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1. Introduction. The curve X (N) is the quotient of the modular
curve Xo(N) by the Atkin-Lehner involution wy (also called the Fricke
involution). The non-cuspidal points of X (N) classify unordered pairs of
elliptic curves together with a cyclic isogeny of degree N between them,
where the Atkin—Lehner involution wy sends an isogeny to its dual. The
set X" (IN)(Q) consists of cusps, points corresponding to CM elliptic curves
(CM points), and points corresponding to quadratic Q-curves without com-
plex multiplication. The points of the third kind are referred to as exceptional
points.

There have been several works related to the study of Q-rational points
on Atkin-Lehner quotients of modular curves (see [BDM™21} [CB09, [DLEF21]
EL23] [Gal96, [Gal99, [Gal02l Mer18, Mom87]) and on Atkin—Lehner quotients
of Shimura curves (see [Cla03, PY07]). Especially relevant for this work are
the articles [Gal96l [Gal99, |[Gal02] in which Galbraith constructs models of
all such curves of genus < 5 except for Xgr (263), and he conjectures that
he has found all exceptional points on these curves. Building on work of
Galbraith, Mercuri [Mer18| constructs models for such curves of genus 6 and
7 of prime level and shows that up to a (very) large naive height, there are no
exceptional points on five of these curves (those with N = 163,197,229, 269
and 359).
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Towards verifying Galbraith’s conjecture, Balakrishnan, Dogra, Miiller,
Tuitman, and Vonk [BDM™21] show that of the curves X (N) of prime
level N and genus 2 and 3, the only curves with exceptional rational points
are those with level N = 73,103,191. The rational points on X (N) for
N = {67,73,103} were computed by Balakrishnan, Best, Bianchi, Lawrence,
Miiller, Triantafillou, and Vonk |[BBB™21| using quadratic Chabauty and the
Mordell-WEeil sieve. The remaining genus 2 levels, {107,167,191}, are more
challenging because there are not enough rational points to run the quadratic
Chabauty algorithm [BBB™20|. The authors of [BDM™21| compute the ra-
tional points on the remaining curves of genus 2 and prime level, as well
as those of genus 3 and prime level, using models computed by Galbraith
[Gal96] and Elkies.

Quadratic Chabauty refers to the technique of depth-2 Chabauty—Kim.
The Chabauty—Kim method [Kim05, Kim09] can be seen as a generaliza-
tion of the usual Chabauty—Coleman method. The usual Chabauty—Coleman
method is a useful tool in computing rational points on curves (see [Cha4ll
Col85, MP12, [Sto19]), however there still are large classes of curves that
do not satisfy the rank condition r := rkJac(X)(Q) < g of Chabauty—
Coleman. Kim developed a non-abelian version of the Chabauty—Coleman
method in which one replaces the use of the Jacobian of a curve with a
Selmer variety associated to a certain Galois-stable unipotent quotient of the
Qp-pro-unipotent completion of the étale fundamental group of the curve.
Despite the technical nature of Kim’s setup, the work of Balakrishnan—Dogra
and Balakrishnan, Dogra, Miiller, Tuitman, and Vonk [BDI18, [BD21l, BD19,
BDM™19] has shown that one can practically implement a depth-two version
of Kim’s program. In particular, work of Siksek [Sik17| uses the criterion of
Balakrishnan—Dogra for finiteness of the quadratic Chabauty set to show
that for modular curves of genus g > 3, quadratic Chabauty is more likely
to succeed than classical Chabauty—Coleman. Further, Balakrishnan, Best,
Bianchi, Dogra, Lawrence, Miiller, Triantafillou, Tuitman, and Vonk devel-
oped computational tools to carry out quadratic Chabauty explicitly (see
[BM20, BDM™21, BBB™20]).

Continuing the work begun in [BDM™21|, we aim to compute all Q-
rational points on the curves X (V) of prime level N when the genusis 4, 5,6
using the quadratic Chabauty method [BD18|,[BD21] and the computational
tools developed in [BBBT20]. From Section 4] we see that for prime level NV,
the curve X, (N) has genus 4 if and only if

(1.1) N € {137,173,199, 251, 311}.
It has genus 5 if and only if
(1.2) N € {157,181, 227,263},
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and it has genus 6 if and only if
(1.3) N € {163,197, 211, 223,269, 271, 359}.

These modular curves are not hyperelliptic according to [HH96]. They satisfy
the conditions required for quadratic Chabauty because their Mordell-Weil
rank is equal to their genus @ and their Picard number is greater than 1
since JSL (N) has real multiplication. In addition, they usually have enough
rational points (according to [BDM™19, Remark 1.6], g + 1 points suffice
when using equivariant p-adic heights, and one can lower this requirement
by constructing g independent rational points on the Jacobian of the curve).

To apply the quadratic Chabauty method, we will compute suitable plane
affine patches of the curves X (N). As a starting point for this, we use the
canonical models for X (N) computed by Galbraith [Gal96, [Gal99, [Gal02]
and Mercuri [Mer18]. The equations for N € {137,157,173,181, 199, 227,251}
are taken @ from |Gal96l pp. 32-34], the equation for N =311 is taken from
[Gal99, pp. 316], and the equations for N € {163,197, 211, 223,269, 271, 359}
are taken from [Merl8, pp. 299-306]. The rational points are taken from
[Gal96l, pp. 88|, [Gal99, pp. 316|, and [Merl8| pp. 299-306|. For N € {199, 251},
we computed the rational points by brute force. These equations and the list
of known rational points in each of these levels are given in Section [5]

The main difficulty of applying the QCMod code developed in [BBBT20)
to these canonical models lies in finding suitable plane affine patches (in
the sense of the last paragraph of Section |2|) as inputs for the QCModAffine
function in QCMod. Realizing this step enables us to verify that the list of
rational points is complete. We explain our method of finding the affine
patches in Section [3] and list them in Section [5} It was surprising that we
could go up to genus 6 with the current techniques.

Our main result is the following:

THEOREM 1.1. For prime level N, the only curves X (N) of genus 4
that have exceptional rational points are Xy (137) and X (311). For prime
level N, there are no exceptional rational points on curves XJ(N) of genus 5

and 6.

Therefore, this work confirms Galbraith’s conjecture for prime levels. In
particular, this, combined with the results of [BDM™21| on genus 2 and 3
curves as well as with [AMT0], BBB™21, BDM ™19, BGX21], Mom&6, Mom8&7,

(*) In all our examples, every element f of the newform Galois orbits of the modular
abelian variety J; () satisfies ords—1 L(f, s) = 1. So the rank equals the genus by Gross—
Zagier—Kolyvagin-Logachév [GZ86], [KL89|. In particular, the hypotheses of the classical
Chabauty—Coleman method are never satisfied.

(%) The canonical model for X (157) given in Section [5| corrects a small typo in the
third equation in Galbraith’s model for N =157 (the leading term should be 2w? instead
of w?).
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AM?22], resolves Galbraith’s conjecture for both prime and composite levels.
For genus 6, this work shows that the subset of rational points that Mercuri
found is in fact all of them, and for those curves with N = 163,197, 359 we
confirm [Merl8 Result 1.2] without any restrictions on height @

Our paper is organized as follows. In Section [2| we give an overview
of the quadratic Chabauty method. Section [3| contains a description of the
method we applied, that is, how we found the models that we used to run the
quadratic Chabauty algorithm starting from the canonical model of X (N),
and how we chose suitable primes. In Section 4] we bound the genus of
X (N) from below and give a list of all levels N such that the genus of
X (N) is less than or equal to 6. In Section we give tables for genus 4,5, 6
containing the canonical models of XO+ (N), the known rational points, and
our models and primes for which we run quadratic Chabauty.

The code supporting the claims made in this paper was written in Magma
[BCPI7] and may be found at [AABT21].

2. Overview of quadratic Chabauty for modular curves: theory
and algorithm. Let X/Q be a smooth projective geometrically connected
curve of genus g > 2 with Jacobian J whose Mordell-Weil group J(Q) has
rank r = g. For a prime p of good reduction, the abelian logarithm induces
a homomorphism

log: J(Q,) — H(Xg,, 2")".

We assume that the p-adic closure of the image of J(Q) C J(Qp) in
H°(Xq,, 2')¥ has rank g (otherwise classical Chabauty—Coleman applies).
We also assume that X (Q) is non-empty, so we can choose a rational base
point b to map X into its Jacobian J. If the Néron—Severi rank p of J is larger
than 1, then there exists a non-trivial Z € Ker(NS(J) — NS(X)) inducing
a correspondence on X xg X. Balakrishnan and Dogra [BDI8, BDM™19]
explain how to attach to any such Z a locally analytic quadratic Chabauty
function

pz: X(Qp) = Qp

as follows: using Nekovai’s theory of p-adic heights [Nek93], one can construct
a global p-adic height which decomposes as a sum of local height functions.
The quadratic Chabauty function pz is defined as the difference between
the global p-adic height and the local height for the chosen prime p. Even
though we do not go into details here, we note that the computation of the

(*) For composite levels, one can further consider the quotient X (N) by all Atkin—
Lehner involutions; in this case, the Q-points have been determined in [ACKP22] if the
quotient is hyperelliptic.
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global height pairing is easier when X has many rational points (at least
three, which is indeed the case for all modular curves studied in this paper).

