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a b s t r a c t

Let M(G) denote the set of all maximal matchings in a simple graph G, and f : M(G) →

{0, 1}|E(G)| be the characteristic function of maximal matchings of G. Any set S ⊆ E(G) such
that f |S is an injection is called a global forcing set for maximal matchings in G, and the
cardinality of smallest such S is called the global forcing number for maximal matchings
of G. In this paper we establish sharp lower and upper bounds on this quantity and prove
explicit formulas for certain classes of graphs. At the end,we also state some open problems
and discuss some further developments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The concept of forcing set is one of many graph-theoretical concepts whose origins can be traced back to the study
of resonance structures in mathematical chemistry where it was introduced under the name of the innate degree of
freedom [10,12]. Later it attracted significant attention also in purely graph-theoretical literature [1,2,14,15,23]. The forcing
sets were first defined locally, with reference to particular Kekulé structures (or perfect matchings in mathematical
literature), and global results were obtained by considering extremal values over the set of all relevant structures. Then
the focus shifted to the study of forcing sets that were defined globally in a graph, motivated by the need to efficiently code
andmanipulate perfect matchings in large-scale computations [19,20]. It turned out that many results could be successfully
transferred from the local to the global context. In particular, explicit formulas for the global forcing number for some
benzenoid graphs, rectangular and triangular grids and complete graphs were obtained by some of the present authors
[5,16,18,21].

Instrumental in obtaining those results were the elements of well-developed structural theory available for perfect
matchings. No such theory, however, exists for much less researched but still very useful and interesting class of large
matchings, known as maximal matchings. Hence, we were unable to simply transfer the above results when a need for
analogous concepts arose in course of our work on maximal matchings. The aim of this paper is to fill the gap by extending
the concepts of global forcing set and global forcing number also to maximal matchings and to obtain results analogous to
those mentioned for the perfect matching case.

The paper is organized as follows. In the next section we define the terms relevant for our subject and present some
preliminary results. Section 3 contains some lower bounds on the global forcing number and also a monotonicity results
used later. Sections 4 and 5 present results on trees and complete graphs, respectively, while in Section 6we present bounds
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for graphs of a given cyclomatic number. Finally, in the concluding sectionwe comment on some open problems and indicate
some possible directions for future research.

2. Definitions and preliminary results

All graphs in this paper are tacitly supposed to be simple and connected unless explicitly stated otherwise. Let G be a
graphwith set of vertices V (G) and set of edges E(G).Wewill denote by n = |V (G)| the number of vertices and bym = |E(G)|
the number of edges in G. As usual, the path, the star, and the complete graph on n vertices are denoted by Pn, Sn and Kn,
respectively.

Let G be a graph and H be any subgraph of G. We denote by G−H the graph obtained by deleting from G all vertices of H
and all edges incident with them. If S is a set of edges of G, then G− S denotes the graph obtained from G by removing edges
from S without removing their end-vertices. We reserve notation S \ M for the set difference of two sets of edges.

A connected graphG is acyclic or a tree ifG does not contain cycles. IfG contains exactly one cycle, we sayG is anunicyclic
graph. Finally, for any graph G we define its cyclomatic number c(G) by c(G) = |E(G)| − |V (G)| + 1. That is the smallest
number of edges one must remove from a graph to obtain a tree. If G is a tree, then c(G) = 0, and if G is an unicyclic graph,
then c(G) = 1. A vertex u in a graph G is a leaf if u has exactly one neighbor. The only neighbor of a leaf in G is called a petal.

A matching in a graph G is any set of edges M ⊆ E(G) such that every vertex in G is incident with at most one edge
from M . The number of edges in M is called its size. Matchings of small size are quite uninteresting, since they are easy to
construct and enumerate. On the other hand, ‘‘large’’matchings serve asmodels formany problems inwhichwehave entities
capable of interactions over a given connection pattern.Whenever one neighbor canmonopolize all interaction capability of
an entity, rendering it unavailable for its other neighbors, matchings naturally appear, and existence of ‘‘large’’ matchings is
usually desirable as it signals good efficiency of the underlying process. Hence, we are interested in study of largematchings.

A matching M is maximum if there is no matching in G of a greater size. The cardinality of any maximum matching in
G is called the matching number of G and denoted by ν(G). Since each edge of a matching saturates two vertices of G, no
matching in G can have size greater than ⌊n/2⌋. We say that a matchingM is perfect if every vertex from G is incident with
exactly one edge fromM . Obviously, only graphs on an even number of vertices can have perfect matchings. If a graph G on
an odd number of vertices has ν(G) = ⌊n/2⌋, we say that G has an almost perfect matching.

Another way of measuring how large is a given matching is based on (im)possibility of its extension to a larger matching.
We say that matchingM ismaximal if there is no matchingM ′ in G such thatM ⊂ M ′. Note that every maximummatching
in G is alsomaximal, but the opposite is, in general, not true. Maximalmatchings usually come in different sizes. The smallest
size of a maximal matching in G is called the saturation number of G and denoted by s(G). The largest size is, of course, the
matching number ν(G). If all maximal matchings in G are of the same size (and hencemaximum), graph G is equimatchable.

There is a marked asymmetry in the way maximum and maximal matchings are studied and represented in the
literature. While the maximum (and in particular perfect) matchings are well researched and understood (see, for example,
monographs [13] and [4]), results on their maximal counterparts are much less abundant. We mention here some papers
dealing with maximal matchings in trees [11,22], with equimatchable graphs [8,9], and two recent papers coauthored by
one of the present authors about structural and enumerative aspects of maximal matchings in linear polymers [6,7]. One of
possible reasons for the scarcity of results might be that, at themoment, there is no structural theory for maximal matchings
analogous to the one available for maximummatchings.

