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A Diophantine m-tuple is a set of m distinct integers such that the product of any two
distinct elements plus one is a perfect square. It was recently proven that there is no
Diophantine quintuple in positive integers. We study the same problem in the rings of
integers of imaginary quadratic fields. By using a gap principle proven by Diophantine
approximations, we show that m ≤ 42. Our proof is relatively simple compared to the
proofs of similar results in positive integers.

Keywords: Diophantine m-tuples; Diophantine approximation; Pell equations; rings of
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1. Introduction

Diophantus of Alexandria was studying sets of rational numbers such that the
product of any two distinct elements is one less than a perfect square. The natural
question regarding these sets is their possible size. Throughout history, this ques-
tion has remained interesting to number theorists. Through Fermat (who found
an integer Diophantine quadruple {1, 3, 8, 120}) and Euler (who found an infinite
family of Diophantine quadruples in positive integers), to Baker and Davenport,
who have proven the first result on the uniqueness of the extension of a Diophan-
tine triple to a quadruple [1]. To be more specific, using linear forms in logarithms,
they have proven that, if {1, 3, 8, d} is a Diophantine quadruple in positive integers,

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
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then d = 120. In other words, there is a unique extension to a quadruple (and this
extension gives us an example which Fermat found). Let us note here that, when
we talk about the extension of a set, we implicitly assume that the property of
being a Diophantine m-tuple is retained. The work of Baker and Davenport has
motivated two conjectures — each triple can be extended to a quadruple with a
larger element in a unique way, and, in a weaker version, there is no Diophantine
quintuple in positive integers. This weaker conjecture was recently proven [7], while
the stronger conjecture remains open. At a similar time, in [4], it was found that
there are infinitely many Diophantine sextuples in rational numbers. Generalizing
results from integers to rationals can be very hard. On the other hand, it is reason-
able to assume that the transition to analogous problems in other rings of integers
will be easier. However, even in this ambient, there are not many results, e.g. we
find less than 10 papers solving similar problems in the ring of Gaussian integers.
We can highlight [2, 6], which deal with the extension of Diophantine triples from
one-parameter families. Yet, due to the similarities of this ring with the usual ring
of rational integers, we can expect that the similar results will hold and that one
can prove them using similar techniques. The goal of this research is to answer how
many elements can a Diophantine m-tuple in imaginary quadratic number ring
have, or, to be more specific and modest, to provide an upper bound on the size of
a Diophantine m-tuple.

Let OK be the ring of integers of an imaginary quadratic number field K. A
Diophantine triple {a, b, c} ⊆ OK induces an elliptic curve E : y2 = (ax + 1)(bx +
1)(cx+1) defined over K. For every d such that {a, b, c, d} is Diophantine quadruple,
there exist r, s, t such that ad+1 = r2, bd+1 = s2 and cd+1 = t2. We obtain an OK -
integral point (d, rst) on E. Since an elliptic curve has finitely many integral points
[10], every Diophantine triple can be extended with only finitely many elements.
We conclude that every Diophantine m-tuple is finite. Unfortunately, this does not
provide us with an effective absolute bound on the size of such sets.

We approach this problem in the following way. Assume that a Diophantine
triple {a, b, c} in imaginary quadratic number ring OK can be extended with a
fourth element d. By eliminating d from the equations it satisfies (ad + 1 = x2,
bd+1 = y2 and cd+1 = z2), we get a system of two Pell-type equations with common
unknown. A solution of this system gives us two simultaneous approximations of
square roots close to 1. Then, we apply a variant of Bennett’s theorem developed
for imaginary quadratic number rings by Jadrijević and Ziegler [8]. We obtain the
gap principle which can be tersely stated as follows. In a Diophantine quadruple, if
the third element (by size) is much bigger than the second element, then the fourth
element is bounded from above by a power of the third element. Combining this
result with a simple lower bound on the largest element of a Diophantine quadruple
(in terms of the smallest element), we obtain a proof by contradiction (assuming
that there exists a Diophantine m-tuple with m ≥ 43). Thus, the main result of
this paper is the following theorem.
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Theorem 1. There is no Diophantine m-tuple in imaginary quadratic number ring
with m ≥ 43.

