Jureško, Marino

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Civil Engineering / Sveučilište u Zagrebu, Građevinski fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:237:964204

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-08

Repository / Repozitorij:

Repository of the Faculty of Civil Engineering, University of Zagreb

Sveučilište u Zagrebu

Građevinski fakultet

Marino Jureško

NUMERIČKI MODEL TEČENJA NA PRELJEVU BRANE

DIPLOMSKI RAD

Mentor: prof.dr.sc. Eva Ocvirk

Zagreb, 2024

PODACI ZA DIGITALNI REPOZITORIJ

Naslov:	Numerički model tečenja na preljevu brane			
Title:	Numerical model of overflow			
Fakultet:	Građevinski fakultet Sveučilišta u Zagrebu			
Zavod:	Zavod za hidrotehniku			
Vrsta rada:	Diplomski rad			
Kolegij:	Korištenje vodnih snaga			
Autor:	Marino Jureško			
Mentor(i):	prof.dr.sc. Eva Ocvirk			
Komentor:				
Godina objave:	2024			
Datum obrane:	15.02.2024.			
Broj stranica:	52			
Sažetak:	Izrađen je numerički model strujanja vode na preljevu brane Butoniga s			
	ciljem analize rezultata kako bi se potvrdila ili opovrgnula hipoteza o			
	poboljšanju hidrauličkih performansi povećanjem nadvišenja krune			
	preljeva za 1,0 m. U uvodu su istaknuti izazovi inženjerskog planiranja u			
	složenim hidrauličkim sustavima, gdje upravljanje vodama i rizici od			
	poplava predstavljaju ključni aspekt inženjerskog planiranja. U drugom			
	poglavlju prikazane su karakteristike tečenja preljeva i brzotoka. Opisane			
	su hidrauličke karakteristike bočnog preljeva te je okarakteriziran tok vode			
	u brzotoku. Numerički model izrađen je koristeći geodetske, hidrauličke i			
	hidrološke podloge. U HEC-RAS programu simulira se prelijevanje za			
	postojeće stanje preljeva, kao i za slučaj produljenja preljeva, za vodne			
	valove 100, 1000 i 10000-godišnjeg povratnog razdoblja. U diskusiji je			
	dana detaljna analiza dobivenih rezultata.			

Summary:	A numerical model of water flow at the spillway of the Butoniga dam was				
	developed with the aim of analyzing the results to confirm or refute the				
	hypothesis regarding the improvement of hydraulic performance by				
	increasing the spillway crest elevation by 1.0 m. The introduction				
	highlights the challenges of engineering planning in complex hydr				
	systems, where water management and flood risks represent key aspect				
	engineering planning. The second chapter presents the characteristics of				
	spillway flow and rapids. Hydraulic characteristics of the side spillway				
	described, and the water flow in the rapids is characterized. The numerical				
	model was developed using geodetic, hydraulic, and hydrological d				
	Spillage is simulated using the HEC-RAS program for both the existi				
	spillway conditions and the case of spillway extension, considering water				
	waves of 100, 1000, and 10000-year return periods. A detailed analysis of				
	the obtained results is provided in the discussion.				
Ključne riječi:	Butoniga, numerički model, preljev brane, protok				
Keywords:	Butoniga, numerical model, dam overflow, flow				

ZADATAK SVEUČILIŠTE U ZAGREBU GRAĐEVINSKI FAKULTET **OBRAZAC 2** TEMA DIPLOMSKOG RADA Ime i prezime studenta: Marino Jureško JMBAG: 0083217757 Diplomski rad iz predmeta: Korištenje vodnih snaga Numerički model tečenja na preljevu brane HR Naslov teme diplomskog rada: Numerical model of overflow ENG 1 Opis teme diplomskog rada: 1. Uvod 2. Karakteristike tečenja preljeva i brzotoka 3. Metodologija - numerički model 4. Rezultati 5. Diskusija 6. Zaključak Datum: 17. 4. 2023. Komentor: (Ime i prezime komentora) prof.dr.sc. Eva Ocvirk Mentor: (Ime i prezime mentora) Eva (Potpis mentora)

IZJAVA STUDENTA O IZVORNOSTI

Ja, Marino Jureško, 0083217757, rođen/a 31.01.1997. u Zadru, izjavljujem da sam samostalno izradio diplomski rad pod naslovom:

