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Abstract

A spanning subgraph of a graph G is called a perfect star packing in G if every component

of the spanning subgraph is isomorphic to the star graph K1,3. An efficient dominating set

of graph G is a vertex subset D of G such that each vertex of G not in D is adjacent to

exactly one vertex from D and any two vertices of D are not adjacent in G. Fullerene graph

is a connected plane cubic graph with only pentagonal and hexagonal faces, which is the

molecular graph of carbon fullerene. Clearly, a perfect star packing in a fullerene graph

G on n vertices will exist if and only if G has an efficient dominating set of cardinality
n
4 . The problem of finding an efficient dominating set is algorithmically hard [2]. In this

paper, we give a characterization for a fullerene graph to own a perfect star packing. And

mainly show that it is necessary for a fullerene G owning a perfect star packing to have

order being divisible by 8. This answers an open problem asked by Doslić et. al. and also

shows that a fullerene graph with an efficient dominating set has 8n vertices. By the way, we

find some counterexamples for the necessity of Theorem 14 in [13] and list some forbidden

configurations to preclude the existence of a perfect star packing of type P0.

Keywords: Fullerene graph; Perfect star packing; Efficient dominating set

1 Introduction

A chemical graph is a simple finite graph in which vertices denote the atoms and edges denote

the chemical bonds in underlying chemical structure. Perfect matchings of a chemical graph

correspond to kekulé structures of the molecule, which feature in the calculation of molecular

energies associated with benzenoid hydrocarbon molecules [19]. Alternating sextet faces (sextet

patterns) also play a meaningful role in the prediction of molecular stability, in particular, but

not only, in benzenoid compounds. Although for fullerenes, the two structures do not play the

∗This work was supported in part by the National Natural Science Foundation of China (grant no. 11901458

and 11871256) and by the Fundamental Research Funds for the Central Universities (grant no. D5000200199).
†Corresponding author.
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same role as in benzenoid compounds, they received numerous attention in recent years, see

[1, 3, 7, 12, 16, 20, 32, 33] etc.

A perfect matching in a graph G may be viewed as a collection of subgraphs of G, each of

which is isomorphic to K2, whose vertex sets partition the vertex set of G. This is naturally

generalized by replacing K2 by an arbitrary graph H. For a given graph H, an H-packing of

G is the set of some vertex disjoint subgraphs, each of which is isomorphic to H. From the

optimization point of view, the maximum H-packing problem is to find the maximum number

of vertex disjoint copies of H in G called the packing number. An H-packing in G is called perfect

if it covers all the vertices of G. If H is isomorphic to K2, the maximum (perfect) H-packing

problem becomes the familiar maximum (perfect) matching problem. If H is the cycle C6 of

length 6, for a fullerene or a hexagonal system G, the packing number is related to the Clar

number (the maximum number of mutually disjoint sextet patterns) of G. If H is the star graph

K1,3, it is the maximum star packing problem. If a K1,3-packing covers all the vertices of G, we

call it being a perfect star packing. For a given family F of graphs, an H-packing concept can

also be generalized to an F-packing (we refer the reader to [29] for the definition).

Packing in graphs is an effective tool as it has lots of applications in applied sciences. H-

Packing, is of practical interest in the areas of scheduling [5], wireless sensor tracking [6], wiring-

board design, code optimization [21] and many others. Packing problems were already studied

for Carbon Nanotubes [27]. Packing lines in a hypercube have been studied in [14]. H-packing

was determined for honeycomb [29] and hexagonal network [28]. For representing chemical

compounds or to problems of pattern recognition and image processing, P3-packing has some

applications in chemistry [30]. Doslić et. al [13] have investigated which fullerene graphs allow

perfect star packings, and have considered generalized fullerene graphs and packings of other

graphs into classical and generalized fullerenes. They also listed several open problems.

In the following section we introduce necessary preliminaries and characterize the classical

fullerenes which have a perfect star packing. Section 3 gives a negative answer to the problem

“Is there a fullerene on 8n+ 4 vertices with a perfect star packing?” asked by Doslić et. al [13].