The crucial property of the quadratic Chabauty function is that there
exists a finite set T C Q) such that pz(z) € T for any = € X(Q). Because
pz has Zariski-dense image on every residue disk and is given by a convergent
power series, this implies that the set X (Q))2 of Q,-points of X having values
in 7 under pyz is finite. Because X (Q) is contained in that set, it is finite
as well. Since both pz and 7" can be explicitly computed by [BBB™20], this
makes the provable determination of X (Qp)2 possible |(*)| if the quadratic
Chabauty condition r < g + p — 1 is satisfied (e.g., if r = g and p > 1).

In [BDM™21|, the authors applied quadratic Chabauty to some of the
modular curves associated to congruence subgroups of SLy(Z), as well as
Atkin-Lehner quotients of such curves. The algorithm in [BDM™21] is spe-
cific to modular curves only when determining the non-trivial class Z. In
that algorithm, Z is computed by the Hecke operator T;, (which is deter-
mined by the Eichler—Shimura relation). We recall the input and output of
the algorithm in [BDM™21] here:

e Input:

— A plane affine patch Y: Q(z,y) = 0 of a modular curve X/Q that
satisfies 7 = g > 2 and is such that the p-adic closure of the image of
J(Q) in H(Xgq,, 22')" under log has rank g.

— A prime p which is a prime of good reduction for X/Q such that the
Hecke operator T, generates End(J) ®z Q as a Q-algebra. We check
this condition in our cases by showing that a,(f) generates the number
field generated by the coefficients of f where f is any newform orbit
representative associated to X/Q.

e Output: A finite set containing X (Q,)2.

The curves of our interest, X (N) of genus 4, 5 and 6 and prime level N,
satisfy the condition r = g. This is seen by checking that for all N in ,
and (L3), f € S2(Ip(N))TmV satisfies L'(f,1) # 0 (actually, we just
need to check this for one arbitrary representative in each Galois orbit).
By [KL89], this implies that the (algebraic and analytic) rank of Jg (N)/Q
equals ), dim(Ay,) = g where the summation is taken over an arbitrary set
of newform orbit representatives. However, it is not necessarily the case that
r = g for all X; (N) of prime level N. The smallest genus g for which there
exists a prime N such that r > g is ¢ = 206, with N = 5077 [BDM™21,
DLEF21].

(*) At least under the assumption that pz has no repeated roots; otherwise, we get a
finite superset.
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The implementation (available at [BBBT20]) of the quadratic Chabauty
algorithm in [BDM™21] is designed to take as input a plane affine patch
Y: Q(z,y) = 0 of a modular curve X/Q. The model Q(z,y) = 0 does not
need to be smooth, but it should be monic in y with p-integral coefficients.
We can sometimes find an affine patch Y such that all rational points on X
must be among the points returned by running their program on Y. We have
managed to do so for all genus 4 and 5 curves XJ (N) of prime level N. If no
such Y is found, then we find two affine patches such that every rational point
on X is contained in at least one patch. Moreover, we need every [F,-point
on X (realized as a canonical model) to map to a good point (Definition [3.1])
on at least one patch. Finding such favorable affine patches turned out to
be the most challenging part when applying their algorithm for large genus
Atkin—Lehner quotients. We talk about our strategy for generating these
affine patches in Section

3. Overview of strategy. As introduced in Section [2| our first task
is to find a suitable plane model Q(z,y) of X (N) that is monic in y
and has “small” coefficients. We start with the image of the canonical em-
bedding of X (IN) in P971 (as stated in the introduction, these are non-
hyperelliptic for the levels N we consider). In what follows we shall iden-
tify X, (V) with its canonical image and use the same notation for both.
We find two rational maps 7., 7y: Xar (N) — P! such that the product
s X 7yt X (N) — P! x P! is a birational map onto its image In
practice, we used Magma’s Genus4GonalMap to find such maps, and anal-
ogous functions for genus 5 and 6. Compose with the Segre embedding
P! x P! — Pf’wmy:z], and then project from the point [1:0: 0 : 0] onto the
plane w = 0; denote by ¢’ the composite

projection
P2

o' XG(N) X pl x pt 2, p2 2

[w:zy:2]

Choose z1,%2,y1,¥2 € Opg-1(1) such that 7,(¢) = [r1(q) : x2(q)] and
7y(q) = [y1(q) : y2(¢)] in coordinates. Then the equation for ¢’ is

@' g [(2192)(q) : (w291)(q) : (2292)(q)]-

(When z2(q), y2(q) # 0, this is just ¢': ¢ = [(z1/22)(q) : (¥1/¥2)(q) : 1].)
Note that the rational map ¢’ is not defined on some closed subvarieties
of Xy (N). Indeed, on the subvariety with additional equations 21 = x9 = 0,
the map 7, is not defined; with y; = y2 = 0, the map 7, is not defined;
with 29 = y2 = 0, (the map 7, or 7, or) the projection following the Segre
embedding is not defined. We denote the union of the three subvarieties by

(°) Note that such 7,,7, always exist: any curve is birational to a curve in P2
(see [Har77, Corollary IV.3.11]), which is birational to P* x P*.
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XS (N )’ undef, Outside which ¢’ is well-defined. The set of rational points
X (V) undet(Q) can be computed directly using Magma [BCP97), and in
our final step, we check that it does not contain any additional points other
than the known rational points. For now, we focus on the generic part of
X (N) where ¢’ is defined.

The image Ch == ¢'(Xg (N)) will be a curve given by an equation of the
form

Qolz, 2)y" + Qi(z,2)y" + - + Qu(x,2) =0

for some d € N, where Qo(x, 1) is monic (if not, simply divide the equation
throughout by the leading coefficient of Qy(x, 1) to get this form). Multiply-
ing the above equation throughout by Qg_l, we get

(Qolx, 2)y)% + Q1(z, 2)(Qo(z, 2)y) ¥t + - - + Qo(z, 2)T 1 Qq(x, 2) = 0.

Let deg Qo denote the total degree of Qo and let Cx be the image of Cl
under the map

Vi [ry: 2] (2299890 L Qo(x, 2)y : zdc8 Q0T

Then the affine patch of Ci given by z = 1 will have an equation Q(z,y) =0
where Q(z,y) is a polynomial over @Q monic in y such that there exists a
prime p suitable for the quadratic Chabauty algorithm. Let Xar (N) —Cn
denote the composite ¢ = 1) o ¢'.

Next, we select a suitable prime p and run the QCModAffine function on
the affine patch of C given by z = 1. However, QCModAffine only computes
rational points (and compares with known rational points) outside the bad
residue disks, which we now define.

DEFINITION 3.1 (|[BT20, Definitions 2.8 and 2.10]). Let X" denote the
rigid analytic space over @@, associated to a projective curve X/Q, given
by an (inhomogeneous) equation Q(z,y) = 0. Let A(x) be the discriminant
of @ as a function of y, and let r(z) = A/ged(A,dA/dz). We say that a
residue disk (as well as any point inside it) is infinite if it contains a point
whose z-coordinate is oo, is bad if it contains a point whose x-coordinate
is 0o or a zero of r(x), and is good if it is not bad.

Therefore, we may need to repeat this construction multiple times (with
the same p), i.e., we need a collection {(pn;,Cn;)}¥_, such that for each
P € X (N)(F}), there exists some i such that ¢y ;(P) does not map to a
bad F,-point. This would imply that for each residue disk D of X (N)(Q,),
there exists some 4 such that ¢y ;(D) C Cn;(Qp) is contained in a good
residue disk. If QCModAffine reports that the only rational points in the
good disks of C;(Qp) are the images of the known rational points, then we



8 N. Adzaga et al.

know that X (NV)(Q) is contained in the finite set

k
U @&}i{SON,i(XJ(N) (Q)known)} U X(T(N)cp’ undef(@)7
i=1
and then we check that this equals XS” (N)(Q)known using direct Magma
computations.

In practice, we seek to choose z1,z2,y1,y2 € Opg-1(1) so that d, :=
deg 7, and d, := deg 7, are small for faster computations, since the degree
of the defining equation Q(z,y) of Cx is at most d,d, and the maximum
power of y that appears is d;. We would also like to keep k£ small, and
ideally to have k£ = 1, in which case we need to find a prime p for which
Q(x,y) = 0 has no bad disks. In order to do so, we would like to start with
Q(z,y) for which r(x) has no linear factor over Q. If the construction does
not satisfy this property, we adjust the construction of ¢’ by applying some
o € Aut(P! xg P!) before the Segre embedding, and/or by post-composing
¢’ by some p € Aut(P?) (the latter only invoked in the N = 211 case).
With suitable adjustments in the construction of ¢/, we were able to find
plane models Q(x,y) for which r(x) has no linear factor over Q for all the
cases we aim to solve in this paper. Even so, for four of the genus 6 cases,
N =197,211, 223, 359, we did not find a model for which there is a prime p
without any bad disks. In each of these four cases, we were able to find two
patches and a prime p such that for each P € X (N)(F,), on.i(P) does
not map to a bad F,-point on at least one of the patches. For all the other
prime levels where Xgr (N) has genus 4, 5,6, we were able to find a single
patch and a prime for which there is no bad disk. That is, we were able to
solve the problem with k& < 2.

