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Abstract

A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special
case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel
algorithm is not based on conjugacy, i.e. it is not necessary to maintain overall orthogonalities between various
vectors from distant steps. This method is more stable than CG, and restarting techniques are not required.
As in CG, only one matrix-vector multiplication is required per step with appropriate transformations. The
algorithm is easily explained by energy considerations without appealing to the A-orthogonality in n-dimensional
space. Finally, relaxation factor and preconditioning-like techniques can be adopted easily.
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1 Introduction

Let
Ax = b (1)

be a real linear system with a symmetric positive definite (SPD) matrix of order n. By IRM,
the solution is sought through successive minimisation of the corresponding energy functional,
or the quadratic form

f(x) = 1
2 xTAx − xTb (2)

inside a small subspace formed at each iteration step [1]. After the convergence criterion is
reached, a solution is found that is close to the unique minimiser of f(x). Geometrically, this
is the point close to the centre of the hyper-ellipsoids f(x) = c, where c are arbitrary real
constants.

2 Briefly about IRM

The main idea here is to present the solution increment by the discretised Ritz method:

p(i) = Φ(i)a(i) (3)

where Φ(i) = [φ1,(i) φ2,(i) . . . φm,(i) ] is a matrix of linearly independent coordinate vectors,
and a(i) is the vector of corresponding coefficients. The energy decrement associated with (3)
can be also expressed as the quadratic function

∆f(a(i)) = 1
2 aT

(i) A(i)a(i) − aT
(i)r(i) (4)

3 Corresponding author: e-mail: damir@grad.hr, 0000-0002-7439-719X, tel.: +385 1 4639 640
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where A(i) = ΦT
(i)AΦ(i) and r(i) = ΦT

(i)r(i) are the SPD generalised (Ritz) matrix and the
generalised residual vector, respectively, and both terms are of order m. After minimising (4),
we obtain the system of equations that should be solved at each step:

A(i)a(i) = r(i) (5)

The solution is used to find the increment in (3), and x(i+1) = x(i) + p(i) is updated afterwards.
The residual is defined in a standard manner as r(i+1) = b−Ax(i+1).

Obviously, IRM represents an iterative procedure, where a discrete Ritz method is applied
at each step, and a suitable set of coordinate vectors which span a subspace are generated. A
local energy minimum is sought within that subspace (therefore (5) should be solved at each
step), thereby decreasing the total energy of the system, which eventually converges to the
required minimum. The subspace dimension, or the size of (5), is not limited. Rather, it aims
to be small–much smaller than the number of unknowns (m� n), because every iteration must
be as fast as possible. Such a small system (though A(i) is usually full) can be solved by any
direct method. Simple pseudocode, with input data and sequence of instructions common for
the iterative solution methods, is given by the Algorithm 1.

Algorithm 1 Basic IRM algorithm

Require: A, b, x(0), ε, nmax {usually x(0) ← 0}

Ensure: x(i+1) {close to x}

1: i ← 0 {initialisation: steepest descent}

2: r(0) ← b − Ax(0)

3: q ← rT
(0)r(0) / (rT

(0)Ar(0))

4: p(0) ← qr(0)

5: while
(
‖r(i)‖2 > ε‖r(0)‖2

)
∧
(
i ≤ nmax

)
do {Iterated Ritz method}

6: x(i+1) ← x(i) + p(i)

7: r(i+1) ← b − Ax(i+1)

8: generate [φ1,(i) φ2,(i) . . . φm,(i) ]

9: A(i) ← [φ1,(i) φ2,(i) . . . φm,(i) ]TA [φ1,(i) φ2,(i) . . . φm,(i) ]

10: r(i) ← [φ1,(i) φ2,(i) . . . φm,(i) ]Tr(i+1)

11: a(i) ← A−1
(i) r(i)

12: p(i+1) ← [φ1,(i) φ2,(i) . . . φm,(i) ] a(i)

13: i ← i + 1

14: end while {end Iterated Ritz method}
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The central problem involves quickly generating a small and efficient subspace, such that
the energy reduction per step is as large as possible and the number of steps is extremely
reduced. Usually, one coordinate vector is p(i), and others are generated as Pj r(i+1), where Pj

is fast approximation of A−1. Non-residual based generation ideas are also possible [2]. Because
many strategies to construct Pj (or generally φj,(i)) exist, the algorithm also allows for any
new routine that generate subspaces (e.g. those suggested by other independent researchers) to
be easily implemented in (line 8, Alg. 1). Potentially, this may make the method even faster.