2. System of Pell-Type Equations

Let {a, b, c} ⊂ OK be a Diophantine triple in the imaginary quadratic number ring
OK . Without loss of generality, we may assume 0 < |a| ≤ |b| ≤ |c|. Then there are
r, s and t in OK such that ab + 1 = r2, ac + 1 = s2, bc + 1 = t2.

Since the equation X2 − Y 2 = 1 has only trivial solutions (XY = 0), the
numbers ac and bc are not squares in OK . Namely, ac �= i2 = −1 and |s| �= 1 since
there are no three numbers {a, b, c} of absolute value 2 or less which make up a
Diophantine triple. Similarly, ab is not a square: if we assume the contrary, then
r = 0 and {a, b} = {−1, 1} (or {a, b} =

{−1+
√−3
2 , 1+

√−3
2

}
). There is no c �= 0

such that {a, b, c} is a Diophantine triple, because −c + 1 = s2 and c + 1 = t2

imply 1 − c2 = s2t2, hence c = 0 or st = 0, which means c = ±1 ∈ {a, b}. Similar
reasoning resolves the case {a, b} =

{−1+
√−3
2 , 1+

√−3
2

}
, subtracting and multiplying

equations containing c shows that c = ±1, but {a, b, c} is not a Diophantine triple.
Let us note here that the solutions of this equation (X2 − Y 2 = 1) in the ring

of integers of imaginary quadratic field are described in [5]. Numbers ab, ac and bc

are not squares even in K since OK is integrally closed in K. We have proven the
following lemma.

Lemma 1. If {a, b, c} is a Diophantine triple in the imaginary quadratic number
ring OK and abc �= 0, then ab, ac and bc are not squares in K.

If there is d ∈ OK such that {a, b, c, d} is a Diophantine quadruple, then there
are x, y, z ∈ OK such that ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Therefore
a(cd + 1) − c(ad + 1) = az2 − cx2 and az2 − cx2 = a − c. Analogously, eliminating
d from the second and third equation, we get bz2 − cy2 = b − c. We have obtained
a system of the equations

az2 − cx2 = a − c, (1)

bz2 − cy2 = b − c. (2)

These equations are similar to Pell’s equations and their solutions have a very
similar structure. The solutions of Pell-type equations (x2−Dy2 = N) in imaginary
quadratic rings are described in [5].

From now on, we will always assume that 0 is not an element of a Diophantine
m-tuple. We will also assume that the elements are sorted by absolute value (in
ascending order).

3. Gap Principle (Obtained by Diophantine Approximations)

Here, we prove that the solution of (1) and (2) provides us two simultaneous approx-
imations of square roots close to 1 by elements of K.
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Lemma 2. Let (x, y, z) be a solution of the system of equations (1) and (2).
Assume that |c| > 4|b| and |a| ≥ 2. If θ

(1)
1 = ± s

a

√
a
c , θ

(2)
1 = −θ

(1)
1 and θ

(1)
2 =

± t
b

√
b
c , θ

(2)
2 = −θ

(1)
2 , where the signs are chosen such that

∣∣∣θ(1)
1 − sx

az

∣∣∣ ≤ ∣∣∣θ(2)
1 − sx

az

∣∣∣ and
∣∣∣∣θ(1)

2 − ty

bz

∣∣∣∣ ≤
∣∣∣∣θ(2)

1 − ty

bz

∣∣∣∣ ,

then ∣∣∣∣θ(1)
1 − sbx

abz

∣∣∣∣ ≤ |s| · |c − a|
|a|√|ac| · 1

|z|2 <
21
16

|c|
|a| ·

1
|z|2 and

∣∣∣∣θ(1)
2 − tay

abz

∣∣∣∣ ≤ |s| · |c − b|
|b|√|bc| · 1

|z|2 <
21
16

|c|
|a| ·

1
|z|2 .