In this section, we started with the canonical model of a modular curve
in P97 (for ¢ = 4,5,6), but afterwards we did not use the fact that the
curve in question has a modular interpretation. This strategy could possibly
be applied to other curves of arbitrary genus g. Currently Magma supports
computing plane models and gonal maps for curves up to genus 6.

4. Modular curves X (N) of genus at most 6. In order to find all
X (N) of genus at most 6, we bound the genus of X (V) below by a strictly
increasing function which only depends on V.

Let go(IN) be the genus of Xo(N) and let gi (V) be the genus of X ().

THEOREM 4.1. For integers N > 1, we have go(N) > (N —5v/N —8)/12.
Proof. See [CWZ00Q, Section 3|. =

Let v(N) denote the number of fixed points of wy. Let A(D) denote the
class number of the quadratic order with discriminant D.
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THEOREM 4.2. For N > 5,
() = {h(—4N) +h(—=N) if N=3 (mod 4),
h(—4N) otherwise.
Proof. Apply the formula in [FH99, Remark 2|. =

To bound gd (N), we will need an upper bound on h(D). While there
are more general bounds (cf. [Loulll Theorem 3]) on the class number hg
for a number field K, for the imaginary quadratic fields we use the following
bound. Such a bound should be well-known, but we include a proof for
completeness.

LEMMA 4.3. For negative D,

v—-D

h(D) < (In(4|D)) + 2).

Proof. For negative D, the Dirichlet class number formula states that

wyv/=D

4.1 h(D) = L(1

(4.) (D) ="Y"PL(1.xp)

where xp(m) = (£) is the Kronecker symbol and
4 ifD=—4,

w=4{6 if D=-3,
2 otherwise.
Hence, it suffices to obtain an upper bound on L (1,xp). Let A(z) :=

> 1<n<z XD(n). Since the modulus of xp divides 4D, the sum of any 4|D|
consecutive values of xp(n) is zero, so

|A(z)| < 4[D|.
Using the definition of L (1, xp) and the Abel summation formula, we get
4|D|

L(lxp) = 50 X200 _ 52 x0(m) 5~ xoo
n=1 n n=1 n n>4\D| n
4|D|

_ N Xxp(n)  AMAD) [ A(Y
- 7; -y L e dt.

(Note that the series for L(1, xp) converges because xp is non-trivial.) Since
A(4D) = 0, the middle term vanishes. Using the upper bounds |xp(n)| <1
and |A(x)| < 4|D| yields

40| o q DI
L(1,xp) <D~ +4|D| o 2= >~ +1<In(4[D])+2
n=1 n=1
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from the Abel summation formula again. Substituting into the Dirichlet class
number formula (4.1)) shows that for D ¢ {—3, —4},

V-D

h(D) < (In(4|DJ) + 2).
We then manually check that this holds for D € {—3, —4} as well. n

PRrROPOSITION 4.4. We have
N-5/N+4 /N
24 T

95 (N) > (In(16N) + 2).

Proof. From the Riemann—-Hurwitz formula applied to the degree-2 mor-
phism Xo(N) — X (N), we have
(4.2) 2g0(N) — 2 = 2(2g5 (N) — 2) + v(N),
and we are done by combining Theorems and and Lemma .
PROPOSITION 4.5. The complete list of levels N for which gj (N) < 6 is
giwen in Table[T] for prime N and in Table 2] for composite N.

Table 1. The prime levels N such that X (N) has genus < 6

+
0

E

N
2,3,5,7,11,13,17, 19, 23, 29, 31, 41, 47, 59, 71
37,43,53,61,79, 83,89, 101, 131
67,73,103,107, 167, 191

97,109, 113,127, 139, 149, 151, 179, 239
137,173,199, 251,311

157,181,227, 263

163,197, 211,223, 269, 271, 359

g

S O W NN~ O

Table 2. The composite levels N such that X (N) has genus < 6

N
4,6,8,9,10,12,14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 32, 35, 36, 39, 49, 50
22,28, 30,33, 34, 38,40, 44, 45, 48, 51, 54, 55, 56, 63, 64, 65, 75, 81, 95, 119

42, 46,52, 57, 62,68, 69,72, 74,77,80,87,91,98, 111,121, 125, 143

58, 60, 66, 76, 85, 86, 96, 99, 100, 104, 128, 169

70,82, 84,88, 90,92, 93,94, 108, 115, 116, 117, 129, 135, 147, 155, 159, 161, 215
78,105,106, 110, 112, 122, 123, 133, 134, 144, 145, 146, 171, 175, 185, 209
118,124, 136, 141, 152, 153, 164, 183, 203, 221, 299

~—

Shs
acnu;ww»—o%\

Proof. The lower bound in Proposition [£.4] exceeds 6 for N > 13300.
For N < 13300, we compute g (N) exactly from the computation of go(V)
in [DS05, §3.1|, Theorem (the class numbers of imaginary quadratic
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fields can be computed efficiently using Magma, e.g. via the identification

with the number of equivalence classes of reduced integral binary quadratic
forms) and (.2, and find the N for which g (N) < 6. =

5. Results and data. In the following tables, we display our choice
of models for X (N) for which we applied QCMod successfully. When the
rational point is a CM point, we use D to represent the discriminant of
the order by which the corresponding elliptic curve has CM. A Heegner form
(with respect to N and D < 0 and subject to the condition that D is a square
modulo 4N) is an integral binary quadratic form f(z,y) = Az?+ Bzy+ Cy?
of discriminant D, such that the root 7 of f(z,1) in the upper-half plane
maps to a CM point on Xo(NV). There are exactly h(D) Heegner forms of
discriminant D. The Heegner forms account for all CM points on Xo(N).
(See [Gro&4] for more information.)

To compute the coordinates of a CM point of discriminant D < 0, we
first compute the Heegner forms of elliptic curves with CM by an order of
discriminant D. To do so, we use Magma’s HeegnerForms (N,D) and com-
pute their unique zeros 7 with positive imaginary part. Then, we substitute
q = exp(2miT) into the g-expansions of the cusp forms giving the canoni-
cal embedding, to obtain approximations of the coordinates of the CM point
in P9~1. For certain values of D and N, the series converges very slowly. But
if there is only one such D for a given N, and all Q-points on X(}L (N) are
known, since we know the modular interpretation for all but one element of
X (N)(Q), we can also determine the interpretation of the remaining one.
If all cusp forms vanish at the CM point corresponding to D (this happens
for D = —3,—4 in the case of X (157) and X (181), and D = —3,—163
in the case of X (163)), we compute the derivatives of g-expansions of the
basis of the cusp forms giving the canonical embedding. In this way, we get
the coordinates of the CM points with D = —4 and —163, and the only
remaining rational point on X (157) (respectively X (181)) must be the
CM point with D = —3.

In [BG21], Theorem 2| or [BHO3| the triviality of Aut(X; (p)) for our p
is proved in general. It implies that the exceptional points on the two curves
X (137) and X (311) cannot be constructed as an image of a cusp or of
a CM point under an automorphism, in contrast to the case for X (N)
hyperelliptic.

We denote by do, the degree of the residue field at infinity. In Table [3] we
list p, dwo, dy, dy and the runtime for all affine patches used. The computa-
tions were performed on (one core of) a six core server with 64 GB of RAM
and processor Intel® Xeon® W-2133 CPU @ 3.60 GHz.
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Table 3

N p dsw d d, Runtime
137 5 6 3 3 365
173 5 2 4 4 118s
199 7 4 4 4 143s
251 | 11 4 4 4 279s
311 5 2 4 4 113s
157 5 4 4 5 372s
181 6 3 5 230s
227 | 23 6 3 5 200s
263 | 23 4 6 6 1368s
163 | 31 4 4 4 959 s
269 | 29 4 4 6 2483s
271 |13 12 5 9 741425
1971 23 2 6 6 1450s
1972 23 8 5 6 1129s
2111 31 6 6 3523s
2112 31 2 6 6 2092s
223:|1 19 12 6 5 15655
2232 19 2 6 5 1137s
3591 7 4 6 6 594s
3592 7 4 6 5 942

For N = 197,211,223, 359 the two entries in Table 3 correspond to the
two affine patches whose equations are presented in Section

The models we have used are now listed and organized by their genus.
We also write down the classification of all rational points.

The Magma code which can be used to reproduce our computations can
be found at GitHub |[AABT21].

5.1. Genus 4

5.1.1. Data for Xar(137). The equations for the canonical embedding in
P9 ! are

XY +WY +2Y2 4+ 2WZ + XZ4+6YZ+32%=0,
X34+ WX?+6X%Z —2XY? -5XYZ+ XZW + 13X 2% +2Y3
+3WY2+W2Y +3WYZ —6YZ2+ ZW? —4Z°W + 1423 = 0,
with variables corresponding to the following cusp forms:
W:_q+q2_q3+q4+3q5+2q6+4q7_3q8+2q9_5q10_qll
o 2q12 + 4q13 _ 5q14 + 3q15 + 2q16 _ 3q17 _ 2q18 _ q19 + O(qQO),
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X =—¢+2¢° +2¢" —3¢° —2¢° — 3¢" + ¢® + ¢° + 4¢"° + 104"
—2¢12 — g1 4 6gM — 4¢™ — 7¢10 — 5¢1T 4 ¢ — 74 + O(¢?),

Y = 2¢% — ¢* — 3¢5 — 3¢° — ¢" + 3¢5 — 2¢° + 6¢'° + 3¢'! 4 342 — ¢13
+q14_3q16+2q17+3q18+q19+0(q20),

7= - +20 + 28+ ¢ — ¥ —3¢10 — 4g™ — 2 — M 4 3416 + 417
—2¢"8 +2¢" + O(¢*).