NUMERIČKI MODEL TEČENJA NA PRELJEVU BRANE

Svojim potpisom jamčim:

- da sam jedini autor ovoga diplomskog rada pod naslovom "Numerički model tečenja na preljevu brane";
- da su svi korišteni izvori literature, kako objavljeni tako i neobjavljeni, adekvatno citirani ili parafrazirani, te popisani u literaturi na kraju rada;
- da ovaj diplomski rad ne sadrži dijelove radova predanih na Građevinskom fakultetu ili drugim ustanovama visokog obrazovanja radi završetka sveučilišnog ili stručnog studija;
- da je elektronička verzija ovoga diplomskog rada identična tiskanoj koju je odobrio mentor;
- da sam upoznata/upoznat s odredbama Etičkog kodeksa Sveučilišta u Zagrebu (Čl. 19).

U Zagrebu, dana 10.02.2024.

Potpis studenta / studentice

SADRŽAJ

1	Uv	70d1
2	Ka	arakteristike tečenja preljeva i brzotoka3
	2.1	Vrste preljeva3
	2.2	Bezvakuumski profili preljeva4
	2.3	Bočni preljev
	2.4	Brzotok
3	Nı	ımerički model
	3.1	Prostorno planske podloge9
	3.1	1.1 Geodetske podloge
	3.2	Hidrološke podloge
	3.3	Hidraulički proračun
	3.4	Transformacija vodnog vala14
	3.5	Model brane u HEC RAS 2D programu16
4	Re	zultati
	4.1	Raspodjela brzina u brzotoku
	4.2	Brzine u brzotoku
	4.3	Dubine u brzotoku
5	Di	skusija45
6	Za	ključak
L	iteratu	ıra
P	opis si	lika
P	opis ta	blica

1 UVOD

Današnje inženjerske izazove često prate složeni hidraulički sustavi, a upravljanje vodama i rizicima od poplava predstavlja ključni aspekt inženjerskog planiranja. Izrađen je numerički model strujanja vode na preljevu brane Butoniga te je detaljno istražen s namjerom potvrde njegove relevantnosti i nužnosti u inženjerskom kontekstu.

Predmetno područje istraživanja, brana Butoniga, smještena je u središnjem dijelu Istre. (Slika 1) Butoniga, vodoopskrbni sustav, sastoji se od akumulacije vode (umjetno jezero) i postrojenja za kondicioniranje vode smještenog kod Butonige, te vodovodne mreže kojom se voda distribuira naseljima u zapadnoj i južnoj Istri. Izgradnja akumulacije Butoniga započela je prema potrebi utvrđenoj u studiji "Vodoprivredna osnova šireg sliva rijeke Mirne" 1965. godine. Cilj je bio osigurati vodu za natapanje poljoprivrednih područja Bujštine, Poreštine i doline Mirne (14.000 ha). Konačna veličina akumulacije bila je 22,1 milijuna m³, s rezerviranim prostorom za taloženje nanosa i obranu od poplava. Namjena akumulacije promijenjena je 1980-ih za vodoopskrbu, a radovi na brani završeni su 1988. Prema tadašnjim planovima, ukupna vršna potrošnja iz akumulacije iznosila je 1.945 litara u sekundi (l/s), od čega je Istarski vodovod Buzet koristio 1.109 l/s, Vodovod Labin 90 l/s, a Vodovod Pula 746 l/s.

Magistralni cjevovod Butoniga–Pula dovršen je 1990., a prva faza postrojenja za kondicioniranje vode (1000 l/s) puštena je u pogon 2002. Sve ove infrastrukture ključne su za opskrbu vodom regije. [1]

Slika 1. Geografski položaj akumulacijskog jezera Butoniga

Za izradu numeričkog modela strujanja vode na preljevu brane Butoniga, korišten je HEC-RAS, inženjerski softver za hidrauličko modeliranje akumulacija, rijeka i kanala. U obzir je uzet postojeći projekt, kao i prostorno planska dokumentacija Istarske županije, prema kojoj je predviđeno nadvišenje s ciljem povećanja volumena akumulacije.