This implies that a fullerene graph with an efficient dominating set must has 8n vertices. In

section 4, we generalize the Proposition 1 in reference [13] and give three counterexamples for

Theorem 14 in the same paper. And some forbidden configurations are listed to preclude the
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existence of a perfect star packing of type P0.

2 Characterization of fullerenes with a perfect star packing

A fullerene graph (simply fullerene) is a cubic 3-connected plane graph with only pentagonal

and hexagonal faces. It follows from the Euler formula that there must be exactly 12 pentagons

in every fullerene graph. Such graphs are suitable models for carbon fullerene molecules: carbon

atoms are represented by vertices, whereas edges represent chemical bonds between two atoms

(see [15, 25]). In a classical paper by Grünbaum and Motzkin [18], we know that a fullerene

graph with n vertices exists for all even n ≥ 20 except for n = 22. Klein and Liu [23] used a

similar approach to show that there exist fullerene graphs on n vertices with isolated pentagons

for n = 60 and for each even n ≥ 70. We refer the reader to the monograph [15] for a systematic

introduction on fullerene graphs.

A cycle of a fullerene graph G is a facial cycle if it is the boundary of a face in G, otherwise,

it is a non-facial cycle. Clearly, each pentagon and hexagon in G is a facial cycle since G is

3-connected and any 3-edge-cut is trivial [31]. In paper [13], the authors obtained the following

basic conclusions.

Proposition 2.1 ([13]). Let S be a perfect star packing of fullerene graph G. Then each pentagon

of G can contain at most one center of a star in S.

Lemma 2.2 ([13]). Let S be a perfect star packing of fullerene graph G. Then a vertex shared

by two pentagons of G cannot be the center of a star in S.

Recall that a vertex set X of a graph G is said to be independent if any two vertices in X are

not adjacent in G. A cycle C = v1v2 · · · vkv1 in G is called induced if vi has only two adjacent

vertices vi+1 and vi−1 around the k vertices v1, v2, · · · , vk (note that if i = k, i + 1 := 1 and if

i = 1, i− 1 := k). Otherwise, there exists some i and j /∈ {i − 1, i + 1} such that vi and vj are

adjacent in G, the edge vivj is a chord of C and C is not induced. A subgraph R of a graph G

is spanning if R covers all the vertices of G. For a vertex v of a graph G, we call vertex u being

a neighbor of v in G if u is adjacent to v in G.

Theorem 2.3. Let G be a fullerene graph. Then G has a perfect star packing if and only if G

has an independent vertex set S∗ such that each component of G− S∗ is an induced cycle in G.
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Proof. If G has a perfect star packing S, then S is a spanning subgraph of G and any component

in S is isomorphic to a star graph K1,3. Let S∗ be the set of all 3-degree vertices in S. Clearly,

S∗ is an independent vertex set in G and any vertex in G−S∗ has degree 2. So each component

of G− S∗ is an induced cycle in G.

Let S∗ be an independent vertex set of G such that each component of G−S∗ is an induced

cycle in G. Clearly, each vertex in S∗ and its three neighbors induce a star graph K1,3. We

collect all these star graphs and denote this set by H. For any vertex x on a cycle C in G− S∗,

x has exactly one neighbor in S∗ since G is 3-regular and induced cycle C is a component of

G− S∗. So H is a spanning subgraph of G and each component of H is a star graph K1,3, that

is, H is a perfect star packing of G.

We note that star graph K1,3 has exactly one center (the vertex of degree 3) and three leaves.

A perfect star packing S of a fullerene graph G is a spanning subgraph of G each component of

which is a star graph K1,3. We call each 1-degree vertex in S being a leaf. In the following, we

denote by C(S) the set of all the centers of stars in S.

Remark 2.4. Let S be a perfect star packing of fullerene graph G. Then

1. C(S) is an independent vertex set in G.

2. Any leaf in S has exactly one neighbor belonging to C(S) and has exactly two neighbors being

leaves in S.

3. Each cycle in G− C(S) does not have a chord.

Proposition 2.5. Each hexagon can contain at most two centers of a perfect star packing of

fullerene graph G. If a hexagon h contains two such centers, then they are antipodal points on

the hexagon h.