The nine known rational points are

Cusp, [1:0:0:0], D=-16,[2:0:-1:0],
D=-42:-4:-3:2], D=-19,[1:-2:-1:1],
D=-7[2:-1:-2:1], D=-28[0:1:2:-1]
D=-8[1:-1:0:0], Exceptional, [19:2: —16 : 4].
D=-11,[1:1:-1:0],

For quadratic Chabauty, we use p = 5 and a single model (¢137,1,Ci37,1).
Information for ¢i371:

dz:37 $1:Z, LEQIY,
dy=3, y=(2-3 77 yp2=W+X+2Y+Z

The equation of Ci37,1 in the affine patch where z =1 is

y3 + (502° + 3222 — 4z — 3)y?
+ (9662 + 137725 + 45921 — 11523 — 6622 + = + 2)y
+ (70562° 4 16128z° + 1274427 + 285625 — 123925 — 678z
— 3523 + 2822 + 42) = 0.
According to Galbraith [Gal99|, the j-invariant of the Q-curve corre-
sponding to the exceptional point is
J = (—423554849102365349285527612080396097711989843
+ 9281040308790916967443095886224534005155665y/—31159) /2138,
5.1.2. Data for X (173). The equations for the canonical embedding in
P91 are
X2+ WY +XY —-WZ+4XZ-3YZ =0,
XY?+ Y+ W?Z+WXZ+2X*Z+5WYZ+6XYZ
+9Y2Z +3WZ2 + 11X 2% +14Y Z? + 1223 = 0,
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with variables corresponding to the following cusp forms:

W = q—2¢" — 24° — 3¢7 — 4¢° + 2¢" + ¢'2 + 3¢"3 — ¢ + ¢*° + 341
— 3¢\ — ¢1® — 44" + O(¢*°),

X = @+ +3¢7 +4¢° — ¢° +2¢"° — 64" — ¢'2 — 10¢"3 + 24"
— g% — g+ 7¢'T + 3¢ + 2¢%° + O(¢%),

Y= - +q*+ % — O+ ¢ +4¢° —4q't — 2 — 5g!3 — 15 — 3416
+5¢17 + 4¢™® + 3¢ + 0(¢?),
Z=qb—q =8 —° — "0 +3¢" + 4¢3 + ¢'6 — 4q'7 — 348

—2¢" 4+ O(¢™).

The six known rational points are
Cusp, [1:0:0:0],
D=—-4,[0:-4:0:1],
D=-16,[2:—2:-2:1],

D=-43,[0:1:-1:0],
D=-67,[3:-3:-2:1],
D=-163,[12: —9: -5:2].

For quadratic Chabauty, we use p = 5 and a single model (¢1731,Ci73,1)
Information for ¢1731:

dey =4, =W+ X+2Y 447 ro=W+Y,
dy=4, yn1=3-7/2)- (X -3Y -32), yp=2W+X+9Y +15Z7.
The equation of Ci73 1 in the affine patch where z =1 is

1
vt o+ m(19853‘1 — 512 + 822 — 495z + 54)y3

N 1 3326428 — 1580427 + 116425 — 1661272° + 818372\
25 .32 — 1848023 + 18018422 — 44117x + 1743 Y

266716822 — 13335842t — 177508810

— 1763503227 + 145428662% — 208780127

+ 4044612025 — 276421832° + 62467962 Y
— 2750429522 + 1170116022 — 957873z + 22050

1
T

192036096216 — 13259635221° — 350759808214
— 1097128800213 + 1384863264212 + 52222384811
+ 3767950920210 — 46722570342 + 90864239725 | 0
— 578101079627 + 556329028025 — 14378992802° ’
+2910049418z* — 202440428423 + 25893756022
— 12131910z + 194481

212 . 34
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5.1.3. Data for X; (199). The equations for the canonical embedding in
P91 are
WY — X2 +3XY —6XZ —-5WZ+3YZ—-62%=0,
—WX?+3W?Y +3WXY +3WY? + XY? +Y? —TW?Z —5WXZ
—8WYZ -2XYZ -3Y?Z+6WZ?+4Y 2% -32% =0,
with variables corresponding to the following cusp forms:
W =qg+¢ —2¢" —2¢° — ¢° — 6¢" — 3¢° + ¢'* + 2¢'! — ¢'2 + 3¢"3 + 2414
+5¢16 — g17 4 ¢18 — 3¢1° + O(¢?),
X =@ +¢ =3¢ —3¢° —2¢" — 465 — ¢° +2¢'° + 3¢ + ¢'2 + 5¢" + 2™
+ 3¢ + 416 + 4¢17 + ¢18 — 4¢'° + O(¢?),
Y = =283 + ¢* + ¢® + ¢® +5¢7 +2¢° — 3¢10 — 4q'! + ¢'2 — 3413 — 241
+q% — 6¢'6 — 3¢ — ¢'8 4+ 5¢1° + O(¢),
Z =P+ +207 4+ + % —2¢"0 — 21 — 2413 — 1 — 3416 _ 9417
— '8 1 3¢ + O(¢®).
The eight known rational points are
Cusp, [1:0:0:0], D=-19,[1:-1:-1:0],
D=-33:-3:-3:-1], D=-27,[3:0:-3:—1],
D=-11,[1:1:-2:-1], D=-67,[4:5:-3:-2],
D=-12,[1:3:-1:-1], D=-163,[5:—-2:-3:—1].

For quadratic Chabauty, we use p = 7 and a single model (¢199.1,Ci199,1)-
Information for ¢199,1:

dy =4, 1 =W+Y, ro=W —-X +2Y - 37,
dy=4, pn=06-11)-Y -2), yp2=X-4Y +77.

The equation of Cig9,1 in the affine patch where z =1 is

y* + (188z" — 5312° + 7302° — 5852 + 195) y/°

69302 — 3646727 + 1028012° — 20114925 )
+ 28010824 — 27320123 + 17922722 — 707312 + 12474 Y

87725x12 — 678755z 4+ 2812416210 — 81750602
+ + 1797141828 — 3086229327 + 42039858x% — 452351512° y
+ 376089902 — 2323426023 + 999121222 — 2649537x + 323433
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33275026 — 3454550215 4 189284702 — 72428151213
+ 212751798z — 501847128z + 9750200370
— 15800076152° + 214405432228 — 243042808327
+ 227977610525 — 17378064962 + 10460772452

— 47625845123 4+ 15325200022 — 30873150 + 2910897

+ — 0.

5.1.4. Data for Xgr(251). The equations for the canonical embedding in
P91 are
WX -WY +XY —2Y242WZ+ XZ+4YZ + Z% =0,
W2X - W?Y + X?Y —WY? - 2XY? +2Y3 + W?Z - WXZ
—3X2Z 4+ 2WYZ+TXYZ —-3Y?Z —21XZ% +10Y Z? — 2873 = 0,
with variables corresponding to the following cusp forms:
W= - +2 +3° + ¢ +385+3° +2¢"0 — "' + ¢34+ ¢+ ¢
— 3¢ — 3¢ + 2¢'8 + 4¢'9 + O(¢®),
X=@ - —q"+28° —¢f — ¢ —24° + ¢'° — ¢ 4 242 — ¢! 4 346
—6¢"" +4¢" + O(¢*),
Y =@ =" =28 + O+ ¢" =245 — ° —2¢"0 + 24" — ¢'2 4 ¢13 — 2™
+ 3¢ + 4917 — 2418 — 419 + O(¢®),
Z= -+ +q" — g0+ gt — 1% — g™ 1 3¢17 — 418 — 3¢19 + O(¢%).
The six known rational points are
Cusp, [1:0:0:0],
D=-8[1:2:—-1:-1],
D=-11,[0:1:0:0],

D=-19,[2:1:-2:-1],
D=-43,[2:0:—-1:0],
D=-163,[16: —3: —6: 1].