Izrađen je model postojećeg stanja s duljinom preljeva od 21 m, kao i model za slučaj produljenja preljeva na 40 m te nadvišenja kote krune preljeva za 1 m. Dobiveni rezultati su analizirani kako bi se usporedile razlike u hidrološkim faktorima poput brzine, protoka i dubine vode u brzotoku.

Cilj ovog rada je izrada numeričkog modela strujanja vode na preljevu brane Butoniga te analiza rezultata s ciljem potvrde ili opovrgavanja hipoteze o poboljšanju hidrauličkih performansi brane putem rekonstrukcije s povećanjem nadvišenja krune za 1,0 m.

2 KARAKTERISTIKE TEČENJA PRELJEVA I BRZOTOKA

2.1 Vrste preljeva

Preljevi se planiraju za evakuaciju rijetkih, ali izuzetno snažnih poplava, kako bi se spriječilo prelijevanje preko same krune brane. Odabir veličine vodnog vala za dimenzioniranje preljeva ovisi o stupnju ugroženosti nizvodnog područja, značaju brane, njenom tipu, vrsti preljeva, pouzdanosti hidroloških podataka i kapacitetima zadržavanja vode u akumulaciji. Kod betonskih brana, preljevi se obično dimenzioniraju za vodni val s povratnim razdobljem od 1000 godina, dok se kod nasutih brana, koje su osjetljivije na prelijevanje, dimenzioniraju za vodni val s povratnim razdobljem od 10000 godina.

Slika 2. Čeoni preljev(lijevo), bočni preljev(desno) i samostojeći preljev(dolje) [2]

Prema položaju preljevi mogu biti na objektu, na boku doline ili samostojeće građevine (najčešće vertikalna okna) (Slika 2). Preljevi na nasutim branama obično se nalaze izvan tijela same brane, a ponekad su čak i udaljeni od samog pregradnog profila (uzvodno). Mogu biti slobodni ili kontrolirani (sa zapornicom) (Slika 3). U pravilu, slobodni preljevi koriste se kada postoji dovoljna visina slobodnog prostora u akumulacijskom jezeru.

Slika 3. Prikaz slobodnog preljeva (lijevo) i preljeva kontroliranog zapornicom(desno) [2]

2.2 Bezvakuumski profili preljeva

Preljevi s praktičnim profilom, odnosno preljevi s profilom krivolinijskog oblika, široko su korišteni u području hidrotehničkih građevina zbog svojih povoljnih hidrauličkih i konstruktivnih karakteristika. Razlikuju se prema svojoj konfiguraciji, a najčešće se klasificiraju kao bezvakuumski, vakuumski i preljevi s niskim razvučenim profilom.

Bezvakuumski profili preljeva (Slika 4) često se primjenjuju kod brana. Kruna preljeva prati donju plohu preljevnog mlaza koji nastaje pri preljevu preko oštrog brida ili tankog zida. Konstrukcija preljevne krune temelji se na rezultatima istraživanja provedenih u hidrauličkim laboratorijima. Mnogi autori su identificirali profile koji zadovoljavaju uvjete prelijevanja bez pojave vakuuma. [3]

Slika 4. Bezvakuumski profil preljeva [3]

U praksi, kod nas, najčešće se koriste empirijski izrazi koje je razvio Creager. Obris nizvodne strane betonske konstrukcije preljeva prema Creageru određen je na način da profil ulazi u tijelo mlaza kako bi se sigurno izbjeglo odvajanje mlaza i pojava vakuuma ispod mlaza. Pomoću jednadžbe (1) mogu se odrediti koordinate preljeva za zadanu preljevnu visinu *H*. [4]

$$y = 0.46 \ \frac{x^{1.8}}{H^{0.8}} \tag{1}$$

Gdje su: y – vertikalna os [m], x – horizontalna os [m], H – preljevna visina [m]

Profil vakuumskog preljeva mora zadovoljiti sljedeće uvjete:

- Zona vakuuma treba obuhvaćati samo gornji dio brane oko krune i ne smije se proširivati na nizvodno lice brane.
- Potrebno je spriječiti prodor zraka u zonu vakuuma.
- Ne smiju se pojavljivati veće oscilacije tlaka kako bi se izbjegle inducirane vibracije na brani.