Proof. Let h be a hexagon in G. We denote the six vertices of h by v1, v2, . . . , v6 in the clockwise

direction. If vertex v1 is the center of a star H in a perfect star packing S of G, then v2 and v6

are two leaves in H. Hence both v3 and v5 are leaves in S by Remark 2.4 2. Clearly, v4 could

be the center of a star in S. Hence h has exactly one center of S or has exactly two centers of

S which are antipodal points on h.

4



3 The order of fullerenes with a perfect star packing

To show the main conclusion, we need to prepare as follows.

(a) ( )b ( )c
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Fig. 1. (a) Type 1; (b) Type 2; (c) Type 3.

Lemma 3.1. Let S be a perfect star packing of fullerene graph G. Then for any vertex x ∈ C(S),

all the vertices on the three faces sharing x are covered by S as Type 1, Type 2 or Type 3 (see

Fig. 1).

Proof. By the Lemma 2.2, at most one of the three faces sharing x is a pentagon since x ∈ C(S).

There are two cases as follows.

Case 1. The three faces sharing x are all hexagons.

Clearly, x has three antipodal points on the three hexagons sharing x, denoted by x1, x2 and

x3 respectively as depicted in Fig. 1 (a). By Remark 2.4 2, the two neighbors v1 and v3 of v2

are leaves in S. Similarly, u1, u3, w1 and w3 are also leaves in S. We claim that at least two of

x1, x2 and x3 are centers of stars in S. If x1 is not the center of a star in S, then x1 is a leaf in

S. So the third neighbor of v1, say y1, is the center of a star in S (see Fig. 1 (b)). Similarly,

the third neighbor of w3, say y2, is also the center of a star in S. Since the three vertices v1, v2

and v3 are leaves in S and y1 ∈ C(S), the face f1 has only one center of S by Propositions 2.5

and 2.1. Hence the two neighbors of v3 on f1 are leaves. By Remark 2.4 2, x3 is the center of a

star in S, that is, x3 ∈ C(S). Similarly, w1 is a leaf in S and the two neighbors of w1 on f2 are

all leaves in S. Hence x2 ∈ C(S). So at least two of x1, x2 and x3 belong to C(S). If exactly

two of x1, x2 and x3 belong to C(S), without loss of generality, we suppose that x2, x3 ∈ C(S),

then all the vertices on the three faces sharing x are covered by S as Type 2. If all the three

vertices x1, x2 and x3 belong to C(S) (see Fig. 1 (a)), then all the vertices on the three faces
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sharing x are covered by S as Type 1.

Case 2. Exactly one of the three faces sharing x is a pentagon.

By Proposition 2.1, w1 and u3 are leaves in S (see Fig. 1 (c)). Hence x4, x3 ∈ C(S) and f

is a hexagon by Remark 2.4. 2 and Proposition 2.5. By Remark 2.4. 2, the neighbor w3 of w2

is a leaf in S since the neighbor x of w2 belong to C(S). Hence the other vertices on f1 except

for x4 are all leaves in S by Propositions 2.1 and 2.5. This follows that the neighbor x1 of w3

is the center of a star in S by Remark 2.4 2. Similarly, we can show x2 ∈ C(S). Hence all the

vertices on the three faces sharing x are covered by S as Type 3 (see Fig. 1 (c)).

Corollary 3.2. Let S be a perfect star packing of fullerene graph G. If a pentagon P of G has

a vertex x ∈ C(S), then G− C(S) has a non-facial cycle C of G such that the path P − x is a

subgraph of C.

Proof. By Proposition 2.1, x is shared by this pentagon P and two hexagons. So all the vertices

on the three faces sharing x are covered by S as Type 3 (see Fig. 1 (c)). Clearly, the path P −x

is a subgraph of a cycle C in G− C(S) and C is a non-facial cycle of G.

We note that 3-connected graphs have only one embedding up to equivalence [11]. If we

embed a fullerene graph G in the plane, then any non-facial cycle C of G as a Jordan curve

separates the plane into two regions, denoted by R∗1 and R∗2, each of which has the entire C as

its frontier. We denote the subgraph of G induced by the vertices lying in the interior of R∗i by

Gi, i = 1, 2. Here we note that {V (G1), V (G2), V (C)} is a partition of all the vertices of G. We

say that C divide the graph G into two sides G1 and G2.