It should be noted that the conjugacy property is not explicitly taken into account in
IRM, and coordinate vectors may become (almost) linearly dependent. Therefore, routines
for subspace generation which prevent such a scenario are preferred and may even change
between steps. Nevertheless, if this dependence arises, some pivots approach zero during the
decomposition of A(i), which can be recognised and used for discarding corresponding equations
from the small system. The subspace dimension is reduced in such cases, but A(i) becomes
more regular and better conditioned. This strategy is faster than orthogonalisation, rejection,
or replacement of dependent vectors [3].

IRM can also be considered as a generalisation of some iterative methods [1,2]. Depending on
the choice of coordinate vectors, some solvers can be represented or interpreted as special cases
of this approach. Furthermore, it is possible to combine good properties of several methods
simultaneously. If appropriate vectors are selected, convergence should proceed faster than
using any single method considered. Here, an improved CG algorithm (IRM-CG) is presented
due to the popularity of SPD systems.

3 IRM-CG as a special case of IRM

The algorithm presented here also starts with the steepest descent (SD) step. Other steps are
executed using a CG-like algorithm simulated by IRM with two coordinate vectors. The first
vector is the current residual r(i+1), and the second vector is previous solution increment p(i).
Vectors span a two-dimensional subspace. At each step, a system of two equations is solved
and a new energy minimum within that plane is found (Algorithm 2).

This approach has three matrix-vector multiplications per step: one in line 7 and two in line
8. Applying two ‘induced’ recursive relations (‘inherent’ A-orthogonalisation is not exploited
here), only one such multiplication remains (as in CG). If line 11 (Alg. 2) is multiplied by A,
then

Ap(i+1) = [ Ar(i+1) Ap(i) ] a(i) (6)

Substituting α(i) = Ar(i+1) and β(i) = Ap(i) into the first recursion yields

β(i+1) = [α(i) β(i) ]a(i) (7)

Second, the frequently used residual recursion r(i+1) = r(i) −Ap(i) becomes

r(i+1) = r(i) − β(i) (8)

Now, after the line 4 (Alg. 2), the new initialisation

β(0) ← Ap(0) (9)

should be inserted, and the pseudocode inside the while loop becomes:
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Algorithm 2 Basic IRM-CG algorithm

Require: A, b, x(0), ε, nmax {usually x(0) ← 0}

Ensure: x(i+1) {close to x}

1: i ← 0 {initialisation: steepest descent}

2: r(0) ← b − Ax(0)

3: q ← rT
(0)r(0) / (rT

(0)Ar(0))

4: p(0) ← qr(0)

5: while
(
‖r(i)‖2 > ε‖r(0)‖2

)
∧
(
i ≤ nmax

)
do {IRM-CG method}

6: x(i+1) ← x(i) + p(i)

7: r(i+1) ← b − Ax(i+1)

8: A(i) ← [ r(i+1) p(i) ]TA [ r(i+1) p(i) ]

9: r(i) ← [ rT
(i+1)r(i+1) 0 ]T {second term is zero because rT

(i+1)p(i) = 0}

10: a(i) ← A−1
(i) r(i)

11: p(i+1) ← [ r(i+1) p(i) ] a(i)

12: i ← i + 1

13: end while {end IRM-CG method}

x(i+1) ← x(i) + p(i)

r(i+1) ← r(i) − β(i)