Any non-maximal matching can be extended to a maximal matching. In particular, for any edge e ∈ E(G) there is a
maximal matching M containing e. This stands in sharp contrast with the situation for perfect matchings, where such
property (1-extendability) imposes strong structural conditions on G. The idea of finding a subset of a perfect matching
which is in a unique way extendable to the whole matching gave rise to the concept of forcing set.

For a given perfect matchingM in G, its forcing set is defined as any subset ofM that is not contained in any other perfect
matching of G. The forcing number of a perfect matching M was defined as the size of any smallest forcing set of M . Note
that forcing sets and numbers are defined for each perfect matching of G. The idea was generalized to global setting in two
different ways. One was to study extremal forcing sets and forcing numbers over all perfect matchings; the other was to
look for subsets of edges of G, not necessarily matchings, such that no two perfect matchings coincide on them. The later
approach gave rise to the concept of global forcing sets and numbers for perfect matchings. Now we extend the idea also to
maximal matchings.

A global forcing set formaximalmatchings of a graph G is any set S ⊆ E(G) such thatM1
⏐⏐
S ̸= M2

⏐⏐
S for any twomaximal

matchings M1 and M2. Any global forcing set for maximal matchings in G of the smallest cardinality is called a minimum
global forcing set and its cardinality, denoted by ϕgm(G), is called the global forcing number for maximal matchings in G.
Throughout the rest of the paper we will say only global forcing set (or number) of graph G tacitly assuming it is a global
forcing set (or number) for maximal matchings in G unless explicitly stated otherwise.

Global forcing sets in a given graph G have an obvious monotonicity property.

Proposition 1. If S ⊂ E(G) is a global forcing set, then each S ′
⊃ S is also a global forcing set. If S ⊂ E(G) is not a global forcing

set, then no S ′
⊂ S can be a global forcing set.
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Let S = {e1, . . . , ek} be a global forcing set for maximal matchings in G. To each maximal matching M we associate a
binary string of length k by setting its ith bit to 1 if ei ∈ M and to 0 otherwise. (Those binary strings are, in fact, restrictions of
the characteristic functions of maximal matchings on S.) Since different matchings give rise to different strings, the number
of bits must be sufficiently large to provide different binary codes for all maximal matchings. This gives a lower bound on
the global forcing number for maximal matchings.

Proposition 2. Let Ψ (G) be the total number of maximal matchings in G. Then ϕgm(G) ≥ ⌈log2Ψ (G)⌉.

A completely analogous result is valid for global forcing number for perfect matchings (Proposition 1 in [18]). The
logarithmic nature of the lower bound is reinforced by noticing that it becomes sharp for graphs with unique maximal
matchings, since in such graphs any subset of edges, including the empty one, is a global forcing set. In the case of perfect
matchings, analogous observation provided an important characterization of global forcing sets (Proposition 5 of [5]). Here,
however, it is far less useful. One possible reason is that the class of graphswith uniquemaximalmatchings is quite restricted.

Proposition 3. Let G be a graph on n vertices with only one maximal matching. Then G is a union of a matching and an empty
graph. More precisely, G = pK2 ∪ qK1 for some integer p and q such that 2p + q = n.

We can now use this result to find global forcing sets.

Proposition 4. Let S ⊆ E(G) be a set of edges such that the graph induced by E(G) \ S has only one maximal matching. Then S is
a global forcing set for maximal matchings.

The converse, however, is not true. It suffices to consider the cycle on 4 vertices. It has 2maximalmatchings, both of them
perfect, and they differ on every edge. Hence, each edge is a global forcing set, and the graph induced by the remaining three
edges has two maximal matchings, one of size one and one of size two.

An immediate consequence of the above result is that the complement of any matching is a global forcing set.

Corollary 5. Let M be any matching in G. Then E(G) \ M is a global forcing set for maximal matchings in G.

Wewill need another result on global forcing sets for perfect matchings in a graph. Again, let G be a connected graphwith
a perfect matching. A subgraph H of G is nice if G − H contains a perfect matching. We refer the reader to [3] for the proof
of the following result.

Theorem 6. Let G be a graph with a perfect matching. Then S ⊆ E(G) is a global forcing set for perfect matchings in G if and only
if S intersects each nice cycle of G.

We close the section by introducing some special graphs which will be used throughout the paper. A cycle-star graph
CSk,n−k is a graph on n vertices consisting of one cycle on k vertices and n − k leaves all adjacent to the same vertex of the
cycle. A cycle-path graph CPk,n−k is a graph on n vertices consisting of one cycle on k vertices and one path on n− k vertices
which are vertex disjoint and one end of the path is connected by an edge to exactly one vertex on the cycle. Finally, we
define amulticycle-path graph CPc,k,n−ck as a graph on n vertices consisting of c vertex disjoint cycles on k vertices and one
path on n − ck vertices vertex disjoint with those c cycles, such that one end of the path is connected to exactly one vertex
of each cycle by an edge. It follows from the definition that CP1,k,n−k = CPk,n−k.

3. Upper bound and monotonicity

In this section we use the above observations to establish an upper bound on the global forcing number and also prove
that the global forcing number is monotonously increasing with respect to addition of edges.

Theorem 7. Let G be a simple graph on n vertices and m edges. Then ϕgm(G) ≤ m − ν(G).

The result follows directly from Corollary 5 by noticing that taking a larger matchingM results in a smaller complement.
Since we are interesting in small global forcing sets, it pays off to chooseM as large as possible, hence of size ν(G).