For quadratic Chabauty, we use p = 11 and a single model (y251,1,C251,1)-
Information for ¢a51 1:

dey =4, 1 =W+7X+52Z, x0=W —6X +10Y — 232,
dy=4, y1=(5/3)Z, yo=X—Z.
The equation of Ca51,1 in the affine patch where z =1 is

vt + 5 3F (2352% — 14002 — 318822 — 1402z — 330)y>
167002% — 24729027 + 1760782°

s |t 294898127 + 465886624 + 307426923 | 2
+ 132858922 4 339250z + 42800

+
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51000022 — 123440002 + 611267001°
1 + 2173155402° — 42597454428 — 200426396827
26.33.58 — 261109218525 — 185250089525 — 10385550142
— 47585702523 — 15437560022 — 294800002 — 2560000

6000000z — 203600000® + 1956240000214
— 66489600023 — 4134795540022 — 6634672836021
1 + 5942868380420 + 1814999263162 + 439550256782° | 0
28.34.5% | —13700517537027 — 1053876760435 + 907612425x° '
+ 357254423252 + 2072463562523 + 58294650002
+ 8670000002 + 56000000

5.1.5. Data for XJ (311). The equations for the canonical embedding in
P91 are

X2+ WY —2XY +2Y?2+7XZ —8YZ +13Z% =0,

WX? —2WXY + XY —WY? - XY? -2V + W?Z + 6WXZ

— X272 - WYZ+5XYZ+AY?Z+TWZ? —4X7?-22%3=0,

with variables corresponding to the following cusp forms:

W =q—2¢" -+ —2¢° — ¢'0 — ¢ — 3¢"3 — 1 — 2415 4 3416 — 48

_ q19 +O(q20),
X =@ 428 =3¢ —¢® —3¢" — 468 —2¢° — 3¢"2 + ¢ + ¢ + ¢'5 + ¢
74\ — '8 424" +O<q20)7
Y:—q3+q4—i—q5—q6+q9+q12+q13+q15—3q16—3q17+q18—q19
+0(¢®),
Z= @+ +d+¢+ ¢ + ¢ —q14—q16—3q17—q19—|—0(q20).
The five known rational points are
Cusp, [1:0:0:0], D=-43,[2:0:-1:0],
D=-11,[1: —-1:-1:0], Exceptional, [6:8:—1:—2].
D=-19,[1:2:—1:-1],
For quadratic Chabauty, we use p = 5 and a single model (¢311,1,C311,1)-
Information for ¢311,1:
dy = 4, rn=W+X+Z, o =W+4+Y — Z,
dy =4, y1=(3-7)Z, yp=W+X+Y
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The equation of C311,1 in the affine patch where z =1 is

y* 4 (482% — 14023 4 T4z? + 232 — 1)y

903z® — 522327 + 1012825 — 62912° — 1761z* + 233423 + 9022\
+ y
— 360z + 72

7938212 — 68229z + 224046210 — 32776227 + 135747x® + 15990327
—1477802° — 33084x° + 58905z + 104423 — 1134022 + 1442 + 1044 Y

27783216 — 3188432x1% + 148856424 — 3490182213 + 3760074212
+ 4098621 — 3866940210 + 20420642° + 18452072% — 152649927
— 580176x% + 5530142° + 1520642* — 10918823 — 3024022
+ 9288z + 3024

According to Galbraith [Gal99], the j-invariant of the Q-curve corre-
sponding to the exceptional point is

J =31244183594433270730990985793058589729152601677824000000
+ 1565810538998051715397339689492195035077551267840000v 39816211853

5.2. Genus 5

5.2.1. Data for X (157). The equations for the canonical embedding in
P91 are

VX-VY+WY -XY+YZ=0,
VEeVWAWXAWY +XY+VZ-WZ+XZ=0,
WX+WX-VY -XY - VZI-WZ+2XZ—-2Z>=0,
with variables corresponding to the following cusp forms
Ve =+ P+ 4285 — ° —2¢10 — 2" — 13 4 2¢M — g15 — 17 — 18
+3¢" +0(¢™),
W= —-g4+@+@ "+ +¢ +2¢5 - ¢0 +2¢" + ¢34 ¢15 — ¢
+3¢'7 — 8 + ¢19 + O(¢?),
X = P4+ 4 ¢+ =207 +2¢"0 + 12 — "3 4 2¢1 — 2415 — 16 — 44"7
+2¢"° + 4" + 0(¢™),
Y =% —q® =207+ ¢+ ¢+ 2¢'2 + ¢13 + M — 15 — 3¢16 — 2417 4 3418
4+ 0(®).
Z= P42+ P+ = =B+ + 0+ ¢ —2¢"2 — 2415 — 247
— '8 — 24" + O(¢?).
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The nine known rational points are

Cusp, [0:1:0:0:0], D=-16,[1:1:0:0:0],
D=-3,[3:2:0:-2:1], D=-19,[0:0:1:0:0],
D=-41:1:0:0:-2], D=-27,[0:1:0:—-1:-1],
D=-11,[0:0:0:1:0], =—67,[1:2:—-1:1:-1].

[
D=-12,[1:0:0:0: —1],

For quadratic Chabauty, we use p = 5 and a single model (¢157,1,Ci57,1)-
Information for ¢1571:

dy =4, 11=3(V+4+2Y+4Z), x9=V —4W —3X —2Y — 57,
dy=5 yn=V-W+Y, yo =2V —2W — Y.
The equation of Ci57,1 in the affine patch where z =1 is

v+ —52z° — 6832 — 35442° — 95312 — 12978z — 6885)y>

1
7.3
1 ( 23420 4 64612° + 801072° + 58943227 4 28427122° + 93657242 ) )

y

+ 5233 4 3 2
22-3 + 21342438z + 33232032z~ + 33792228z~ + 20187468z + 5353776

972x'5 4 8640z — 474801z — 13058977z — 162437862z

1 — 125935942520 — 67676399142° — 265347999632° — 779536459447
23.36 — 1735407779405 — 2924648457485 — 368070954012z
— 3356854002002 — 2096448139802 — 801540573842 — 14129953308

Y

—40824z%° — 1958580z — 42950790z'® — 571046195217
— 5137341277z — 32912831723z'% — 1524936251452
— 4964404990723 — 9655389299302 + 1268528909941
+9026198316090z'° + 389838874439162° + 1054057343103362° | = 0.
+20844411389139627 + 314293743788076° + 3639772127782082°
+ 319893174321048z* + 2069610559831442°
+ 930484528822802 + 25964710722144x + 3383816644368

2438

Galbraith has a small typo in his model for X (157). His third equation
should have leading coefficient 2w? instead of w?. The following linear map
sends our model to his model:

v=3V-W-X+Y +72,

w=2V—2X —2Y + 7,
r=-4V +3X -Y — 37,
y=-V+X+Y -2
z=V-X+7Z
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and for reference, the corrected Galbraith equations should be as follows:

—vx + 2wz — dSvy — vz + dwz — 2xz + dyz + 22 = 0,
w2+wx+4wy—xy—|—y2—|—vz+4wz—2xz—9yz— 1222 =0,
2w? + 3wz + 2% — vy + Ywy + 2zy + 6y + vz + 12wz + Sz + 3yz — 22 = 0.
5.2.2. Data for X (181). The equations for the canonical embedding in
P91 are
XY +Y? -WZ+XZ+3YZ+42%=0,
VW +3WX 4+ 3VY + WY +4XY —2Y?
+VZ4+16WZ —-2XZ +18YZ —102% =0,
VX 4+3X24+VY —6XY —9Y2+5VZ
+10WZ +16XZ —14Y Z + 14Z% = 0,
VEW + VW2 - W3 4+ 3VIWX + W2X —VX? —2X3 — VY + VWY
—5W2Y +3VXY - 2WXY +4X?%Y + VY? - 3WY? + 1073
—3V2Z - VWZ42W?Z - TVXZ - 15WXZ —9X?Z+2VY Z
~WYZ -3XYZ —-8Y?*Z+VZ* +AWZ* - XZ? + 4Y Z* - 27° = 0,
VW + VW2 - W3+ V2X +3VIWX + W2X +3VX2+ X3 +2V%y
+3VWY —TW?Y + 8WXY —6VY?2 —7TWY? + XY?
—2Y3 4 AV2Z + 1AVW Z — 8W2Z +14VX Z + 5X?Z
—BVYZ+AWYZ — XY Z 4+ 4Y?2Z +6VZ> —6WZ?> +3X 2% =0,

with variables corresponding to the following cusp forms:

V= q+2¢ =3¢ —¢* —¢® —5¢° —3¢" — 2¢° + 6¢° — 3¢'° — 64" + ¢'2
+5q137q14+3q1574q167q17+8q18+2q19+0(q20)’

W = 2% — 5¢* + 2¢° — 2¢° — 4¢" + 4¢° — 5¢'° — ¢ + 6¢'2 — 4¢3 + 9¢**
~5¢% + 240 1 g1 — 3¢18 + 4¢%° + O(¢®),

X =44+ +3¢* +3¢° +8¢° + 4¢" + ¢® — 6¢° + 4¢'° + ¢! — 3¢"2
_9q13_5q14_5q15+5q16+3q17_6q18_10q19_’_0(q20)7

Y = _q2+2q4+q6+q7_q8+2q10_2q12+q13_3q14+q15_q16+q18
—2¢" + 0(¢*),

Z=@ g =P =20 — T +¢° — g0+ "2+ 2413+ 2¢" + 15 — 16— g7
+4¢"% +3¢" +0(¢™).
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The nine known rational points are

Cusp, [1:0:0:0:0], =—-16,[2: -2:—-1:1:0],

D=-3[13:9:—-11:-3:2], =—-27,12:0:—-4:0:1],

D=—-412:2:-7:-1:2], D=-43,[3:1:-1:0:0],
[

D=-11,[2:-3:-1:1:0], D = —67,
D=-12,1:-3:-1:1:0],

For quadratic Chabauty, we use p = 7 and a single model (¢181,1,Ci81,1)-
Information for ¢ig1 1:

dey =3, z1=2, z3=X+Y +8Z,
dy=5, y1=(2-17-127) - (V+ W + X +2Y +22),
yp =2V —W +3X —6Y +52.
The equation of Cig1,1 in the affine patch where z =1 is
Y2 + (—110882° + 161242t — 917823 + 254822 — 344z + 18)y?