Proof. The following holds:

∣∣∣θ(1)
1 − sx

az

∣∣∣ =
∣∣∣∣(θ(1)

1 )2 − s2x2

a2z2

∣∣∣∣ · ∣∣∣θ(1)
1 +

sx

az

∣∣∣−1

=
∣∣∣∣ s2

a2

∣∣∣∣ · |az2 − cx2|
|c||z|2 ·

∣∣∣θ(2)
1 − sx

az

∣∣∣−1

=
|s|2|c − a|
|a|2|c|

∣∣∣θ(2)
1 − sx

az

∣∣∣−1

· 1
|z|2 .

Since 2
∣∣θ(2)

1 − sx
az

∣∣ ≥ ∣∣θ(2)
1 − sx

az

∣∣ +
∣∣θ(1)

1 − sx
az

∣∣ ≥ ∣∣θ(2)
1 − sx

az − (
θ
(1)
1 − sx

az

)∣∣ =
|θ(2)

1 − θ
(1)
1 | = 2

∣∣ s
a

√
a
c

∣∣, we conclude that
∣∣θ(2)

1 − sx
az

∣∣ ≥ ∣∣ s
a

√
a
c

∣∣.
Hence

∣∣θ(1)
1 − sbx

abz

∣∣ ≤ |s|2|c−a|
|a|2|c|

∣∣a
s

√
c
a

∣∣· 1
|z|2 , which implies the first inequality in this

lemma’s statement. We also need to prove |s|·|c−a|
|a|
√

|ac| ·
1

|z|2 < 21
16

|c|
|a| · 1

|z|2 , i.e. |√ac + 1| ·

|c − a| < 21
16 |c|

√|ac|, which is equivalent to
∣∣√1 + 1

ac

∣∣ < 21
16

|c|
|c−a| . The condition

|c| > 4|a| implies that 21
16

|c|
|c−a| ≥ 21

20 . Left-hand side is
∣∣√1 + 1

ac

∣∣ ≤ √∣∣1 + 1
|ac|

∣∣ ≤√
1 + 1

16 =
√

17
4 , implying the second inequality stated.

The other pair of inequalities is proven analogously (we have used |c| > 4|a| and
|a| ≥ 2).

We will now apply Jadrijević–Ziegler theorem from [8].

Theorem 2 (Jadrijević–Ziegler [8, Theorem 7.1]). Let θi =
√

1 + ai

T , i = 1, 2
with a1 and a2 distinct quadratic integers in the imaginary quadratic field K and
let T be an algebraic integer of K. Further, let M = max{|a1|, |a2|}, |T | > M and

L =
27

16|a1|2|a2|2|a1 − a2|2 (|T | − M)2 > 1.

1950020-4

B
ul

l. 
M

at
h.

 S
ci

. 2
02

1.
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

5:
4f

46
:4

24
:f

60
0:

41
2f

:1
b0

d:
5b

ca
:4

74
1 

on
 0

9/
04

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 12, 2021 16:22 WSPC/1664-3607 319-BMS 1950020

On the size of Diophantine m-tuples in imaginary quadratic number rings

Then

max
{∣∣∣∣θ1 − p1

q

∣∣∣∣ ,
∣∣∣∣θ2 − p2

q

∣∣∣∣
}

> c|q|−λ,

for all algebraic integers p1, p2, q∈K, where

λ = 1 +
log P

log L
, c−1 = 4pP (max{1, 2l})λ−1,

l =
27
64

|T |
|T | − M

, p =

√
2|T |+ 3M

2|T | − 2M
,

P = 16
|a1|2|a2|2|a1 − a2|2

min{|a1|, |a2|, |a1 − a2|}3
(2|T | + 3M).

Using this theorem, we will show that, if the second and the third element of a
Diophantine m-tuple are sufficiently away from each other, then the fourth element
is bounded by a power of the third element. More precisely, we prove the following
proposition.