It is easy to see that the upper bound of Theorem 7 is not sharp for some graphs. An example is provided by C4. Another
example is K4 in which any set of two edges incident with same vertex is a global forcing set. It is easy to see that all three
maximal (and also perfect) matchings differ on this set. Both examples are randomlymatchable i.e. everymaximal matching
is also perfect; K2n and Kn,n are the only randomlymatchable graphs for any n (see [17]). However, K4−e is a further example,
showing that the bound is not tight on a wider class of graphs. It is an interesting problem to determine for which classes
of graphs is this upper bound tight and also to find out how far from the exact value it can be. We will show that the upper
bound is attained for all trees and all complete bipartite graphs with unequal classes of bipartition.

Next we show that the global forcing number does not decrease with an edge addition.

Theorem 8. Let G be a graph on n vertices and let u, v be two vertices in G such that uv ̸∈ E(G). Let G1 be the graph obtained
from G by adding the edge e = uv to G. Then ϕgm(G) ≤ ϕgm(G1).
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Proof. Suppose the contrary, i.e. ϕgm(G1) < ϕgm(G). Let S1 be a global forcing set in G1. Therefore, |S1| ≤ ϕgm(G) − 1. We
distinguish two cases.

CASE 1. Suppose S1 does not contain the edge e = uv. Therefore, S1 ⊆ E(G). Since |S1| ≤ ϕgm(G) − 1, we know that
S1 cannot be a global forcing set in G. That implies there are two different maximal matchings M and M ′ in G such that
M

⏐⏐
S1

= M ′
⏐⏐
S1

. Note that maximal matchings M and M ′ can be extended to maximal matchings M1 and M ′

1 in G1. Therefore,
we obtained two different maximal matchings M1 and M ′

1 in G1, such that M1
⏐⏐
S1

= M ′

1

⏐⏐
S1

which is contradiction with S1
being a global forcing set on G1.

CASE 2. Suppose S1 contains the edge e = uv. Let S = S1 \ {e}. Therefore, S ⊆ E(G) and |S| ≤ ϕgm(G) − 2. Since
|S| ≤ ϕgm(G)−2,we know that S cannot be a global forcing set in G. That implies there are two different maximal matchings
M andM ′ in G such thatM

⏐⏐
S = M ′

⏐⏐
S . IfM andM ′ were the only two different maximal matchings in G coinciding on S, then

we could pick an edge e′
∈ E(G)\ S on whichM andM ′ differ, and define S ′

= S ∪{e}. Obviously, S ′ would be a global forcing
set on Gwith

⏐⏐S ′
⏐⏐ = |S|+1 ≤ ϕgm(G)−1which is contradiction with ϕgm(G) being the global forcing number of G. Therefore,

there must exist a maximal matching M ′′ in G different from both M and M ′ such that M
⏐⏐
S = M ′

⏐⏐
S = M ′′

⏐⏐
S . Note that all

three maximal matchings M, M ′ and M ′′ in G can be extended to maximal matchings M1, M ′

1 and M ′′

1 in G1, respectively.
The extension of a maximal matching M in G to maximal matching M1 in G1 can be done in only two ways: M1 = M ∪ {e}
or M1 = M (which way M will be extended depends on whether M saturates at least one of vertices u and v or not). Since
there are only two ways to extend maximal matchings from G to G1, at least two of maximal matchings M, M ′ and M ′′ are
extended in the same way. Without loss of generality we may assume those two matchings are M and M ′. Therefore, we
have obtained two different maximal matchings M1 and M ′

1 in G1 such that M1
⏐⏐
S1

= M ′

1

⏐⏐
S1

which is contradiction with S1
being a global forcing set on G1. ■

4. The global forcing number for trees

In this section we prove that all trees satisfy the upper bound of Theorem 7 with equality.

Lemma 9. Let Tn be a tree on n vertices. Then ϕgm(Tn) ≥ n − 1 − ν(Tn).

Proof. Let S be a global forcing set for maximal matchings in Tn. We consider the graph Tn − S. Let P = v0v1 . . . vk be the
longest path in Tn − S. Since P is the longest, it cannot be extended, and it follows that all edges incident with v0 and vk in
Tn − P are included in S. There are two cases to consider.

CASE 1. Suppose k = 1. Then E(Tn) − S must be a matching in Tn. Therefore, |E(Tn)| − |S| ≤ ν(Tn), which implies
|S| ≥ |E(Tn)| − ν(Tn).

CASE 2. Suppose k > 1.
CASE 2a. Suppose neither v0 nor vk is a petal in Tn. Let us denote edges in path P by ei = vi−1vi for i = 1, . . . , k. Now, let

M ′

1 = {e2i−1 : i = 1, . . . ,
⌈ k

2

⌉
} and M ′

2 = {e2i : i = 1, . . . ,
⌊ k

2

⌋
}. Note that M ′

1 and M ′

2 are two different maximal matchings
in P , both saturating all interior vertices of P . Now, let us consider the graph Tn − P . If a connected component of Tn − P is
an isolated vertex u, then u is a leaf in Tn adjacent to an interior vertex of P, soM ′

1 andM ′

2 cannot be extended to a maximal
matching in Tn which saturates those leaves. If a connected component of Tn − P is not an isolated vertex, then let u be the
only vertex in that connected component which in Tn is a neighbor to a vertex in P . We call u the root of that connected
component. Since every edge in a connected graph can be extended to a maximal matching, there exists maximal matching
M ′ in Tn − P which saturates all roots of connected components. Therefore, M1 = M ′

1 ∪ M ′ and M2 = M ′

2 ∪ M ′ are two
different maximal matchings in Tn coinciding on S, which is a contradiction with S being a global forcing set for maximal
matchings.

CASE 2b. Suppose v0 or vk is a petal in Tn. Without loss of generality we may assume that v0 is a petal adjacent to a leaf w
in Tn. Let us consider set S ′

= (S∪{v0v1})\{v0w}.Note that |S| =
⏐⏐S ′

⏐⏐ and S ′ is also a global forcing set formaximalmatchings
(since all edges in Tn incident to v0 are included in S except v0v1). Also, note that the way we changed S for S ′ means that at
least one longest path in Tn − S no longer exists in Tn − S ′ (i.e. it is shortened). Therefore, applying this procedure enough
times we will reduce this case to CASE 1 or CASE 2a.