Theorem 3.3. Let S be a perfect star packing of fullerene graph G and C be a cycle in G−C(S).

Then C(S) does not have a vertex which has three neighbors on C.

Proof. If C is a facial cycle of G, then C is a pentagon or a hexagon. The conclusion clearly

holds. Now, let C be a non-facial cycle of G. Then C divides G into two sides, denoted by H1

and H2 respectively. We note that all vertices on C are leaves in S since C is a cycle in G−C(S).

On the contrary, we suppose that there is a vertex x ∈ C(S) which has three neighbors on C,

denoted by x1, x2 and x3 respectively. Without loss of generality, we suppose that x ∈ V (H1)

(see Fig. 2 (a)). The three vertices separate the circle C into three sections, denoted by C1, C2
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Fig. 2. x ∈ C(S) has three neighbors on C.

and C3 respectively, each of which is a path with xi and xi+1 as two terminal ends, i = 1, 2, 3 (if

i = 3, then i + 1 := 1). From Lemma 3.1 we know that at most one of x1C1x2x, x2C2x3x and

x3C3x1x is a facial cycle of G since C is a cycle in G − C(S). Next, we suppose that x1C1x2x

and x2C2x3x are non-facial cycles of G. Let C1 = x1v1v2 · · · vkx2, C2 = x2u1u2 · · ·utx3. So

k ≥ 5 and t ≥ 5 since any non-facial cycle of G has length at least 8. By Remark 2.4.3, C does

not have a chord. So v1vk /∈ E(G) and u1ut /∈ E(G). This implies that h is a hexagon face of

G, and x1, x, x2 and v1, vk are five vertices on h. We denote the sixth vertex of h by y. Clearly,

y ∈ V (H1) by the planarity of G (see Fig. 2 (b)). Similarly, both u1 and ut have a common

neighbor in H1.

Since S is a perfect star packing of G and the two neighbors x1 and v2 of v1 are leaves in S, y

is the center of a star in S. If the third neighbor of y is on C, then it is on C1, denoted it by vr.

The three neighbors of y separate the circle C into three sections, two of which are subgraphs of

C1, denoted by C1
1 and C2

1 respectively. As the above discussion, we know that one of v1C
1
1vry

and vrC
2
1vky is a non-facial cycle of G. By the recursive process and the finiteness of the order

of G, we can suppose that the third neighbor of y is not on C, and denoted it by y′.

See Fig. 2 (b), the five vertices vk−1, vk, x2, u1, u2 belong to a common facial cycle h′ of G.

Since C does not have a chord by Remark 2.4 3, vk−1 and u2 are not adjacent in G. So h′ is a

hexagon. By the planarity of G, vk−1 and u2 have a common neighbor in H2. so vk−2, vk−1, vk, y

and y′ are on a face of G, say f . If f is a pentagon, then vk−2 is adjacent to y′. So all the three

neighbors of vk−2 are leaves in S. This implies a contradiction since vk−2 is also a leaf in S. If f

is a hexagon, then vk−2 and y′ have a common neighbor, denoted by z. Clearly, z is vk−3 or not.

For z = vk−3, the three neighbors of vk−3 are all leaves in S, a contradiction. For z 6= vk−3, by
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Remark 2.4 2, z is a leaf in S since y′ has a neighbor y ∈ C(S). So the three neighbors of vk−2

are all leaves in S, a contradiction. All these contradictions imply that C(S) does not have a

vertex which has three neighbors on C.

Let S be a perfect star packing of fullerene graph G and C be a cycle in G− C(S) which is

a non-facial cycle of G. C divides G into two sides, denoted by H1 and H2 respectively. Set Ci

be the set of all the vertices on C each of which has a neighbor in Hi, i = 1, 2. Clearly, {C1, C2}

is a partition of V (C). G[Ci] is a vertex induced subgraph of G which has vertex set Ci and

any two vertices of Ci are adjacent if and only if they are adjacent in G. See Fig. 4, G[C1] is

depicted as red and G[C2] is depicted as blue. In the following, we use these symbols no longer

explaining.