37937948210 — 10910942422 + 1397170962% — 10484062027
+ + 5102671625 — 1682529225 + 38057362 y
— 58315623 + 5796822 — 3380x + 88

—3893101891221° + 1652738162642 — 3248308596883
+ 3919685365922 — 3246760431442 4+ 1955065221520
+ — 88396329808z + 30555659584x° — 814107038427 =0.
+ 16720001522 — 2625929682° + 30981584x*
— 265949623 + 15692022 — 56962 + 96
5.2.3. Data for X(T (227). The equations for the canonical embedding in
P91 are
VW 42W2 - VX + WX + X2 +3VY + 11WY + XY 4 2Y?
—5VZ—-TWZ—-TXZ—-T7YZ+32%=0,
VW 4+3W? 4+ VX +2WX — X2 - VY
+4XY —3Y? - VZ4+2WZ —8XZ+13YZ —122% =0,
V2L 3VIW +5W? +2VX + WX —4X2 +2VY —TWY
+2XY +2Y2 —2VZ +12WZ —10XZ —TYZ + 372 =0,
OW3 4 2V2X — VWX —3WX2—2X3 —2V2Y —4VWY
—W?Y - VXY —6WXY — X?Y —VY?-Y34+3V?Z
—VWZ -2W?Z +2VXZ —AWXZ +3VYZ - 6WYZ
—3XYZ+2Y?Z-3VZ?—-WZ?+5X2°-YZ?>-27% =0,

2:6:—4:-2:1].
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V3L VW +5VW2 4203 —VIWX — W2X —2VX?2 - WX? 4+ X3
—3VWY —W?Y + VXY + WXY —2X%Y —VY? - 3WY?
—XY? Y3 - V2Z 4+ 3VWZ +8W?Z - VXZ - 4WXZ +5X°Z
+VYZ+6XYZ+2Y2Z +3WZ% -3XZ%2+4Y 2% -323 =0,

with variables corresponding to the following cusp forms:
V = _q+2q3+q7_q9+2q10_q11 +4q13+4q14+4q16—|-4q17
—5¢" + 0(¢*),
W = q2 _ q5 _ 2q6 o 2q7 _ 2q8 + 2q11 + 2q13 o ql4 + 2q15 + q17 +q18
+2¢" + 0(¢™),
X = _q_q3+2q4+3q5+q6+2q7_q8_q10+3q11+2q12+3q13_q14
+4q15 _ 2q16 _ 3q17 + q18 + O(q20)7
Y = _q2+2q3_q5 _3q7+3q8+q9+2q10+q11 _3q12+q14_5q15+q16
_ q17+q18 + 7q19 +O(q20),
Z=q3—q4—q5—q7+2q8+q9+q10—q11—2q12—q14—3q15+q16
o q18 +4q19 +O(q20)‘
The four known rational points are
Cusp, [1:0:1:0:0], D=-67,[1:2:—-1:-1:-1],
D=-81:0:0:—-1:-1], D=-163,[1:—4:—-7:5:2].

For quadratic Chabauty, we use p = 23 and a single model (y227,1,C227.1).
Information for ¢oo7,1:

dp =3, 21 =TW+X-Y +52), xo=2V+6W+5X Y +17Z,
dy =5 y1=(7-171)Z, Yo =2V +6W +5X —Y +17Z.
The equation of Ca27,1 in the affine patch where z =1 is
y? 4 (—1623 + 4922 — 41z + 5)y?
+ (10225 — 668> + 1787z — 25362° + 209422 — 1027z + 252)y
—289x7 + 311128 — 1513427 4 440252° — 850252°
( + 1135652* — 10489623 + 6429922 — 23544z + 3888) -

5.2.4. Data for X((263)*. The equations for the canonical embedding
in P9~! are

VW +2X2 4+ WY +2XY —2XZ -YZ+ 27> =0,
VX 42X+ VY +WY + XY - VZ-2XZ-YZ+2Z%=0,
WX —3X2—VY —2WY —4XY —VZ +4XZ+3YZ —22% =0,
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with variables corresponding to the following cusp forms:
V=g —q — gt — g2+ ¢+ ¢! 1 17 — 2¢'8 + 2410 + O(¢?),
W= —q+@+¢@ +¢®+q +¢"0+ "2+ 3¢ + g1 — g1 +2¢'6 + 247
— ¢+ ¢ +0(¢*),
X=q' =P~ + ¢ +q" — "2 — ¢ + ¢ — 3¢"0 + 247 1 ¢** + O(¢?),
Y =@ =g — " —2¢° + ¢ — " 4 "% 4 ¢ — g1 4 2¢'6 4 247
+¢" +0(¢™),
Z=@ =P =25 — = — "+ ¢ — g™ +2¢"° — 16 4 ¢\ 4+ 248
+2¢" 4+ 0(¢*).
The six known rational points are
Cusp, [0:1:0:0:0], D=-281:0:0:2:2],
D=-7,1:0:0:0:0], D=-67,1:0:1:-1:1],
D=-19,0:0:0:1:0], D=-163,[2:1:3:—4:4].

For quadratic Chabauty, we use p = 23 and a single model (¢263.1,C263,1)-
Information for ¢963.1:

de =6, 1=V —-2X+4+Z, 2o=2V-W—X,
dy=6, yn=W+X-2, yp=2V-W-X.
The equation of Cag3,1 in the affine patch where z =1 is

1
6 —4zx +9)y° + 3 (72® — 24z + 24) y*

1
—62° +192% — 282 + 28) y° + o (72" — 312 + 412 — 192 + 13) °

—22° + 92 — 212° + 2527 — 92+ 2) y

~—~~ o~ o~~~

225 — 92° + 142* — 923 + 422 — ac) =0.
.3. Genus 6

5.3.1. Data for XJ (163). The equations for the canonical embedding in
P91 are

VX -UY - XY =0,

Uy —-WY —VZ=0,

UX -WX-UZ—-XZ =0,
UX+VX+VY+VZ-YZ-27>=0,
UV+V2_VY4+WY+WZ+XZ =0,
U+ UV - VW+WX+VY + XY =0,
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with variables corresponding to the following cusp forms:
U=—-@+¢@+¢" — ¢ +3¢"0 — 2" +2¢'2 4 241 — 4415 — 248
+q" +0(¢™),
Ve P+ ¢+ % +2¢° — 2¢"0 4 ¢' — 2" — 3¢13 — g1 4+ 3¢15 — 346
—q17+3q18+4q19+0(q20),
W= g+ ++28 + ¢+ @+ + ¢+ ¢ + M — 2415 — 3410
+3q17—q18+2q19+0(q20),
X = —® +¢°+2¢7 — ¢ — 2¢" — 2¢'2 +2¢"3 — 1 43¢0 4+ 17 — 248
—4¢" + 0(¢”),
Y = ¢ +q7 4265 — ¢10 — 3" 4 ¢12 — 13 4 ¢M 4 15 — 5¢16 + ¢V7
+ 44¢"8 + 4¢™ + 0(¢*),
Z=q" = =5 =288 +2¢° + "0 + ¢"' + ¢ + 246 — g8 — ¢ + 0(¢?).
The eleven known rational points are
Cusp, [0:0:1:0:0:0], [
D=-3,[0:1:—-2:3:1:2], [
D=-7,[0:0:0:0:1:-1], 67,[1:0:—-1:1:0:1],
D=-8,[0:0:0:1:0:0], 28,[2:-2:0:2:—1:1],
D=-11,[0:0:0:0:1:0], D=-163, [78:—50: —42:—13:10: —24].
D=-12,10:1:0:—1:1:0],
For quadratic Chabauty, we use p = 31 and a single model (¢163.1,Ci63,1)-
Information for ¢163,1:
dpy =4, w1=Y+Z, x0=2X-Y -2,
dy=4, pn=V-=-Y, yp=V+Y.

The equation of Cig3,1 in the affine patch where z =1 is

19, [1:=1:0:0:0:0],

D=—
D=-27[0:1:1:0:1:-1],
D=—
D=—

(z* + 1627 4 222° 4 8z + 1)y°

4_
Y~ 335

1 292028 + 924327 + 1341925 + 119472 \
2652 \ 4+ 70672 + 287323 + 77722 + 1292+ 9 ) ¥

52800212 4+ 21144021 + 414553210 + 5283502
+ 48450928 + 33720027 4+ 1824102° + 7753225 | v
+257222* 4+ 654423 + 121322 + 1502 + 9

96000026 + 3224000215 4 51842002 + 4513325213
1 + 1189308212 — 24649742 — 4252380210
© 212,54 | — 390646957 — 25368402° — 125136427 — 47905625
— 1420932° — 319242* — 516623 — 54022 — 27z

+29.53
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5.3.2. Data for X; (197). The equations for the canonical embedding in
P91 are

WX -UY +VY =0,
VW +X2-UY - XY -XZ=0,
UX -UY+VY+WY+YZ =0,
U2 —UV-UW+VW+W?+WZ =0,
V2 VX4 VYHUZ-WZ+XZ-YZ=0,
U?—UW+W?2-X24+VY+WY +XZ =0,
with variables corresponding to the following cusp forms:
U:_q3+q4+q5_q8+q9_q10+2q11_q13_q14+q15_q16_4q17
+2¢" + 2¢' + 0(¢*),
V = _q2+q4+q5+2q6+q11 —q12—q13+2q14—2q15—q16—q17
—3¢"% +0(¢™),
W = q4 _q5 _q6 _qlo +3q11 _q12 +3q15 o 2q16 _2q17+4q18
— 4"+ 0(¢*),
X =+ +q +¢° — g0 —2¢"? — ¢1% 4+ 4¢'7 — 4¢"® — 24" + O(¢2°),
Y = —¢" 4 ¢® +2¢° — 2" — 2412 4213 — g1 — 15 4 3417 — 418
—q" +0(¢™),
Z=qg-®—q*—® — " — & — 20— 2¢M — 3¢13 4 M — ¢15 4 416 1 2417
18_3q19+0(q20)'

The eight known rational points are

Cusp, [0:0:0:0:0: 1], D=-19,[0:0:0:0: 0],
D= —4,[1:0:1:1:1: 1], D=-928[1:1:0:1:1: 1],
D=-71:0:1:-1:-1:-1], D=-43,[0:0:1:0:—1:—1],

D=-16,[1:1:0:-1:-1:-1], D=-163,[2:6:—-2:2:1:—6].