Note that in each case we have proved that for any global forcing set S there is a global forcing set S ′ such that
|S| =

⏐⏐S ′
⏐⏐ ≥ |E(Tn)| − ν(Tn). Therefore, we have

ϕgm(Tn) = min{|S| : S is a global forcing set of Tn} ≥ |E(Tn)| − ν(Tn),

which proves the lemma. ■

The main result of this section now follows immediately.

Theorem 10. Let Tn be a tree on n vertices. Then ϕgm(Tn) = n − 1 − ν(Tn).

Several corollaries now follow by plugging in expressions for matching number of some classes of trees.

Corollary 11. ϕgm(Sn) = n − 2.
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Corollary 12. ϕgm(Pn) =
⌈ n

2

⌉
− 1.

Theorem 13. Let Tn be a tree on n vertices. Then⌈n
2

⌉
− 1 ≤ ϕgm(Tn) ≤ n − 2.

The lower bound is achieved for any tree on n vertices with matching number equal to ⌊
n
2⌋, while the upper bound is attained if

and only if Tn is the star Sn.

We conclude the section by noticing that the upper bound for trees can be further tightened in a way stated in the
following proposition.

Proposition 14. Let Tn be a tree on n > 2 vertices and let k be the number of petals in Tn. Then ϕgm(Tn) ≤ n − 1 − k.

Proof. It is sufficient to find a global forcing set S in Tn such that |S| = n − 1 − k. Let K = {u1, . . . , uk} be the set of all
petals in a tree Tn. Let L = {v1, . . . , vk} be the set of leaves from Tn such that leaf vi is a neighbor of the petal ui. Finally, let
M = {uivi : i = 1, . . . , k}. Obviously, M is a matching in Tn such that |M| = k. Corollary 5 implies S = E(Tn) \ M is a global
forcing set in Tn. Since |S| = |E(Tn)| − |M| = n − 1 − k, we obtain ϕgm(Tn) ≤ n − 1 − k. ■

5. The global forcing number for complete graphs

Our monotonicity result implies that the largest possible value of the global forcing number on all graphs on a given
number of vertices must be attained on the complete graph. We have seen examples indicating that the upper bound of
Theorem 7 is not sharp for randomlymatchable graphs, hence also for the complete graph on 2n vertices. On the other hand,
the values of 1 and 8, respectively, for K3 and K5, indicate that it might be attained for odd n. Our next result confirms this
by providing exact values for the global forcing number of complete graphs.

Lemma 15. Let Kn be a complete graph on an odd number of vertices n. Let M be amaximal matching in Kn and let S = E(Kn)\M.
Then S is a minimum global forcing set in Kn.

Proof. Corollary 5 implies that S is a global forcing set. Therefore, ϕgm(Kn) ≤
n(n−1)

2 −
⌊ n

2

⌋
. Suppose now that there is a global

forcing set S in Kn such that |S| <
n(n−1)

2 −
⌊ n

2

⌋
. Then, there is at least one vertex u in Kn which is incident to at least two

edges not belonging to S. Let us denote by v and w two neighbors of u such that uv ̸∈ S and uw ̸∈ S. Let P be the path vuw.
Note that vertices on path P can be maximally matched in two different ways and that Kn − P has even number of vertices
which can be perfectly matched in Kn − P . Therefore, there are two different maximal matchings in Kn which differ only on
edges uv and uw which do not belong to S. We conclude that S cannot be a global forcing set. ■

Lemma 16. Let Kn be a complete graph on an even number of vertices n. Let G be a subgraph of Kn containing all vertices from
Kn, all edges incident to a vertex u ∈ V (Kn) and a maximal matching in Kn − {u}. Then S = E(Kn) \ E(G) is a minimum global
forcing set in Kn.

Proof. First note that in this case all maximal matchings on Kn are perfect, so a global forcing set for maximal matchings
is the same as a global forcing set for perfect matchings. Now we can use the results for perfect matchings in Kn, namely
Theorem 6. Since all even cycles in Kn are nice, Theorem 6 implies that S will be a global forcing set in Kn if and only if Kn − S
does not contain even cycle. Therefore, S will be a global forcing set of minimum cardinality if and only if G = Kn − S is a
graphwithmaximum possible number of edges that does not contain even cycle. Wewant to establishm = |E(G = Kn − S)|
for such G = Kn − S. Since G = Kn − S must not contain even cycles, note that all cycles in G = Kn − S must be edge disjoint.
Let c be the cyclomatic number of G = Kn − S. The definition of cyclomatic number implies c ≥ m − (n − 1). On the other
hand, since all cycles in Kn − S must be edge disjoint, it follows that c ≤

⌊m
3

⌋
. Therefore, we obtain

m − (n − 1) ≤ c ≤

⌊m
3

⌋
≤

m
3

⇒
2m
3

≤ n − 1 ⇒ m ≤

⌊
3(n − 1)

2

⌋
.

The bound is obtained by the graph G = Kn − S consisting of all edges incident to a vertex u and a maximal matching in
Kn − {u}. ■

Theorem 17. Let G be a graph on n vertices. Then

⌈n
2

⌉
− 1 ≤ ϕgm(G) ≤

⎧⎪⎨⎪⎩
(n − 1)2

2
for odd n,

(n − 2)2

2
for even n.