Lemma 3.4. For i = 1, 2, if a vertex x on C has a neighbor in Hi, then the component of the

induced subgraph G[Ci] which contains x is a path with 2 or 3 vertices.

Proof. We suppose that x on C has adjacent vertex in H1. For the convenience of the following

description, set C := xv1v2 · · · vkx. Since C is a cycle in G−C(S) which is a non-facial cycle of

G, the length of C is at least 8. So k ≥ 7. There are three cases for the two neighbors v1 and

vk of x on C.

Case 1. Both v1 and vk have neighbors in H2.

In this case, the three vertices v1, x and vk lie on the same face f of G (see Fig. 3 (a)). Since

all the vertices on C are leaves in S, the other neighbor of v1 (resp. vk) which is not on C is

the center of a star in S. So f has two vertices in C(S) which are the centers of two stars in S

covered v1 and vk, respectively. So f is a hexagon by Proposition 2.1. But the case cannot hold

by Propositions 2.5.

Case 2. Both v1 and vk have neighbors in H1.

In this case, the five vertices v2, v1, x, vk, vk−1 belong to a facial cycle h of G (see Fig. 3 (b)).

We claim that both v2 and vk−1 have neighbors in H2. Otherwise, at least one of v2 and vk−1

has a neighbor in H1. If v2 has a neighbor in H1 and vk−1 has a neighbor in H2, then the six

vertices v3, v2, v1, x, vk, vk−1 lie on a face h of G. So h is a hexagon and C has a chord v3vk−1,

a contradiction. For v2 having a neighbor in H2 and vk−1 having a neighbor in H1, we can also

obtain a chord of C, a contradiction. If both v2 and vk−1 have neighbors in H1, then the seven
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in H1, vk has one in H2.

vertices v3, v2, v1, x, vk, vk−1, vk−2 belong to a common face h of G. This implies that G has a

facial cycle of length at least 7, a contradiction. So both v2 and vk−1 have neighbors in H2, and

v2, v1, x, vk, vk−1 lie on a hexagon h of G (see Fig. 3 (b)). Since C does not have a chord, the

path v1xvk is a connected component of the induced subgraph G[C1].

Case 3. v1 has a neighbor in H1 and vk has a neighbor in H2, or v1 has a neighbor in H2

and vk has a neighbor in H1.

By the symmetry, it is sufficient to consider that v1 has a neighbor in H1 and vk has a

neighbor in H2. If v2 has a neighbor in H1, then v3 must have a neighbor in H2, otherwise, C

has a chord or G has a facial cycle of length at least seven, a contradiction. As the proof of Case

2, v3, v2, v1, x, vk lie on a hexagonal facial cycle. So the path v2v1x is a connected component

of the induced subgraph G[C1]. Now, we suppose that v2 has a neighbor in H2. Then the four

vertices vk, x, v1, v2 lie on the same face g of G. Since vk, x, v1, v2 are all leaves in S, g is a

pentagon and v2, vk have a common neighbor in H2 which is the center of a star in S (see Fig.

3 (c)). So the path xv1 is a connected component of the induced subgraph G[C1].

In summary, the component of the induced subgraph G[C1] which contains x is a path with

2 or 3 vertices since C does not have a chord.

In addition, we have the following Lemma.

Lemma 3.5. Each component of G[Ci] is a path with 2 or 3 vertices, i = 1, 2.

Proof. For any vertex x on C, x must have exactly one neighbor in H1 or H2 since G is 3-regular

9
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Fig. 4. (a) A cycle C of length 25; (b) A cycle C of length 30. (G[C1] is red and G[C2] is blue.)

and C does not have a chord. Without loss of generality, we suppose that x has exactly one

neighbor in H1. By Lemma 3.4, the component of the induced subgraph G[C1] which contains

x is a path with 2 or 3 vertices . We note that the choice of x is arbitrary. So the conclusion

holds.