α(i) ← Ar(i+1) {sole matrix-vector multiplication}

A(i) ← [ r(i+1) p(i) ]T [α(i) β(i) ] {A(i) is symmetric: rT
(i+1)β(i) = pT

(i)α(i)} (10)

lines 9 –11 remain unchanged

β(i+1) ← [α(i) β(i) ]a(i)

i ← i + 1
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Due to round-off errors, as in CG, the residual is periodically (after imax steps) updated from
the equilibrium equation, i.e. the following should be used instead of the second line from (10):

if i mod imax 6= 0 then

r(i+1) ← r(i) − β(i)

else (11)

r(i+1) ← b − Ax(i+1)

endif

4 Equivalence between CG and IRM-CG

The proof of equivalence between CG and IRM-CG is very simple, so it will be discussed only
briefly. Initialisation is practically identical for both methods. In other steps, the minimum of
the energy function inside the plane spanned by r(i+1) and p(i) is determined. In CG this is
realised by A-orthogonalisation and by solving a linear system of two equations in IRM-CG.

If exact arithmetic is considered, IRM-CG and CG have an identical sequence of intermediate
results. The exact solution is obtained after m steps, where m is the number of different ‘active’
eigenvalues. If b is represented as a sum of eigenvectors ϕj , i.e. b =

∑
ajϕj , eigenvectors (and

their corresponding eigenvalues) with aj 6= 0 may be called ‘active’ (or ‘inactive’ otherwise).
Of course, m can be found only if all n eigenpairs are detected. Multiple eigenvalues should
be counted as one, and ‘inactive’ eigenvalues are not counted at all. This comment is only
important for theoretical considerations, as IRM-CG is interesting as an iterative, not direct
solution method.

5 Advantages of IRM-CG over CG

During real calculations (with round-off errors), IRM-CG is more stable and behaves better than
CG. First, restarting of this algorithm is not needed because A-orthogonality is not exploited.
Namely, error in A-orthogonality also exists if the IRM-CG formulation is used, but it is not
accumulated during calculation. Therefore, inherited errors from the A-orthogonality decrease,
although non-exact arithmetic (as in every numerical process) causes new errors and affects
convergence.

Consider simple example with diagonal A (a1,1 = 1 and a2,2 = κ, where κ is a condition
number of A). If b = [ 1 1 ]T, using rational arithmetic exact solution x = [ 1 1/κ ]T is obtained
in two steps by both methods. To check stability of the methods, after the initialisation phase
(for i = 0) a small disturbance δ to the second term of p(1) is added (Fig. 1a). The second
step of IRM-CG still gives exact result, but CG gives only s perturbed approximate solution as a
function of δ and κ:

x̃1 = 2
( 1

1 + κ
+ 2 (κ − 1)

4 (κ + 1) − 4 δ (κ − 1) + δ2(κ − 1)2

)

x̃2 = 2
(

1
1 + κ

+
(κ − 1)

(
δ (κ − 1) − 2

)
κ
(
4 (κ + 1) − 4 δ (κ − 1) + δ2(κ − 1)2)

) (12)
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Notice complexity of the CG solution, even with a diagonal matrix of order two. For better
explanation of the expressions, over domain δ ∈ [−10−2, 10−2] functions x̃− x = f(δ) for three
values of κ, and x̃− x = f

(
δ, κ

)
for κ = 10a (a ∈ [0, 4]) are given (Figs. 1b and c). Only if

δ = 0 exact solution is recovered from (12). Also, functions are non-symmetric, so CG behaves
differently for ±δ.

When large equation systems are considered, δ is accumulated primarily due to the loss of
A-orthogonality, which is inherited recursively. The main reason is approximate CG solution
at each step (in the current plane); in practice more complicated then (12). On the contrary,
IRM-CG finds numerically ’exact’ solution at each plane. Therefore system of two equations
is repeatedly solved. Roughly, if δ is split into two components at each step, the one inside
and the other orthogonal to the plane, the first component is ’exactly’ resolved and does not
produce inherited error. In CG, both components cause propagation of error. In other words, if
δ lies on the plane, the behaviour of IRM-CG is as if δ = 0, but if it is orthogonal to the plane
the solution is disturbed.

δ x1

x2

45◦

exact
solution

δ

x̃− x

κ = 102

κ = 104

κ = 106 1, 0

exact
solution

10−2

x̃− x

log
κ

+δ

−δ

(a) (b) (c)

Figure 1: Stability of CG method: (a) interpretation of disturbance δ, (b) function x̃− x = f(δ),
(c) surface x̃− x = f

(
δ, κ

)
.