Any tree on n vertices with a perfect or an almost perfect matching attains the lower bound, while the complete graph Kn attains
the upper bound.
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Proof. Let us first prove the claim for the lower bound. Let G be a graph on n vertices and T its spanning tree. Theorem 8
implies ϕgm(G) ≥ ϕgm(T ). Hence no graph on n vertices can have the global forcing number smaller than a tree on the same
number of vertices having a perfect or an almost prefect matching. As such trees exist for all n, it follows that the trees with
matching number equal to

⌊ n
2

⌋
are among the graphs on n vertices attaining the smallest global forcing number. They do

not exhaust the class, though, as can be seen on example of C4. Other examples of cyclic graphs attaining the lower bound⌈ n
2

⌉
− 1 will be presented in the next section.

Regarding the upper bound, ϕgm(Kn) ≥ ϕgm(G) for any G on n vertices follows directly from Theorem 8. Now, Lemma 15
implies that for odd nwe have

ϕgm(Kn) = |E(Kn)| − |E(Kn − S)| =
n(n − 1)

2
−

⌊
3(n − 1)

2

⌋
=

n(n − 1)
2

−
3n − 4

2
=

(n − 2)2

2
.

In the case of even n, Lemma 16 implies that we have ϕgm(Kn) =
n(n−1)

2 −
⌊ n

2

⌋
=

(n−1)2
2 . Again, Kn is not the only graph

attaining the maximum possible global forcing number. A simple example is provided by K4 − e. ■

In the rest of this section we consider complete bipartite graphs. They are equimatchable (and even randomly matchable
for classes of equal size) and there always exists a maximal matching that saturates the smaller class of the bipartition.

Lemma 18. Let Kp,p be a complete bipartite graph on n = 2p vertices. Let G = Kp−1,p−1 be a subgraph of Kp,p. Then S = E(G) is
a global forcing set of Kp,p.

Proof. First, note that every maximal matching in Kp,p is a perfect matching. Let us denote the vertices of Kp,p by u1, . . . , up
and v1, . . . , vp so that every edge in Kp,p is of the form e = uivj. Without loss of generality we may assume that a subgraph
G = Kp−1,p−1 of Kp,p is induced by set of vertices

{u1, . . . , up−1} ∪ {v1, . . . , vp−1}.

We claim that S = E(G) is a global forcing set for maximal matchings in Kp,p. SupposeM1 andM2 are two different maximal
matchings in Kp,p. SinceM1 andM2 are of the same size (both are perfect), their difference implies that in {u1, . . . , up} there
are at least two vertices, say ui and uj, which are differently matched inM1 andM2. Since ui ̸= uj, it follows that at least one
of those vertices belongs to V (G = Kp−1,p−1), say ui. Since ui is differently matched in M1 and M2, let uivk ∈ M1 \ M2 and
uivl ∈ M2 \ M1. Without loss of generality we may assume k < l. Therefore, M1 and M2 differ on the edge uivk ∈ S, so we
have proved thatM1

⏐⏐
S ̸= M2

⏐⏐
S , which means that S is the global forcing set for maximal matching. ■

Lemma 19. Let Kp,q be a complete bipartite graph on n = p + q vertices, where p < q. Let G = Kp,q−1 be a subgraph of Kp,q.
Then S = E(G) is a global forcing set of Kp,q.

Proof. Let us denote the vertices of Kp,q by u1, . . . , up and v1, . . . , vq so that every edge in Kp,q is of the form e = uivj. Note
that every maximal matching in Kp,q saturates all vertices from {u1, . . . , up}. Without loss of generality wemay assume that
a subgraph G = Kp,q−1 of Kp,q is induced by set of vertices

{u1, . . . , up} ∪ {v1, . . . , vq−1}.

We claim that S = E(G) is a global forcing set for maximal matchings in Kp,q. SupposeM1 andM2 are two different maximal
matchings in Kp,q. Since M1 and M2 both saturate all vertices from {u1, . . . , up}, their difference implies that in {u1, . . . , up}

there is at least one vertex, say ui, which is differently matched in M1 and M2. Suppose uivk ∈ M1 \ M2 and uivl ∈ M2 \ M1.
Without loss of generality we may assume k < l. Therefore, M1 and M2 differ on edge uivk ∈ S, so we have proved that
M1

⏐⏐
S ̸= M2

⏐⏐
S , which means that S is the global forcing set for maximal matching. ■

Theorem 20. Let Kp,q be a complete bipartite graph on n = p + q vertices, where p ≤ q. Then

ϕgm(Kp,q) =

{
(p − 1)2 if p = q
p(q − 1) if p < q

.

Proof. Let us denote the vertices of Kp,q by u1, . . . , up and v1, . . . , vq so that every edge in Kp,q is of the form e = uivj. We
now distinguish two cases.

CASE 1. Suppose p = q. Lemma 18 implies ϕgm(Kp,p) ≤ (p − 1)2. Now, suppose that ϕgm(Kp,p) < (p − 1)2, i.e., there is a
global forcing set S in Kp,p such that |S| < (p − 1)2. Let us consider the graph G = Kp,p − S. Note that

|E(G)| =
⏐⏐E(Kp,p)

⏐⏐ − |S| > p2 − (p − 1)2 = 2p − 1 = n − 1,

which implies |E(G)| ≥ n. Therefore, G must contain a cycle C , and since G is a subgraph of Kp,p, cycle C must be even with
the same number of vertices in {u1, . . . , up} as in {v1, . . . , vp}. Let M ′

1 and M ′

2 be two different perfect matchings in C, let
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M be a perfect matching of the vertices in Kp,p − C . Now, note that M1 = M ′

1 ∪ M and M2 = M ′

2 ∪ M are two different
perfect matchings in Kp,p coinciding on S which contradicts S being a global forcing set for maximal matchings. Therefore,
ϕgm(Kp,p) = (p − 1)2.