Proposition 1 (Gap Principle). If {a, b, c, d} ⊆ OK is a Diophantine quadruple
such that |ac| ≥ 9, |b| ≥ 3

2 |a|, |b| > 5 and |c| > |b|15, then |d| < 427820|c|50.

Proof. The solution (x, y, z) of (1) and (2) gives us simultaneous approximations of

θ1 = ± s

a

√
a

c
= ±

√
s2a

a2c
= ±

√
ac + 1

ac
= ±

√
1 +

b

abc
and θ2 = ±

√
1 +

a

abc
.

We let a0 = 0, a1 = b, a2 = a, T = abc, M = |b|, and note that l = 27|abc|
64(|abc|−|b|) < 1

2 ,
since this is equivalent to 27|ac| < 32(|ac|− 1), which holds for |ac| > 32

5 . Similarly,

p =

√
2|abc|+ 3|b|
2|abc| − 2|b| =

√
1 +

5
2(|ac| − 1)

≤
√

1 +
5

2(9 − 1)
=

√
21
16

. (3)

Since l < 1
2 , it follows that c = 1

4pP . Hence, by (3), c ≥ 1√
21P

.

We also observe that min{|a|, |b|, |b − a|} ≥ |a|
2 because |b − a| ≥ |b| − |a| ≥ |a|

2 .
Hence

P = 16
|a|2|b|2|b − a|2

min{|a|, |b|, |b − a|}3
(2|abc|+ 3|b|) ≤ 128

|b|3|b − a|2
|a| (2|ac| + 3) and

L =
27

16|a|2|b|2|b − a|2 (|abc| − |b|)2 =
27(|ac| − 1)2

16|a|2|b − a|2 .

Here, the condition L > 1 of Jadrijević–Ziegler theorem is equivalent to 27(|ac|−
1)2 > 16|a|2|b−a|2. Taking the square root, we get a simpler claim 3

√
3(|ac|−1) >

4|a||b−a|. Since |c| > |b|3 (and |b| ≥ 3
2 |a|), even a stronger claim, |ac|−1 > |a||b−a|,
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holds. Namely, using the assumptions and the triangle inequality we get |ac| − 1 >

|a| · |b|3 − 1 > 2|a|2|b| − 1 > |a| · |b| + |a2| ≥ |ab − a2| = |a||b − a|.
We observe that λ > 1 since both P and L are greater than 1 (|b| > |a| implies

P > 1). We will show that |c| > |b|15 implies λ < 1.9. Since λ = 1+ log P
log L , we obtain

the equivalent statements λ < 1.9, log P
log L < 0.9, and P < L0.9. Plugging L and using

the inequality proven for P , we see that we should prove

128|b|3|b − a|3.8|a|0.8(2|ac| + 3) <

(
27
16

)0.9

(|ac| − 1)1.8.

Since |ac| − 1 > 8
21 (2|ac| + 3), it suffices to show that 336|b|3|b − a|3.8|a|0.8 <(

27
16

)0.9(|ac| − 1)0.8. We prove the stronger inequality

210|b|3|b − a|3.8|a|0.8 < (|ac| − 1)0.8. (4)

The right-hand side of (4), (|ac| − 1)0.8 is greater than (|ac|)0.8 − 1, because the
function f(t) = (t − 1)0.8 − t0.8 + 1 is 0 at t = 1 and the function is increasing.
Hence, if |c| > |b|15, then (|ac| − 1)0.8 > |a|0.8|b|12 − 1, which is greater than the
left-hand side of (4), 210|b|3|b− a|3.8|a|0.8, because of the larger degree of |b|. More
precisely, since |b| ≥ 3

2 |a|, i.e. |a| ≤ 2
3 |b|, we conclude that

210|b|3|b − a|3.8|a|0.8 ≤ 210|b|3
(

5
3
|b|

)3.8 ∣∣∣∣2b

3

∣∣∣∣
0.8

< 1058|b|7.6 < |b|12 − 1.