2.3 Bočni preljev

Bočni preljevi služe za bočni odvod vode. Oni mogu imati tankostjenu preljevnu krunu (prelijevanje preko tankog zida), široki prag ili preljev praktičnog profila. Budući da se radi o nekonvencionalnom tečenju, u mnogim hidrauličkim laboratorijima proučavani su oblici slobodne površine u kanalu uz bočni preljev. Kada je tečenje mirno, dubina iznad krune preljeva raste nizvodno. Pri turbulentnom toku, dubina vode iznad krune preljeva nizvodno se smanjuje (Slika 5).

Slika 5. Bočni preljev sa rastom dubine nizvodno(lijevo) i bočni preljev sa padom dubine nizvodno(desno) [4]

Hidrauličke karakteristike bočnog preljeva definirane su prema sljedećim principima:

1) Oblik krune preljeva temelji se na istim kriterijima kao i kruna preljeva kod čeonog tipa preljeva, koji također spada u preljeve s brzotokom.

2) Projektiranje preljeva ima za cilj osigurati stalni i ravnomjeran protok u kanalu. Kontrolirani protok je ključan za efikasno disipiranje energije koja se generira prelijevanjem.

3) Procjena razine vode u kanalu vrši se prema sljedećoj formuli:

$$\Delta Y = \frac{Q_2(V_1 + V_2)}{g(Q_1 + Q_2)} \left[(V_1 - V_2) + V_1 \frac{Q_2(Q_1 - Q_2)}{Q_2} \right]$$
(2)

Gdje su: ΔV =promjena razine vode na dionici ΔX , Q_1 i V_1 =protok i brzina u uzvodnom dijelu, Q_2 i V_2 =protok i brzina u nizvodnom dijelu

2.4 Brzotok

Spajanje preljevnog mlaza s donjom vodom vodotoka često se izvodi vođenjem i usmjeravanjem snažnog preljevnog toka putem posebne građevine – brzotoka (Slika 6), koji obično završava objektom za disipaciju energije ili slobodnim padom. Brzotok kod gravitacijskih betonskih brana obično je smješten na tijelu brane, ako to dopuštaju objekti u koritu. Brzotok je kanal na nizvodnom licu brane, stalne ili promjenjive širine, čiji je pad veći od kritičnog za proračunati protok. Razlikuju se tri dijela brzotoka: ulazni dio, strmi "žlijeb" i izlazni dio. Ulazni dio obično ima širinu preljevne krune.

Slika 6. Brzotoci na gravitacijskim branama: a) brzotok s paralelnim zidovima, b) brzotok s kanalskim dovodom vode s preljevne krune, c) brzotok s konvergentnim zidovima, d) široki brzotok s kanalskim odvodom uz nizvodni rub temelja [3]

Na brzotocima nastaje silovito tečenje. Debljina preljevnog mlaza postupno se smanjuje s približavanjem podnožju brane i najmanja je tamo gdje mlaz ulazi u slapište. Voda u brzotoku ima silovito kretanje. Dubina u stisnutom (kontrahiranom) presjeku h_c uvijek je manja od kritične dubine h_k, a brzina u tom presjeku je maksimalna. Ako na prijelazu brzotoka u korito ne postoji mogućnost da nastane spregnuta – konjugirana dubina h_c" za nepotopljen normalan skok h_c" = h_b (dubina donje vode), ili za potopljen h_c" < h_c, tada prijeti opasnost erozije korita na većoj dužini nizvodno od brane, jer se javlja nepotopljen udaljen skok h_c" > h_b. Spajanje s donjom vodom kod gravitacijskih brana s preljevom na kruni brane i brzotokom s odskokom vrši se u obliku površinskog skoka koji mijenja svoj oblik. Slika 7 prikazuje kako se mijenja oblik skoka s povećanjem dubine vode.

Slika 7. a, b) nepotopljen skok, c, d) potopljen skok [3]

3 NUMERIČKI MODEL

Numerički model je matematički model koji se koristi za simuliranje ponašanja sustava ili procesa pomoću računalnih algoritama i numeričkih metoda. U hidrotehnici opisuje fizičke fenomene pomoću niza jednadžbi i uvjeta, koji se zatim rješavaju numeričkim pristupom.