It is possible to interchange methods because the two approaches are equivalent. Each step
may be executed by CG or IRM-CG, no matter how the earlier steps were performed. If CG is
used as a solution method, it is suggested that one equivalent IRM-CG step be executed after
some number of steps, but before orthogonality error becomes too large. This may be called
“refresh” instead of traditionally “restart”.

The second advantage of this formulation is the natural adoption of the relaxation factor
ω ∈ (0, 2), known from the Successive overrelaxation method [4], and which may even change
at each step. Line 6 (Alg. 2) is simply

x(i+1) ← x(i) + ω(i)p(i) (13)

and the second term of r(i) is not zero (line 9, Alg. 2); it is rather ω(i)rT
(i+1)p(i). Also, recurrence

relation in (11) becomes r(i+1) ← r(i) − ω(i)β(i). Obviously, using ω 6= 1, A-orthogonality is
lost, but convergence is improved in many cases [5]. The third advantage is the very natural
adoption of (multi) preconditioning-like techniques [6]. In such cases, only line 8 (Alg. 2) is
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reformulated as

A ← [ p(i) φ2,(i) φ3,(i) . . . ]T A [ p(i) φ2,(i) φ3,(i) . . . ] (14)

The coordinate vectors are

φj,(i) = M−1
j r(i+1), 2 ≤ j ≤ n (15)

where Mj is a matrix according to the standard approach [7], which is used to produce a
better conditioned system M−1

j Ax = M−1
j b equivalent to (1). However, transformations of

the CG algorithm required for such strategies are not needed here. According to IRM, that is
just another way of generating coordinate vector(s). During the solution process, they can also
become (exactly or approximately) linearly dependent, and one or several of them should be
excluded.

Many possibilities to rapidly construct M−1 exist, such as (not always robust) incomplete
Cholesky factorisations with different fill-ins [8], algebraic multigrid methods [9, 10], and sparse
approximate inverses [11]. It is even possible to use methods that are not useful as standalone
solvers, as they are neither convergent nor numerically stable. For smoothing purposes, forward
and backward techniques or any other promising order of unknowns may be useful.

6 Illustrative example

Consider a simple linear FEM benchmark: a cube discretised by 8-node solid elements, supported
by the corner springs of stiffnesses k, and loaded with a vertical force at the top. This model has
3 993 unknowns (Fig. 2). The condition number is κ ≈ 8 · 104, which is calculated as the ratio
of extreme eigenvalues. CG and IRM-CG behave almost identically (curves practically collide)
for such a well-conditioned system. If the spring stiffness A is greatly reduced to 10−10k, then
κ ≈ 3 · 1013 and IRM-CG behaves much better than CG. Processes are terminated after ε = 10−10

is reached. Of course, CG may be improved by preconditioning and restarting techniques.
However, IRM-CG may also be enhanced by using additional coordinate vectors, while restarting
strategies are not needed at all, as previously mentioned.

7 Conclusion

Although general theorems and proofs about algorithm convergence rate and stability are not
given here, according to the results of numerical experiments with exact and floating-point
arithmetic, IRM–CG should be an interesting replacement for a standard or preconditioned CG.
Recursive A–orthogonalisation, restarting recommendations, and transformations (necessary
for preconditioning) are not required, hence the method should be very useful for solving
non-well-posed problems. Finally, the property of conjugacy, which underlies many iterative
procedures and is valid only for linear systems, is not absolutely necessary here. Therefore,
IRM–CG can be successfully applied to nonlinear problems (including optimisation), where
conjugacy is not even defined. This issue is vitally important, as iterative methods are used
exclusively in these cases [12].
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number of iterations

log10
‖r(i)‖2
‖r(0)‖2

104

0

10−4

10−10 convergence criterion

200 400 600 800

A

IRM-CG and CG
κ ≈ 8 · 104

CG

IRM-CG

κ ≈ 3 · 1013

Figure 2: Behaviour of CG and IRM-CG for well-posed and ill-posed problems
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