CASE 2. Suppose p < q. Lemma 19 implies ϕgm(Kp,q) ≤ p(q − 1). Now, suppose that ϕgm(Kp,q) < p(q − 1), i.e., there is a
global forcing set S in Kp,q such that |S| < p(q − 1). Let us consider the graph G = Kp,q − S. Note that

|E(G)| =
⏐⏐E(Kp,q)

⏐⏐ − |S| > pq − p(q − 1) = p,

which implies |E(G)| ≥ p + 1. This implies that at least one vertex from {u1, . . . , up} must be of degree 2 in G = Kp,q − S.
Suppose that one vertex is ui and the two edges incident to it are e1 = uivj and e2 = uivk. Let M be a maximal matching
in the graph Kp,q − {ui, vj, vk}. Note that M1 = {e1} ∪ M and M2 = {e2} ∪ M are two different maximal matchings in Kp,q
coinciding on S which contradicts S being a global forcing set for maximal matchings. Therefore, ϕgm(Kp,q) = p(q − 1). ■

Note that Theorem 20 implies that global forcing sets from Lemmas 18 and 19 are minimum global forcing sets.

6. The global forcing number for graphs with given cyclomatic number

In this sectionweprovide lower andupper bounds on the global forcing number of graphswith a given cyclomatic number
and construct some graphs attaining those bounds. We start with unicyclic graphs.

Lemma 21. Let G be an unicyclic graph on n vertices. Then ϕgm(G) ≥ n − 1 − ν(G).

Proof. Let G be an unicyclic graph, and let e be an edge on the only cycle in G. Let T = G − {e}. Note that T is a tree on n
vertices, so Theorem 10 implies ϕgm(T ) ≥ n − 1 − ν(T ) which is equivalent to ϕgm(T ) + ν(T ) ≥ n − 1. Theorem 8 implies
that ϕgm(T ) ≤ ϕgm(G). Since any matching in T is also a matching in G, it follows that ν(T ) ≤ ν(G) too. Now we have

ϕgm(G) + ν(G) ≥ ϕgm(T ) + ν(T ) ≥ n − 1,

which is equivalent to ϕgm(G) ≥ n − 1 − ν(G), so the lemma is proved. ■

By combining this result with the general upper bound, we obtain that the upper and lower bound for the global forcing
number of an unicyclic graph differ only by one, which implies that the global forcing number of an unicyclic graph can
obtain only two different integer values which are consecutive.

Corollary 22. Let G be an unicyclic graph on n vertices. Then n − 1 − ν(G) ≤ ϕgm(G) ≤ n − ν(G).

Next we show that for each n ≥ 5 there is an unicyclic graph on n vertices attaining the lowest possible value of global
forcing number among all graphs on n vertices.

Lemma 23. Let n be an integer such that n ≥ 5. Then

ϕgm(CP4,n−4) =

⌈n
2

⌉
− 1.

Proof. From Theorems 13 and 8 it follows that ϕgm(CP4,n−4) ≥
⌈ n

2

⌉
− 1. Therefore, it is sufficient to prove that there is

a global forcing set S in CP4,n−4 such that |S| =
⌈ n

2

⌉
− 1. Let us denote the vertices in CP4,n−4 by u1, u2, . . . , un so that

ui−1ui ∈ E(CP4,n−4) for every i = 2, . . . , n and u1u4 ∈ E(CP4,n−4). Let S be a set of edges from CP4,n−4 defined by

S = {u1u2} ∪ {u2iu2i+1 : 2 ≤ i ≤

⌊
n − 1
2

⌋
}.

We have |S| =
⌊ n−1

2

⌋
=

⌈ n
2

⌉
−1. It remains to prove that S is a global forcing set in G. Let us consider two different maximal

matchingsM1 andM2 in CP4,n−4. Let us denote e1 = u1u2 ∈ S. There are three possible cases with respect to e1 belonging to
M1 andM2.

CASE 1. Suppose e1 ∈ M1∆M2, where M1∆M2 is a symmetric difference of the maximal matchings M1 and M2. Then,
obviouslyM1

⏐⏐
S ̸= M2

⏐⏐
S .

CASE 2. Suppose e1 ∈ M1 ∩ M2. Let G′ be the graph obtained from G by deleting the vertices u1 and u2. It holds that
G′

= Pn−2. Note that M ′

1 = M1
⏐⏐
G′ and M ′

2 = M2
⏐⏐
G′ are two different maximal matchings on G′. Also, by Corollary 5 we know

that S ′
= S

⏐⏐
G′ is a global forcing set in G′. Therefore, M ′

1

⏐⏐
S′ ̸= M ′

2

⏐⏐
S′ , which implies M1

⏐⏐
S ̸= M2

⏐⏐
S .

CASE 3. Suppose e1 ̸∈ M1 ∪ M2. Note that in this case the following must also hold: e3 = u3u4 ̸∈ M1 ∪ M2 and
e2 = u2u3 ∈ M1 ∩ M2, otherwise M1 and M2 would not be maximal matchings in CP4,n−4. Let G′ be the graph obtained
from G by deleting the vertices u2 and u3. Obviously, G′

= Pn−2. Also, just as in the previous case we have that M ′

1 = M1
⏐⏐
G′

and M ′

2 = M2
⏐⏐
G′ are two different maximal matchings on G′, and that S ′

= S
⏐⏐
G′ is a global forcing set in G′. Therefore,

M1
⏐⏐
S ̸= M2

⏐⏐
S . ■
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Wenotice thatwe could replace Pn−4 with any treewithmatching number equal to ⌊
n−4
2 ⌋ and construct a graph satisfying

the lower bound by adding an edge between one of its leaves and a vertex on C4.
The next result shows that the upper bound n−ν(G) is also satisfied with equality by some unicyclic graphs on n vertices.

Lemma 24. Let n ≥ 5 be an integer. Then ϕgm(CS3,n−3) = n − 2.