Numerički model temelji se na hidrauličkim jednadžbama koje opisuju strujanje vode kroz rijeke, kanale i preljeve. To uključuje jednadžbu kontinuiteta, Bernoullijevu jednadžbu za energiju, jednadžbu gubitaka energije duž toka te Saint-Venantove jednadžbe koje opisuju nestacionarno strujanje tekućine u otvorenim kanalima. Osim toga, HEC-RAS koristi metode konačnih razlika za numeričko rješavanje navedenih jednadžbi u cilju simuliranja strujanja vode i poplavnih situacija.

Ograničenja koja mogu utjecati na rezultate numeričkog modela mogu biti nedostatna točnost geodetskih i hidroloških podloga, postavljanje pre malo točaka izračuna koje se koriste za metodu konačnih razlika, te neispravno postavljanje parametara modela. Parametri koje je bitno što vjerodostojnije podesiti su Manningov koeficijent i geometrija koja obuhvaća dimenzije kanala, brane, preljeva i obala. Važno je pažljivo procijeniti navedena ograničenja kako bi se osigurala točnost i pouzdanost modeliranja hidrauličkih procesa koji se javljaju kod preljeva brane.

Volumen izgrađene akumulacije iznosi 19,7 milijuna m³. Najveća dubina od kote preljeva do dna iznosi 16 m, dok se kota preljeva nalazi na 40,85 m.n.m. Brana je izgrađena od nasutog materijala, a duljina na kruni iznosi oko 600 metara. U nastavku su prikazane korištene podloge.

3.1 **Prostorno planske podloge**

3.1.1 Geodetske podloge

Za izradu ovog projekta korištena je DOF podloga, digitalna orto-foto karta (Slika 8), koja pruža prikaz situacije. Također, korištena je HOK podloga, poznata kao Hrvatska osnovna karta (Slika 9), i TK, odnosno topografska karta (Slika 10). Sve ove karte detaljno prikazuju topografske objekte, uključujući reljef, vode, vegetaciju i slično.

Slika 8. Geodetski prikaz akumulacije Butoniga - DOF

Slika 9. Geodetski prikaz akumulacije Butoniga – HOK

Slika 10. Geodetski prikaz akumulacije Butoniga – TK

Slika 11. Grafički prikaz prostornog plana [4]

Uvidom u prostorno plansku dokumentaciju (Slika 11) Istarske županije vidljivo je da je planirana izgradnja dvije retencije, Račica i Draguć te nadvišenje postojeće retencije Jukani. Funkcija navedenih retencija je zaustavljanje nanosa koje potoci unose u akumulaciju te je zatrpavaju i smanjuju kvalitetu pitke vode. Akumulaciju pune tri potoka: Grdoselski, na kojem je izgrađena retencija, te Račićki i Dragućki potok gdje se počela raditi dokumentacija za izgradnju retencije. Nakon što se voda prelije preko brane i kroz brzotok, dolazi do slapišta, a tok vode nastavlja se kroz odteretni kanal Butoniga, koji se na kraju spaja s rijekom Mima.

3.2 Hidrološke podloge

U kontekstu dimenzioniranja preljeva brane koriste se podaci o vodnim valovima s različitim povratnim periodima (100, 1000, 10000 godina) kako bi se osigurala sigurnost i funkcionalnost brane tijekom ekstremnih hidroloških događaja.

PROGNOZIRANI VAL	10000	1000	100
1	13.73046	10.60009	7.42654
2	59.22116	45.71948	32.03157
3	45.4907	35.11939	24.60503
4	59.22116	45.71948	32.03157
5	45.4907	35.11939	24.60503
6	45.4907	35.11939	24.60503
7	59.22116	45.71948	32.03157
8	59.22116	45.71948	32.03157
9	59.22116	45.71948	32.03157
10	415.7845	320.9909	224.8897
11	636	491	344
12	386.4224	298.323	209.0084
13	195.569	150.9817	105.7795
14	152.054	117.3876	82.24304
15	158.3166	122.2224	85.63035
16	158.3166	122.2224	85.63035
17	95.4174	73.66343	51.60941
18	79.6926	61.52369	43.10417
19	32.51821	25.10447	17.58847
20	16.79341	12.96473	9.083229

Tablica 1. Prognozirani val za različita povratna razdoblja

Pri 100-godišnjem vodnom valu, maksimalni protok iznosi 636 m³/s, dok je kod 1000-godišnjeg protok 491 m³/s, a kod 10000-godišnjeg iznosi 344 m³/s.