Proposition 3.6. Let C = v0v1 · · · vk−1 be a non-facial cycle in G − C(S). (In the following,

the subscript is module k).

(i) If both vi and vi+1 have neighbors in H1 (or H2) and vi−1 and vi+2 have neighbors in H2 (or

H1), then the four vertices vi−1, vi, vi+1 and vi+2 lie on a pentagon of G.

(ii) If vi, vi+1, vi+2 have neighbors in H1 (or H2) and vi−1 and vi+3 have neighbors in H2 (or

H1), then the five vertices vi−1, vi, vi+1, vi+2 and vi+3 lie on a hexagon of G.

(iii) For j = 1, 2, if both vi and vi+1 have neighbors in Hj (we denote the two edges incident

to vi and vi+1 not lie in C by ei and ei+1, respectively), then the facial cycle containing both ei

and ei+1 is a hexagon, and two antipodal points on this hexagon are centers of two stars in the

perfect star packing S.

Proof. Cases (i) and (ii) can be easily obtained from the proof of the Cases 2 and 3 of Lemma

3.4 (see Fig. 3). Since all the vertices on C are leaves in the perfect star packing S, the other
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end of ei (resp. ei+1) which is not on C, denoted by ui (resp. ui+1), is the center of a star in S.

We know that any facial cycle of G is a pentagon or a hexagon. So ui and ui+1 are distinct. By

Lemmas 2.1 and 2.5, the facial cycle containing both ei and ei+1 is a hexagon, and ui and ui+1

are antipodal points on this hexagon.

For example, in Fig. 4, except for fi, i ∈ {1, 2, 3, 4, 5} the other faces sharing edges with C

are all hexagons. Moreover, how the vertices on C being covered by S is determined.

We recall that the the union of two graphs G1 and G2 is denoted by G1∪G2, which has vertex

set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). Let n3 be the number of the components of

G[C1]∪G[C2] each of which is isomorphic to a path with 3 vertices. Similarly, n2 is the number

of the components of G[C1] ∪G[C2] each of which is isomorphic to a path with 2 vertices. For

example, n3 = n2 = 5 in Fig. 4 (a) and n3 = 10, n2 = 0 in Fig. 4 (b).

Observation 1. n2 + n3 is even.

Proposition 3.7. Let S be a perfect star packing of fullerene graph G and C a cycle in G−C(S)

which is a non-facial cycle of G. Then the length of C is 3n3 + 2n2, and has the the same parity

with n2 and n3.

Proof. Clearly, the length of C is 3n3 +2n2 by Lemma 3.5. So n3 is odd if and only if the length

of C is odd. Since n2 + n3 is even by Observation 1, the parity of n2 and n3 are same. Then we

are done.

Theorem 3.8. Let S be a perfect star packing of fullerene graph G. Then G − C(S) has even

number of odd cycles.

Proof. If G−C(S) does not have a non-facial cycle of G, then any pentagon of G does not have

a vertex in C(S) by Corollary 3.2. So all the vertices on pentagons are leaves in S. It implies

that G − C(S) has exactly twelve odd cycles, each of which is a pentagon. Next, we suppose

that G− C(S) has a non-facial cycle of G, denoted by C.

Claim 1. If C is an even cycle, then G has even number of pentagons which share edges

with C. If C is an odd cycle, then G has odd number of pentagons which share edges with C.

By Proposition 3.6, the number of pentagons which share edges with C is equal to n2. By

Proposition 3.7, n2 and the length of C have the same parity. So the Claim holds.
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Claim 2. Any pentagon of G shares edges with at most one non-facial cycle in G− C(S).

Let P be a pentagon of G. By Proposition 2.1, P has at most one vertex which is the center

of a star in S. If P does not have a vertex in C(S), then P is a cycle in G−C(S). By Theorem

2.3, each component of G−C(S) is an induced cycle of G. So P does not share edges with any

non-facial cycle in G − C(S). If P has a vertex x ∈ C(S), then by Corollary 3.2 P − x is a

subgraph of a non-facial cycle in G−C(S). So P shares edges with exactly one non-facial cycle

in G− C(S).

Now, we consider the following two cases for the non-facial cycles in G− C(S).