Proof. Let us suppose the contrary, i.e. ϕgm(CS3,n−3) ≤ n − 3. We denote by u the only vertex in CS3,n−3 of degree greater
than two. Let S be a global forcing set on CS3,n−3 such that |S| = ϕgm(CS3,n−3).Now, ϕgm(CS3,n−3) ≤ n−3 and

⏐⏐E(CS3,n−3)
⏐⏐ = n

imply that at least three edges from CS3,n−3 are not contained in S. If two of those edges are incident to u and a leaf, then S
cannot be a global forcing set. If two of those edges are incident to u and a non-leaf, then again S cannot be a global forcing
set. The only remaining possibility is that one edge is incident to u and a leaf, the other edge is incident to u and a non-leaf and
the third edge is the only edge in CS3,n−3 which is not incident to u. But in that case also there are twomaximal matchings in
CS3,n−3 coinciding on S, so S again is not a global forcing set. Therefore, in every case we have a contradiction, so the lemma
is proved. ■

Now we can summarize our results for unicyclic graphs.

Theorem 25. Let G be an unicyclic graph on n ≥ 5 vertices. Then⌈n
2

⌉
− 1 ≤ ϕgm(G) ≤ n − 2.

The cycle-path graph CP4,n−4 and the cycle-star graph CS3,n−3 attain the lower and the upper bound, respectively, with equality.

Proof. The lower bound follows from Theorems 13 and 8. Furthermore, Lemma 23 implies that the lower bound is obtained
for CP4,n−4.

Let us now prove the upper bound. Let G be an unicyclic graph on n ≥ 5 vertices. Note that G must contain at least two
independent edges. To see that, note that if the only cycle in the graphG is of length at least 4 then there are two independent
edges on that cycle. If the only cycle in G is a triangle, then n ≥ 5 implies that there must exist an edge e in G not contained
on the triangle. But e is then independent with at least one edge of the triangle. Therefore, there is a matching M in G such
that |M| ≥ 2. Corollary 5 implies that S = E(G) \ M is a global forcing set, therefore ϕgm(G) ≤ |S| = |E(G) \ M| ≤ n − 2.
Lemma 24 implies that the bound is obtained for CS3,n−3. ■

The approach of Lemma 21 can be extended to graphs with larger cyclomatic number. The proof follows along the same
lines and we omit the details.

Lemma 26. Let G be a graph on n vertices with cyclomatic number c. Then ϕgm(G) ≥ m − c − ν(G).

Corollary 27. Let G be a graph on n vertices with cyclomatic number c. Then m − c − ν(G) ≤ ϕgm(G) ≤ m − ν(G).

If the cycles are independent (hence, for n sufficiently large with respect to c), we can construct graphs with a given
cyclomatic number satisfying the lower bound of Theorem 17 with equality.

Lemma 28. Let c and n be two integers such that n ≥ 4c + 1. Then

ϕgm(CPc,4,n−4c) =

⌈n
2

⌉
− 1.

Proof. From Theorems 13 and 8 it follows that ϕgm(CPc,4,n−4c) ≥
⌈ n

2

⌉
− 1. Therefore, it is sufficient to prove that there is a

global forcing set S in CPc,4,n−4c such that |S| =
⌈ n

2

⌉
− 1. Recall that CPc,4,n−4c consists of c cycles on 4 vertices and a path

on n − 4c vertices. Suppose i−th cycle of CPc,4,n−4c is obtained from the path u(i)
1 u(i)

2 u(i)
3 u(i)

4 by connecting its end-vertices by
an edge. Also, suppose the path on n− 4c vertices in CPc,4,n−4c is denoted by v1v2 . . . vn−4c . Finally, suppose v1u

(i)
4 is an edge

in CPc,4,n−4c for every i = 1, . . . , c. Now that we have denoted all the vertices and edges in CPc,4,n−4c, let us define the set of
edges S by

S = {u(i)
1 u(i)

2 , u(i)
4 v1 : i = 1, . . . , c} ∪ {v2iv2i+1 : 1 ≤ i ≤

⌊ n−4c−1
2

⌋
}.

Note that |S| = 2c +
⌊ n−4c−1

2

⌋
=

⌊ n−1
2

⌋
=

⌈ n
2

⌉
− 1. It remains to prove that S is a global forcing set in CPc,4,n−4c . The

proof is by induction on c. For c = 1, the claim is proved in Lemma 23. Suppose c ≥ 2. Let us consider two different
maximal matchings M1 and M2 in CPc,4,n−4c . Let us denote e(1) = u(1)

4 v1 ∈ S. There are three possible cases with respect to
e(1) belonging toM1 andM2.

CASE 1. Suppose e(1) ∈ M1∆M2, where M1∆M2 is a symmetric difference of maximal matchings M1 and M2. Then,
obviouslyM1

⏐⏐
S ̸= M2

⏐⏐
S .

CASE 2. Suppose e(1) ∈ M1 ∩ M2. Let G′ be the graph obtained from G = CPc,4,n−4c by deleting the vertices u(1)
4 and

v1. Obviously, G′ has 1 connected component which is a path on 3 vertices (i.e. path P (1)
3 = u(1)

1 u(1)
2 u(1)

3 ), c − 1 connected
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components which are cycle on 4 vertices (i.e. cycles C (i)
4 = u(i)

1 u(i)
2 u(i)

3 u(i)
4 ) and possibly one connected component which is

a path on n − 4c − 1 vertices (i.e. path Pn−4c−1 = v2 . . . vn−4c). Obviously, M ′

1 = M1
⏐⏐
G′ and M ′

2 = M2
⏐⏐
G′ are two different

maximal matchings on G′. It is easily verified that S restricted on each connected component of G′ which is a cycle is a global
forcing set. Furthermore, Corollary 5 implies that S restricted to connected components of Gwhich are paths is also a global
forcing set. Therefore,M1

⏐⏐
S ̸= M2

⏐⏐
S .