The last inequality is again obtained by simple analysis of auxiliary function f(t) =
t12−1058t7.6−1 whose largest root 4.86836 is determined numerically. Since |b| > 5,
we have proven that λ < 1.9.

Jadrijević–Ziegler theorem, together with Lemma 2, yields

21
16

|c|
|a| ·

1
|z|2 >

1√
21P

|abz|−λ ≥ |a|√
21 · 128|b|3|b − a|2(2|ac| + 3)

|abz|−λ,

implying 168
√

21 |c|
|a|2 |b|3|b − a|2(2|ac| + 3) · |ab|λ > |z|2−λ > |z|0.1. Therefore,

|z|0.1 < 168
√

21|c| · 3|ac| · |b − a|2|b|3+λ|a|λ−2

< 504
√

21|c|2 · 2
3
|b| ·

(
5
3
|b|

)2

|b|4.9 (since |b| ≥ 2|a| and λ < 1.9)

< 4728|c|2|b|7.9 < 4728|c| 30+7.9
15 < 4728|c|2.53

and, finally, |z| < 472810|c|2.53·10 = 472810|c|25.3.
We conclude |d| = |z2−1|

|c| ≤ |z|2+1
|c| ≤ 472820|c|50.6+1

|c| < 472820|c|50.
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4. A Lower Bound on the Element Extending a Diophantine Triple

In the previous section, we have proved an upper bound on the fourth element of
a Diophantine m-tuple. We will now find a lower bound so that we can juxtapose
these two bounds. To find it, we need a definition and a few lemmas.

Definition 1. A Diophantine triple {a, b, c} is regular if c = a + b ± 2r, where
r2 = ab + 1.

Lemma 3. If {a, b, c, d} is a Diophantine quadruple such that 2 ≤ |a| ≤ |b| ≤ |c| ≤
|d|, then at least one of the triples {a, b, c} and {a, b, d} is not regular, i.e. it is
impossible that c = a+ b− 2r and d = a+ b+2r (or vice versa), where ab+1 = r2.

Proof. Assume the contrary. Then cd = (a+b)2−4r2 = a2 +2ab+b2−4(ab+1) =
a2 − 2ab + b2 − 4 and cd + 1 = (a − b)2 − 3. Since {c, d} is a Diophantine pair,
there is an integer z ∈ OK such that cd + 1 = z2. Hence (a − b)2 − 3 = z2,
i.e. (a − b − z)(a − b + z) = 3. Therefore, on the left-hand side there are two
elements of OK of absolute value less than 3 (or one of them is a unit) and their
norms are divisors of 9.

First, we deal with non-unit solutions in the case K = Q[
√

D], where D ≡ 1
(mod 4). Let ρ = −1+

√
D

2 be the generator of OK over Z. Using the fact that the
absolute value of the norm of x + yρ is

∣∣x2 + xy − D−1
4 y2

∣∣ = (x + y
2 )2 + |D|

4 y2 =3,
we easily see that for |D| ≥ 13, y must be 0 and x+ y

2 = ±√
3, which is impossible.

For D = −7, multiplying the equation by 4, we get (2x + y)2 + 7y2 = 12, which
has no solutions in integers x and y. For D = −3 we get the equation (2x + y)2 +
3y2 = 12 which has solutions x = −1, y = 2 and x = 1, y = −2. This gives us
a − b − z = −1 + 2ρ, a − b + z = 1 − 2ρ (or vice versa) and cd = z2 − 1 = −4

√−3
(or cd = −4), which implies that |c| ≤

√
4
√

3. Now, we check all triples with
absolute value of elements between 2 and

√
4
√

3 to find only two Diophantine
triples {−2, 2,−2

√−3} and {−2, 2, 2
√−3}. However, −2

√−3 · 2√−3 + 1 = 13 is
not a square, so {a, b, a + b − 2r, a + b + 2r} = {−2, 2,−2

√−3, 2
√−3} is not a

Diophantine quadruple.
Now, let K = Q[

√
D] where D ≡ 2, 3 (mod 4). Analogously as in the previous

case, x2 + |D|y2 < 3 has no non-unit solutions for |D| ≥ 6. Similarly, for D = −2,
we get the solution a− b± z = 1±√−2, which implies 2z = ±2

√−2, i.e. cd = −3.
However, one checks that there is no Diophantine quadruple in Z[

√−2] with such
small elements (and |a| ≥ 2).

