1
2 b

3
2 , ab2

]
.

We have abd−1 < c < ab2, thus d−1 < c/(ab) < b, i.e. b = max{a, b, d−1}. By Lemma 2
we have

a
1
2 b

3
2 < c < ad−1b + 4b = b(ad−1 + 4),

which yields

(ab)1/2 < ad−1 + 4.

Similarly, d−2 = d−(a, b, d−1), therefore b > ad−1d−2 and d−2 < b/(ad−1) <

b/((ab)1/2 − 4). Now we have

ad−2 < (ab)1/2 (ab)1/2

(ab)1/2 − 4
= (ab)1/2

(
1 + 4

(ab)1/2 − 4

)
< 1.01282(ab)1/2,

and also we can see that ab > ((ad−2)/1.01282)2. Moreover

ad−2 < 1.01282(ad−1 + 4) = 1.01282ad−1 + 4.05128,

so
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ad−2 − 4.05128
1.01282 < ad−1.

Now,

ac > (ab)(ad−1) >
(

ad−2

1.01282

)2
ad−2 − 4.05128

1.01282

and since ac < 1.17732 · 1028, we get ad−2 < 2.30408 · 109 and

r(a,d−2) =
√
ad−2 + 4 < 48001.

We also know that d−1 < b < c2/3 < (1.17732 · 1028)2/3 < 35.17524 · 1018. Similarly 
as in the first case we apply an algorithm in which for each R = r(a,d−2) we search 
for pairs (A,B). We set d−1 = (U2 − 4)/A and observe both possibilities (a, d−2) ∈
{(A, B), (B, A)} and define b = d+(a, d−1, d−2), c = d+(a, b, d−1). It took 1 hour and 34
minutes to do the reduction and we got J < 5 in each case.

Case III: c ∈
〈
ab2, a

3
2 b

5
2

]
.

Here we have (ab)2 < ac < 1.17732 ·1028, so r =
√
ab + 4 ≤ 10416543. It can be shown 

that b < d−1 < c/(ab), therefore we have d−1 < a3/2b5/2/(ab) = a1/2b3/2. Since b < d−1, 
we have d−1 = d+(a, b, d−2) and d−1 > abd−2, i.e.

ad−2 <
d−1

b
< (ab)1/2 < r ≤ 10416543

and r(a,d−2) =
√
ad−2 + 4 < 3228.

The algorithm is similar as in Case II., except b and d−1 exchange roles, so b = U2−1
A , 

and d−1 = d+(a, b, d−2). It took less than 3 minutes to check all possibilities and we got 
J < 5 in each case.

Case IV: c ∈
〈
a

3
2 b

5
2 , 237.952b3

a

]
.

Here we have a3/2b5/2 < 237.952b3/a, which yields b > a5/237.9522 and

1.17732 · 1028 > ac > (ab)5/2 > (a6 · 237.952−2)5/2,

therefore we get a ≤ 460. As in Case III., we have b < d−1, d−1 = d+(a, b, d−2) and 
c = d+(a, b, d−1). Therefore

d−1 <
c

ab
<

237.952b2

a2 , d−2 <
d−1

ab
<

237.952b
a3 .

From (ab)5/2 < 1.17732 · 1028 we have ab < 1.69184 · 1011. Also, from a4d−2 < 237.952ab
we get ad−2 < 4.02576 · 1013/a3, thus r(a,d−2) < 6344883/a3/2.

Since a ≤ 460, it is more efficient if we search r(a,d−2) inside interval 
[
3, 6344883

a3/2

]
such 

that a|r2
(a,d−2) − 4 for each fixed a. We set d−2 = (r2

(a,d−2) − 4)/a and do similarly as in 
the previous cases. It took 9 days and 21 hour to check all possibilities and again we got 
J < 5 in each case. �
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