CASE 3. Suppose e(1) ̸∈ M1 ∪ M2. Let G′ be the graph obtained from G = CPc,4,n−4c by deleting the edge e(1). The graph
G′ consists of two connected components, one is G′

1 = C4 and the other is G′

2 = CPc−1,4,n−4c . Note that M ′

1 = M1
⏐⏐
G′ and

M ′

2 = M2
⏐⏐
G′ are two different maximal matchings on G′. It is easily verified that S ′

1 = S
⏐⏐
G′
1
is a global forcing set in G′

1, while

the inductive hypothesis implies that S ′

2 = S
⏐⏐
G′
2
is a global forcing set on G′

2. Therefore, M1
⏐⏐
S ̸= M2

⏐⏐
S . ■

7. Concluding remarks

In this paper we have extended several forcing-related concepts from perfect to maximal matchings. In particular, we
considered global forcing sets and we have established several results concerning cardinality of smallest such sets in given
classes of graphs.

It seems that there are still several interesting unsolved problems. One such problem is to characterize graphs for which
the upper bound of Theorem7 is achievedwith equality.Wehave showed that this happens for all trees and also for complete
bipartite graphs with classes of bipartition of unequal size. It would be also interesting to obtain results for grids and linear
polymers. Another possible direction could be to investigate how global forcing sets and numbers behave under various
binary operations such as sum, corona, or Cartesian product. In particular, operations of splice, link and gated amalgamation
should be studied in order to facilitate deriving recurrences for computing global forcing number for maximal matchings in
cactus chains and other unbranched polymers of low connectivity.

Acknowledgments

Thiswork has been supported in part by Croatian Science Foundation under the project 8481 (BioAmpMode) andNational
Natural Science Foundation of China (Nos. 11371180 and 11571155). Also, the authors gratefully acknowledge partial
support from Croatian–Chinese bilateral project ‘‘Graph-theoretical methods for nanostructures and nanomaterials’’.

References

[1] P. Adams, M. Mahdian, E.S. Mahmoodian, On the forced matching numbers of bipartite graphs, Discrete Math. 281 (2004) 1–12.
[2] P. Afshani, H. Hatami, E.S. Mahmoodian, On the spectrum of the forced matching number of graphs, Australas. J. Combin. 30 (2004) 147–160.
[3] J. Cai, H. Zhang, Global forcing number of some chemical graphs, MATCH Commun. Math. Comput. Chem. 67 (2012) 289–312.
[4] S.J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, in: Lec. Notes in Chemistry, vol. 46, Springer, Heidelberg, 1988.
[5] T. Došlić, Global forcing number of benzenoid graphs, J. Math. Chem. 41 (2007) 217–229.
[6] T. Došlić, I. Zubac, Saturation number of benzenoid graphs, MATCH Commun. Math. Comput. Chem. 73 (2015) 491–500.
[7] T. Došlić, I. Zubac, Counting maximal matchings in linear polymers, Ars Math. Contemp. 11 (2016) 255–276.
[8] E. Eiben, M. Kotrbčik, Equimatchable graphs on surfaces, J. Graph Theory 81 (2016) 35–49.
[9] A. Frendrup, B. Hartnell, P.D. Vestergaard, A note on equimatchable graphs, Australas. J. Combin. 46 (2010) 185–190.

[10] F. Harary, D.J. Klein, T.P. Živković, Graphical properties of polyhexes: perfect matching vector and forcing, J. Math. Chem. 6 (1991) 295–306.
[11] M. Klazar, Twelve countings with rooted plane trees, European J. Combin. 18 (1997) 195–210.
[12] D.J. Klein, M. Randić, Innate degree of freedom of a graph, J. Comput. Chem. 8 (1986) 516–521.
[13] L. Lovász, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[14] L. Pachter, P. Kim, Forcing matchings in square grids, Discrete Math. 190 (1998) 287–294.
[15] M.E. Riddle, The minimum forcing number for the torus and hypercube, Discrete Math. 245 (2002) 283–292.
[16] J. Sedlar, The global forcing number of the parallelogram polyhex, Discrete Appl. Math. 160 (2012) 2306–2313.
[17] D.P. Summer, Randomly matchable graphs, J. Graph Theory 3 (1979) 183–186.
[18] D. Vukičević, T. Došlić, Global forcing number of grid graphs, Australas. J. Combin. 38 (2007) 47–62.
[19] D. Vukičević, H.W. Kroto, M. Randić, Atlas of Kekulé valence structures of buckminsterfullerene, Croat. Chem. Acta 78 (2005) 223–234.
[20] D. Vukičević, M. Randić, On Kekulé structures of buckminsterfullerene, Chem. Phys. Lett. 401 (2005) 446–450.
[21] D. Vukičević, J. Sedlar, Total forcing number of the triangular grid, Math. Commun. 9 (2004) 169–179.
[22] S.G. Wagner, On the number of matchings of a tree, European J. Combin. 28 (2007) 1322–1330.
[23] F.J. Zhang, X.L. Li, Hexagonal systems with forcing edges, Discrete Math. 140 (1995) 253–263.

http://refhub.elsevier.com/S0012-365X(17)30418-1/sb1
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb2
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb3
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb4
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb5
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb6
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb7
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb8
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb9
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb10
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb11
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb12
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb13
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb14
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb15
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb16
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb17
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb18
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb19
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb20
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb21
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb22
http://refhub.elsevier.com/S0012-365X(17)30418-1/sb23

	Global forcing number for maximal matchings
	Introduction and motivation
	Definitions and preliminary results
	Upper bound and monotonicity
	The global forcing number for trees
	The global forcing number for complete graphs
	The global forcing number for graphs with given cyclomatic number
	Concluding remarks
	Acknowledgments
	References