Case 1. G− C(S) does not have a non-facial cycle of odd length.

Then any non-facial cycle C in G− C(S) is of even length. By the above Claims, there are

even number of pentagons in G such that they share edges with C. Since G has exactly twelve

pentagons, there are even number of pentagons in G each of which does not share edges with

non-facial cycles in G − C(S). These pentagons must be cycles in G − C(S) by Corollary 3.2.

Hence G− C(S) has even number of odd cycles.

Case 2. G− C(S) has some non-facial cycle of odd length.

Suppose that G−C(S) has exactly k non-facial cycles of odd length. We denote the number

of pentagons in G each of which does not share edges with non-facial cycles in G− C(S) by p.

These p pentagons must be cycles in G − C(S) by Corollary 3.2. So G − C(S) has p + k odd

length cycles. Next, we show that p and k have the same parity. If p is odd, then G has odd

number of pentagons each of which share edges with exactly one non-facial cycle in G − C(S)

since G has exactly 12 pentagons. By the above Claims, for each even length non-facial cycle in

G−C(S), G has even number of pentagons which share edges with the cycle, and for each odd

length non-facial cycle in G − C(S), G has odd number of pentagons which share edges with

the cycle. So G − C(S) has odd number of non-facial cycles of odd length. This means that k

is odd. For p being even, we can similarly show that k is even. So k and p have the same parity

and p + k is even.

Clearly, for a fullerene graph G with a perfect star packing, its order must be divisible by 4.

So the order of G is 8k or 8k + 4 for some positive integer k. Now, we can obtain the following

main theorem which illustrate that the order of G can not be 8k + 4.
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Theorem 3.9. If fullerene graph G has a perfect star packing, then the order of G is divisible

by 8.

Proof. We suppose that S is a perfect star packing of G and Co and Ce are the collections of all

the odd cycles and even cycles in G−C(S), respectively. Then we have the following equation.

|V (G)| = |C(S)|+
∑
C∈Co

|C|+
∑
C∈Ce

|C|

=
|V (G)|

4
+

∑
C∈Co

|C|+ even.
(1)

By Theorem 3.8, Co has even number of elements. Combine the above equation, we know that

|V (G)|
4 × 3 is even. Hence |V (G)|

4 is even, that is, the order of G is divisible by 8.

This theorem is equivalent to the following corollary.

Corollary 3.10. A fullerene graph with order 8n + 4 does not have a perfect star packing.

We recall that a dominating set of a graph G is a set of vertices D such that each vertex

in V (G) − D is adjacent to a vertex in D. Moreover, if each vertex in V (G) − D is adjacent

to exactly one vertex in D and D is an independent vertex set, then D is called efficient. The

problem of determining the existence of efficient dominating sets in some families of graphs was

first investigated by Biggs [4] and Kratochvil [24]. Later Livingston and Stout [26] studied the

existence and construction of efficient dominating sets in families of graphs arising from the

interconnection networks of parallel computers. The problem of finding an efficient dominating

set, however, is algorithmically hard [2]. For more results and some historical background

regarding efficient dominating set, we refer the reader to [8, 9, 22, 10] etc.

From the definitions of the efficient dominating set and the perfect star packing of a fullerene

graph G, the following proposition is a natural result.

Proposition 3.11. A fullerene graph G with n vertices has a perfect star packing if and only if

G has an efficient dominating set of cardinality n
4 .

Combine Theorem 3.9 and Proposition 3.11, we get the following theorem.

Theorem 3.12. The order of a fullerene graph with an efficient dominating set is 8n.
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4 Some other conclusions

Došlić et. al. gave the following spectral necessary condition for the existence of a perfect star

packing in a fullerene graph.

Proposition 4.1 ([13]). If a fullerene graph G has a perfect star packing, then −1 must be an

eigenvalue of the adjacency matrix of G.

The proof of this Theorem can be translate to a simple r-regular graph. Here for complete-

ness, we prove as follows. For the definition of eigenvalues of the adjacency matrix of a graph,

we refer the reader to [17].