For quadratic Chabauty, we use p = 23 and two models {(p197.,C197.4) } 2y
Information for ¢1971:

dy =6, z=U+Z, To =2X = 2Y,

dy=6, yn=V+W+Z 1p=X-Y.
Information for ¢ig7 2:

dy =5, z1=U+Z2, x20=V+W+Z,

dy=6, yn=X-Y, yp=V+W+7
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The equation of Cig71 in the affine patch where z =1 is
yS — 102y° + (4422 + 10z — 3)y* + (—1122% — 4822 + 22 + 2)°
+ (1762 + 11223 4 1622 — 4 + 2)y/?
+ (—1602° — 12821 — 4023 — 22 — 2)y
+ (6425 + 642° + 322 4 22) = 0.
The equation of Cig7 2 in the affine patch where z =1 is
v’ + (—z+2)y" + (—22% + 62 — 4)y°
+ (225 — 132° + 322 — 3523 + 922 + 162 — 12)2
+ (22% — 2027 + 8625 — 2082° 4 3092% — 28623 + 15622 — 402)y
< 210 — 1329 + 7528 — 25427 + 5632° )

— 86125 + 929z* — 70423 + 36022 — 1122 + 16

5.3.3. Data for Xar(211). The equations for the canonical embedding in
P9~ ! are
UV -V24+X2-UY+VY =0,
W2-VX-WX+WY-XY+YZ=0,
UV4+VX+WX-UY -VZ+YZ =0,
VW 4+UX - VX -WX+X>-WY+YZ=0,
UW -VX -WX+UY - VY -WY+XZ+YZ=0,
U?—UW+UX -WX -VY -VZ+WZ+YZ=0,
with variables corresponding to the following cusp forms:
U=-@+@+¢" — ¢ = +2¢0 + ¢'2 + 2¢'3 4 2¢' — 2415 — ¢16 — 17
4%+ 0(®),
V=g — 20 — ¢ —q°+ 24" +2¢'% 4+ ¢13 + ¢ — ¢'8 + O(¢®),
W= ¢ —®+¢— ¢+ ¢ — ¢ — 3¢ + ¢'6 +2¢'7 — '8
+q" +0(¢™),
X ="+ ¢+ ¢ — ¢+ ¢+ ¢'2— 2! — M — 2415 4 2416 4+ ¢17 — 2418
~ ¢+ 0(™).
Y =¢® — ¢ —q" — q" +2¢'2 + 3¢™ — 3¢'7 + ¢8 + ¢'° + O(¢®),
Z=—q+ @420+ + &+ 0 +2¢" + ¢2 + ¢ + ¢ — 24" + 247
— 24" + g9 + O(¢?).
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The eight known rational points are
Cusp, 0:0:0:0:0: 1], D= -12,
D=-3/[1:-3:2:2:-2:3], D=-2T,
D=-7,1:1:0:0:1:0], D = -28,
D=-80:0:0:0:1:0], D = —67,
For quadratic Chabauty, we use p = 31 and two models {(y211,i, 6211,1)}12:1'
Information for ya11,1:

dy =6, ©1=X-Y—-Z, 122=V-W=2Y]
dy=6, ypn=U+2Y+Z, 1=V -W-=-2Y.
Information for yo11 2:
dy =6, 1 =U+2Y+Z2Z, 20=X-Y—-1Z,
dy=6, yp=V-W=2Y 1yp=X-Y-172
followed by the automorphism [~C, B + C, A + 2C] : P?2 — P2,
The equation of Ca11,1 in the affine patch where z =1 is
Y8+ (92 + 1)y° + (3222 + 122 — 2)y* + (572> + 4922 — 62 — 4)y°
+ (532 + 8923 4 5% — 192 — 1)y?
+ (242° + 722" 4 302 — 262% — 8z + 2)y
+ (42 + 202° + 242* — 82% — 142® + 3z + 1) = 0.
The equation of Ca11 2 in the affine patch where z =1 is
YO+ (Tz + 2)y° + (1822 + 14z — D)yt + (2223 + 3822 — 9z — 4)y3
+ (132 + 4823 — 2822 — 222 — 2)32
+ (327 + 2821 — 3623 — 3922 — 62 4 1)y
+ (627 — 1721 — 2223 — 22% 4+ 42 + 1) = 0,
with Fp-points [-1:1:1], [-1/2:0:1], [1:—=2:1], [-2:3:1], [-1:2:1],
[0: —1:1] on the affine patch with z = 1 and infinite points [-1/3 : 1 : 0],
[1:0:0].
5.3.4. Data for X(T (223). The equations for the canonical embedding in
P91 are
U4+ V2-—UW4+VX =0,
VX+VY -WY+XY+XZ+YZ=0,
Ve VWA VY +WY —UZ+VZ+WZ-YZ=0,
VZheUW -W?—UX+WX-VY -UZ+WZ=0,
UV -VW4+VX -WX+X>-UY+VZ+XZ=0,
UV+V?P+UW -UX+WX - X>+3UY - VY
+UZ+VZ-WZ+2Z%>=0,

—_

:1:0:0:0:1],
1:0:=1:-1:1:0],
1:=1:0:-2:1:0],
1:0:1:1:1:0].
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with variables corresponding to the following cusp forms:
U=q¢5—q" — ¢ —q'% +2¢" — 2 4 ¢13 4 ¢! + 3¢'6 — 248
—2¢" + 0(¢*),
Vo= —g®+ 5+ q" —2¢'% +2¢13 — 2¢™ — ¢16 1+ ¢17 — ¢18 — ¢1° 1 O(¢®),
W= -+ +¢ = =+ ¢+ " +¢'2+2¢" — g% + 3¢ 4 ¢7
—3¢" 4+ 0(¢®),
X=¢ —¢" — ¢ —q7+2¢5 — 247 +2¢'% — "3 + M — 15 1+ 2¢'7 + 248
—2¢" + 0(¢*),
Y = g4+ P+ +q7+2¢° — 10 4 g1 21 + g% — 16 4 2417 — 18
+4" + 0(¢™),
Z= @4+ + 5+ B+ 0+ — 2 — 2¢' — g9 + 0(¢).

The seven known rational points are

Cusp, [0:0:0:0:1:0], D=-27,0:1:-1:-1:1:0],
D=-3[3:-2:5:-1:-2:6], D=-67,[0:1:1:—-1:-1:0],
D=-11,[0:0:1:1:0:0], D=-163,[2:—-2:1:3:—4:—6].

D=-12,[1:0:1:1:0:0],
For quadratic Chabauty, we use p = 19 on two patches of the same projective

model {(¢223,i,C223) 2y
Information for 993 1:

dy, =6, x1=U-W, r9=X+Y,
dy=5 y=2V-Y), yp=X+Y.
Information for (293 2:
d, =6, z1=X+Y, xo=U—-—W,
dy=5 y=2V-Y), yp=U-W.
The equation of Ca23 1 in the affine patch where z =1 is
YO + (—x +8)y° + (822 + 30)y* + (—42® + 8822 4 40z + 60)y>
+ (8z1 — 3223 + 26422 + 1287 + 64)y?
+ (—162° — 1922° + 25622 + 176z + 32)y
+ (—=962° — 128z — 16023 + 128z) = 0.
The equation of Ca23 2 in the affine patch where z =1 is
Y8+ (82 — 1)3° + (3022 + 8)y* + (6023 + 4022 + 88z — 4)y>
+ (642t 4 12823 + 26422 — 32z + 8)y?
+ (3225 + 17621 + 2562° — 19222 — 16)y
+ (12825 — 16023 — 1282% — 96x) = 0.
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5.3.5. Data for X (269). The equations for the canonical embedding in
P91 are
UY -WZ+XZ=0,
WY -Y?4+VZ-WZ=0,
UWA+VW —-VY -UZ-VZ-YZ=0,
UV —UW+W?—-WX —-WY + XY =0,
Ve VW -W24+WX+UY +VY +Y2=0,
U2—VW -W?+UX -VX+X?’-XZ=0,
with variables corresponding to the following cusp forms:
U:—q2+q3+q6+q8—q9+q10+q11—q13+2q14—2q15+q16—q17
— ¢+ 0(¢*),
V= _q3+q5 +q6—i—q7—i—q9 _q10 _q11 +q12 _q16 . 2q18+q19+0(q20)’
W = _q7+q8 10— g2 g3 - 2q14 L _q17 —g!® +O(q20),
X — —q3 +q4 +q7 + 2q9 . qlo . q14 . 3q16 + 2q17 . 2q19 + O(qQO),
Y:q2—q4 —q5 _q6+q9_q11 _q12 _2q14+q16_q17_q18_’_0(q20)’
7 = _q+q3+q4+q7+q10+3q11 +q13+q15+q17+q18+2q19+0(q20)‘

The six known rational points are

Cusp, 0:0:0:0:0: 1], D=-16,[0:1:—-1:1:-1:0],
D=-40:1:1:-1:1:0], D=-43,[1:—-1:1:-1:0:0],
D=-11,[0:0:1:1:0:0], D=-67,[1:—-1:—-1:—-1:0:2].