Unit solutions are easy to check, e.g. in Z[i] number 3 is prime, and it can be
factored in Z[i] in the following ways: 3 = 1 ·3, 3 = −1 ·(−3), 3 = i ·(−3i), 3 = −i ·3i,
up to the order of the factors. In first two cases, subtracting a− b+ z and a− b− z

implies 2z = ±2, i.e. z = ±1, which would imply cd = 0. In the other two cases, we
conclude z = ±2i in the same manner, which implies cd + 1 = −4 and cd = −5,
which is impossible for |c| >

√
5. Now, one just checks that there is no Diophantine

1950020-7

B
ul

l. 
M

at
h.

 S
ci

. 2
02

1.
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

5:
4f

46
:4

24
:f

60
0:

41
2f

:1
b0

d:
5b

ca
:4

74
1 

on
 0

9/
04

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



April 12, 2021 16:22 WSPC/1664-3607 319-BMS 1950020

N. Adžaga

triple {a, b, c} such that 2 ≤ |a|, |b|, |c| ≤ √
5. Analogous reasoning resolves the

number ring OK = Z[−1+
√−3
2 ].

Lemma 4. If {a, b, c, d} is a Diophantine quadruple such that 2 ≤ |a| ≤ |b| ≤ |c| ≤
|d|, then |d| ≥ |ab|

8 ≥ |a|2
8 .

Remark 1. We conjecture that the stronger claim also holds, if d �= a + b + c +
2abc ± 2rst (where s2 = ac + 1 and t2 = bc + 1), then |d| ≥ 4|ab|. This claim holds
in Z (see, e.g. [9]).

Proof. Using the previous lemma, without loss of generality, we may assume that
{a, b, d} is not a regular triple. Denote ab + 1 = r2, ad + 1 = x2, bd + 1 = y2.

Then c± = a + b + d +2abd± 2rxy is not 0. Indeed, the claim c± = 0 is equiva-
lent to the claims a+b+d+2abd = ∓2rxy, (2ab+1)2d2+2(a+b)(2ab+1)d+(a+b)2 =
4(ab + 1)(ad + 1)(bd + 1) and d2 − 2(a + b)d + (a − b)2 − 4 = 0. Solutions of this
quadratic equation for d are exactly a+ b± 2r. Since {a, b, d} is not a regular triple
(d �= a + b ± 2r), we conclude that c± �= 0.

Consider now the product c+c− = (a + b + d + 2abd)2 − 4r2x2y2 = a2 + b2 +
d2 − 2ab− 2ad− 2bd− 4. Hence |c+c−| ≤ |a|2 + |b|2 + |d|2 + 2|ab|+ 2|ad|+ 2|bd|+ 4.
Since |d| ≥ |a|, |b| and |d|2 ≥ 4 (there is no Diophantine quadruple with the largest
element less than 2 by absolute value), it follows that |c+c−| ≤ 10|d|2.

On the other hand, |c+ + c−| = 2|a + b + d + 2abd|. Assume that |c+| ≥ |c−|.
Then 2|c+| ≥ |c+| + |c−| ≥ |c+ + c−| and |c+| ≥ |a + b + d + 2abd|.

Since |b| ≥ |a| ≥ 2, it follows that |ab| ≥ 4, so |a + b + d| ≤ 3|d| ≤ 3
4 |abd|. We

conclude that

|c+| ≥ |a + b + d + 2abd| ≥ 2|abd| − |a + b + d| ≥ 2|abd| − 3
4
|abd| =

5
4
|abd|.