Theorem 4.2. If a simple r-regular graph G has a perfect K1,r-packing S, then −1 must be an

eigenvalue of the adjacency matrix of G.

Proof. Let C(S) be the set of centers of stars K1,r in S. We define the characteristic vector

−→c ∈ R|V (G)| of C(S) as follows: ci = 1 if i ∈ C(S), otherwise ci = 0. Set −→u be the vector

of all ones. For the adjacency matrix A of G, we have A−→u = r−→u since G is r-regular. Let

−→w = −→u − (r + 1)−→c . As A−→c = −→u −−→c , we have

A−→w = A−→u − (r + 1)A−→c = r−→u − (r + 1)−→u + (r + 1)−→c = (r + 1)−→c −−→u = −−→w (2)

This implies that −1 is an eigenvalue of A.

A perfect star packing S of a fullerene graph G is of type P0 if no center of a star in S is on

a pentagon of G. For such perfect star packing, the following corollary holds.

Corollary 4.3. If fullerene graph G has a perfect star packing S of type P0, then G − C(S)

does not have a non-facial cycle of odd length.

Proof. By the contrary, we suppose that G − C(S) has a non-facial cycle C of odd length. By

the Claim 1 of Theorem 3.8, G has a pentagon P which share edges with C. This implies that

P contains the center of a star in S. This contradicts that S is of type P0. So G − C(S) does

not have a non-facial cycle of odd length.

In the above Corollary, we note that G − C(S) may have non-facial cycles of even lengths

(see Fig. 5, the blue cycle in C120).

Now, we point out the error of the Theorem 14 in [13].
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Theorem 4.4 ([13]). A fullerene graph on 8n vertices has a perfect star packing of type P0 if

and only if it arises from some other fullerene via the chamfer transformation.

120
C

144
C

384
C

Fig. 5. Each of C120, C144, C384 has a unique perfect star packing of type P0 which is depicted in bold

edges.

In the proof of the necessity of this Theorem, there exist the following problem. Take a

fullerene graph with a perfect star packing of type P0. All star centers lie on vertices shared by

three hexagons. When we connect the centers of stars lying on the same hexagons, the resulting

graph is planar, but does not have to be 3-regular, 3-connected and have only pentagonal and

hexagonal faces. For example, it is easy to check that each of the fullerene graphs C120, C144, C384

(see Fig. 5) has a unique perfect star packing of type P0. When we connect the centers of stars

lying on the same hexagons, the resulting graph (the red dashed line in Fig. 5 is the resulting
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graph for C120, and here we omit the resulting graphs for C144 and C384) is planar and is not

connected. In fact, the three fullerene graphs C120, C144 and C384 as depicted in Fig. 5 cannot

arise from some other fullerene via the chamfer transformation. So the necessity of this theorem

does not hold, however, its sufficiency is right. It can be corrected as follows.

Theorem 4.5. A fullerene graph that arises from some other fullerene via the chamfer trans-

formation must have a perfect star packing of type P0.

From paper [13], we know that fullerenes with two pentagons sharing an edge can not have

a perfect star packing of type P0 since the edge shared by the two pentagons cannot lie in

any star. Next we list some other forbidden configurations whose presence in a fullerene graph

precludes the existence of a perfect star packing of type P0.

1PP 3PP 4PP

1
v1

v
2

v2
v 1

v
2

v

1
x

2
x

3
x

Fig. 6. Three forbidden configurations.

Proposition 4.6. If a fullerene graph G contains a subgraph PP1, PP3 or PP4 (see Fig. 6),

then it cannot have a perfect star packing of type P0.

Proof. By the contrary, we suppose that G has a perfect star packing of type P0, denoted by

S. Clearly, the vertices v1 and v2 (see Fig. 6) are leaves in S. If PP4 is a subgraph of G, then

x1 is the center of a star in S since all vertices on a pentagon are leaves in S. So x2 is a leaf in

S. By Remark 2.4 2, the neighbor x3 of x2 is also a leaf in S. This implies that all the three

neighbors of v2 are leaves in S, a contradiction. For subgraphs PP1 and PP3, we can similarly

show that v2 has all its three neighbors being leaves in S, a contradiction.
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