For quadratic Chabauty, we use p = 29 and a single model (¢269.1,C269,1)-
Information for y269.1:

dy =4, x1=2Y —27, x9=2Y 2,
dy=6, y =U, o =W —Y +27.

The equation of Cae9,1 in the affine patch where z =1 is

1
yt + T (1212° — 10452° + 36142" — 63882” + 60482 — 2768z + 320)y°

1

+ 32112

— 84527227 + 16570722® — 33379202 + 42716162*

2145212 — 544442 + 27679320 — 6300982° + 7900762°
y2
— 3294464x> + 149324822 — 378880z + 53248

—479162'8 4+ 2646270x'" — 5453995826 + 557744070z 0
— 3479080646z + 14677622884z — 443934926402
1 + 99794532256z — 1706136856322 + 2250228560642°
33113 | — 2307181105922 + 1843360043522" — 1145111367682°
+ 5494525132825 — 20124897280z* + 5510791168z
— 10825236482 + 139460608z — 9437184
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—100623622* + 76591548222 — 2333162502222
+ 3712574082622 — 3485165463902%° + 2155553249634
— 9476259572816z + 311408763232162'7 — 791331282053126
+ 1591330592080642° — 257270458757504:4
‘o + 337929123632384x% — 3630413520117762*2 =0.
+3201612474173442"! — 2320663033200642°
+ 1381489221140482° — 673524759756802° + 267476170588162"
— 8571322695680x° + 21809247027202° — 428701908992z
+ 620148817922 — 598946611222 + 3019898881

5.3.6. Data for X (271). The equations for the canonical embedding in
P91 are

UV+VX-WX-WY+VZ=0,
U?+UV —UW -UY — XY —Z?>=0,
UV 4+ V24 UX+UY + XY +Y?+VZ+2WZ =0,
U?—-VX XY -Y’4+UZ-VZ+XZ+YZ=0,
VW —VX4+UY +VY + XY +Y?4+UZ+XZ+YZ =0,
UW - VW —UX - VX -UY =2VY - Y? - VZ-WZ+XZ =0,
with variables corresponding to the following cusp forms:
U=+ +¢+ B+ + ¢ — g2 —2g" 4 ¢ — 3¢16 — 7
~ 4"+ 0(¢),
V=gt —¢® — 268 + ¢!+ 2¢"% — g + ¢1° + O(¢?),
W=—q+q®+¢+¢ — g% +3¢" + ¢+ ¢ — ¢16 +2¢'7 + ¢'° + O(¢*),
X=q®—¢* " —®—¢® — 240 + ¢ + ¢13 — g8 + O(¢®),
Y = 4 4 A+ P+ +q0 — M — 12 g1 — 16— T
+4" 4+ 0(¢™),
Z=q - —°+q2 — ¢ +3¢'0 + ¢\7 + ¢'8 — 2¢'° + O(¢*)
The six known rational points are
Cusp, [0:0:1:0:0:0], D=-19,[0:0:0:1:0:0],
D=-3[1:-4:-2:-3:5:3], D=-27,[1:-1:1:0:-1:0],
D=-12,1:0:0:—-1:1:-1], D=-43,[0:0:0:1:—1:1].

For quadratic Chabauty, we use p = 13 and a single model (y271,1,Ca71,1)-
Information for ¢a71 1:

dy =5, 1 =V+W, xo=U—-W+2X+Y,
dy=9, 1y =82W -2X-Y +72), 15p=U-W+2X+Y.
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The equation of Ca71,1 in the affine patch where z =1 is
y® + (— 852" + 11272" — 19132° — 11822” — 163z — 6)y"

1008020 — 1404122° + 6906542° — 1381518z + 48310725\
+ 149312805 + 6293352 + 899250° + 6722 — 820z — 48 | ¥

512002'° + 53222402 — 62218208z 4- 256115488x12
— 497719884z 4 3938763802'° + 3979411882° — 4069931842° | ,
— 419868463z" — 1070941012° + 10069328z° 4 10921601x*
+ 24952792° 4 2805822 + 16084z + 376

—778240002%° 4 8424448002 — 177834752028 — 103765677442*"
+ 57185179088x'¢ — 1058749233845 4 824835834482 + 370404387883
+ | —128890371748z'% — 9768338538z + 103912556718z'° 4 650611754512° | y
+ 8351258644x° — 661756096427 — 37712335272° — 9779330132°

— 153099583z — 15265548z — 95182422 — 33920z — 528

19660800002%% — 32800768000z%* + 1956569088002 — 3845483724802
— 835604847872z%! + 54385402803842%° — 10251070348080x°
+ 7222065612944 + 4271687117728z'7 — 104567336946242:1°
+ + 2541993008328x° + 7501013423496 — 4899818383384x:'3 =0.
— 103522811691402'2 — 5911510862587x'" — 13945415742952°
+91020107428z° + 1656380107222° + 56008509377x" + 109357539772°
+ 139998344625 + 119863400z 4- 6648960 + 21691222 4 3168

5.3.7. Data for X (359). The equations for the canonical embedding in
P91 are
UV+VX+VYHUZ+VZ+WZ =0,
UV +2UW+VW + W2+ WY +WZ +XZ =0,
U?—V?-VW -UX4+UY+WY +Y2=0,
VEe VW +UY + VY +UZ+VZ-XZ+YZ =0,
U+ UW —UX -WX -WYHUZ+WZ—-XZ=0,
UV4+UW+VW - VX -WX -UY -WY -Y?2-YZ=0,
with variables corresponding to the following cusp forms:
U= @B+ +q +¢°+¢0+q'2 — g3 — g6 — 47 1 0(¢?),
V=g®—¢® — g0+ ¢+ 15 — g1+ ¢'° + O(¢),
W=q—q°—q"—¢8—¢® —q'' — ¢'3 + ¢ — ¢ 4 2416 4 ¢!7 + 248
4%+ 0(¢™),
X =gt + P+ + P+ 0+ ¢+ "2+ ¢34 ¢ 247
+2¢" + O(¢™),
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Y=g — gt —f — g — g2+ ¢'3 — g™ — ¢17 — 2¢'8 + O(¢?),
Z=q"—® —q®— g0+ g™ 4+ ¢ — ¢16 1+ 2¢17 — ¢18 — 41 1+ O(¢).

The seven known rational points are

Cusp, [0:0:0:1:0:0], D=-43,[1:0:0:1:0:0],
D=-7,0:1:0:0:1:-1], D=-67,[1:0:-2:1:0:0],
D=-19,[0:0:0:0:0:1], D=-163,[0:2:—6:6:4:5],

D=-28[0:1:0:0:—-1:1],
For quadratic Chabauty, we use p = 7 and two patches of the same projective

model {(¢359,i,C350,) }7—1 -
Information for ¢359 1:

dy, =6, 1 =W4Y, x=2X,
dy=6, yp=U+YV, y2 = X.
Information for 359 o:
d, =6, x1=2X, zo=U+YV,
dy:57 y1:W+Y7 y2=U+V
The equation of Css9 1 in the affine patch where z =1 is
Y%+ (22 + 1)y° + (422 — 10z — 6)y* + (22% — 1522 — Tz + 9)y°
+ (—4z* — 1023 — 922 + 122 — 6)y>
+ (—4a® — 4z — 62> +82% — 3z + 1)y
(=28 —2® — 22t + 23 — 2P = 0.
The equation of C3592 in the affine patch where z =1 is
YO+ (z+4)y° + (22 + 4z + )yt + (2% + 622 + 10z — 2)y°
+ (2t — 823 4+ 927 + 152 — 4)y? + (32 — 1223 + 72 + 102 — 2)y
+ (=2 + 62* — 92° +62° —x — 1) = 0.
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Abstract (will appear on the journal’s web site only)

We use the method of quadratic Chabauty on the quotients X (N) of
modular curves Xo(N) by their Fricke involutions to provably compute all
the rational points of these curves for prime levels IV of genus 4, 5, and 6. We
find that the only such curves with exceptional rational points are of levels
137 and 311. In particular there are no exceptional rational points on those
curves of genus 5 and 6. More precisely, we determine the rational points on
the curves XJ(N) for N =137,173,199, 251,311,157, 181,227,263, 163, 197,
211, 223,269,271, 359.
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