Juxtaposition of this lower bound on |c+| with the upper bound on |c+c−| implies
that |c−| ≤ 10|d|2

|c+| ≤ 10|d|2
5
4 |abd| = 8|d|

|ab| . Because c− �= 0, it follows that |c−| ≥ 1, so we

can conclude that 8|d|
|ab| ≥ |c−| ≥ 1 and |d| ≥ |ab|

8 ≥ |a|2
8 .

5. An Upper Bound on the Size of Diophantine m-Tuple

Here, we prove our main result, the following theorem.

Theorem 1. There is no Diophantine m-tuple in imaginary quadratic number ring
OK with m ≥ 43.

Proof. Assume the contrary, that there is a Diophantine m-tuple {a1, a2, . . . , am}
sorted by absolute value (0 < |a1| ≤ · · · ≤ |am|) and m ≥ 43. By using the
computer, we have checked that there is no Diophantine quintuple with absolute
value of elements at most 16. For a fixed D it is clear that one can do this. For
|D| > 32 all the elements of absolute value less or equal than 16 are real ones. On
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the other hand, for |D| > 256, it is not possible that aiaj + 1 = (y
√−D)2 = −Dy2

since |aiaj + 1| ≤ 257. Therefore, |a4| ≥ 2, |a5| ≥ 16. Now, we repeatedly apply
Lemma 4 on different subsets of {a1, a2, . . . , am}, and each obtained inequality is
used in the next appliance:

{a7, a8, a9, a10} Lemma 4=⇒ |a10| ≥ |a7|2
8

{a10, a11, a12, a13} ⇒ |a13| ≥ |a10|2
8

≥ |a7|4
83

{a13, a14, a15, a16} ⇒ |a16| ≥ |a13|2
8

≥ |a7|8
87

...

{a22, a23, a24, a25} ⇒ |a25| ≥ |a7|64
863

.

Let us now show that we can apply Proposition 1 on {a4, a7, a25, a25+k} for k > 0
since |a4| ≥ 2 and |a5| > 12. Namely, by using Lemma 4 on {a4, a5, a6, a7}, we can
conclude that |a7| ≥ |a4a5|

8 > 3
2 |a4|. Previously obtained inequality guarantees that

|a25| > |a7|15 (it suffices to show that |a7|64
863 > |a7|15, i.e. |a7| > 14.5, which holds

because |a7| ≥ |a5| ≥ 16). The conditions of Proposition 1 hold.
Therefore, Proposition 1 implies

|a25+k| < 427820|a25|50. (5)

However, we can continue to apply Lemma 4:

{a25, a26, a27, a28} ⇒ |a28| ≥ |a25|2
8

{a28, a29, a30, a31} ⇒ |a31| ≥ |a28|2
8

≥ |a25|4
83

. . . ⇒ |a43| ≥ |a25|64
863

> 427820|a25|50,

which contradicts the inequality (5). Namely, the last inequality is equivalent to
|a25|14 ≥ 863 · 427820, i.e. it is true for |a25| > 1.784 · 109, which holds since |a25| ≥
|a7|64
863 ≥ 1664

863 .

Let us note here that computer search did not yield any Diophantine quintuple
in imaginary quadratic numbers rings, nor has the more systematic search by Gibbs
found Diophantine quintuples in Z[

√−d] for positive integer d < 50 (as reported
on the ResearchGate). Even so, we do not see any a priori reason why would all the
imaginary quadratic number rings have the largest Diophantine m-tuple of the same
size m. The method used here most likely will not suffice to prove the strongest
upper bound, even in the more specific situation of Gaussian integers. However, it
is interesting that we have managed to find such a simple proof of the first uniform
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bound on the size of Diophantine m-tuple (in imaginary quadratic number rings)
because such results usually required more complex proofs involving linear forms
in logarithms (see, for example, [3], for the first proof of the uniform upper bound
in integers).
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