Slika 12. Grafički prikaz vodnih valova različitih povratnih perioda

U sljedećoj tablici prikazani su podaci o volumenima do određenih koti, odnosno razina vode. Podaci o volumenima za početno stanje, koji se smatraju službenima, nalaze se u elaboratu "Površina i volumen akumulacije Butoniga" [5]. Ti podaci potječu iz situacije iz 1985. godine, uz naknadne manje dopune.

Nivo vode	Površina	Površina	Zapremnina	Zapremnina	Razlika zapremnina po dubini	Suma zapremnina po pojasevima
m n.m.	km ²	m ²	hm³	m ³	ΔV m ³	ΔV m ³
25.85	0,116	116.000	0	0	198.000	
26.85	0,28	280.000	0,198	198.000	341.000	
27.85	0,413	413.000	0,539	539.000	484.000	
28.85	0,573	573.000	1,023	1.023.000	673.000	
29.85	0,78	780.000	1,696	1.696.000	871.000	
30.85	0,955	955.000	2,567	2.567.000	1.030.000	
31.85	1,105	1.105.000	3,597	3.597.000	1.175.000	
32.85	1,254	1.254.000	4,772	4.772.000	1.346.000	
33.85	1,418	1.418.000	6,118	6.118.000	1.483.000	
34.85	1,548	1.548.000	7,601	7.601.000	1.613.000	
35.85	1,685	1.685.000	9,214	9.214.000	1.755.000	4.851.000
36.85	1,832	1.832.000	10,969	10.969.000	1.912.000	
37.85	1,994	1.994.000	12,881	12.881.000	2.068.000	
38.85	2,141	2.141.000	14,949	14.949.000	2.210.000	6.190.000
39.85	2,283	2.283.000	17,159	17.159.000	2.363.000	
40.85	2,452	2.452.000	19,522	19.522.000	2.531.000	
41.85	2,611	2.611.000	22,053	22.053.000	1.879.000	6.773.000
42.55	2,742	2.742.000	23,932	23.932.000		

Tablica 2. Ovisnost razine vode i volumena u akumulaciji Butoniga [5]

Slika 13. Grafički prikaz krivulje volumena i površine akumulacije

3.3 Hidraulički proračun

Prema postojećem stanju, preljev brane Butoniga je jednostruki, a njegova širina iznosi b=21 m. Kota krune preljeva (*KKP*) je na 40.85 m, dok je kota krune jezgre (*KKJ*) na 43.55 m. Volumen pune akumulacije iznosi 19,522 hm³, a koeficijent prelijevanja m je 0,45. Proračun transformacije vodnog vala napravljen je za vodne valove povratnih perioda od 100, 1000 i 10000 godina za postojeće stanje, gdje je širina preljeva 21 m, i za projektirano stanje, gdje je pretpostavljeno da je preljev širine 43,5 m.

Proračun je izvršen za 4 slučaja:

- 1. <u>Postojeće stanje</u>: Kota krune preljeva je na 40.85 m, a širina preljeva je 21 m.
- 2. <u>Produljenje preljeva:</u> Kota krune preljeva je na 40.85 m, a širina preljeva je 40m.
- <u>Nadvišenje kote krune preljeva:</u> Kota krune preljeva je nadvišena za 1 m te iznosi KKP = 41.85 m, a širina preljeva je 21 m.
- 4. <u>Produljenje preljeva i nadvišenje kote krune preljeva:</u> Kota krune preljeva iznosi KKP
 = 41.85 m, a širina preljeva je 40 m.

3.4 Transformacija vodnog vala

Pod pojmom modela propagacije vodnih valova podrazumijevaju se postupci i metode koje se koriste za proračun "napredovanja" vodnog vala duž toka ili kroz akumulaciju, u smislu proračuna vremena njegovog pojavljivanja i oblika vodnog vala. Pri prolasku vodnih valova kroz prirodne vodotoke, kanale ili akumulacije, određena količina vode privremeno se zadržava, što rezultira promjenom oblika vodnog vala. Prostor u kojem se voda zadržava ima efekt retencije, što utječe na oblik poplavnog vala koji putuje nizvodno. Efekt zadržavanja vode na određenom sektoru vodotoka ili u akumulaciji je u funkciji veličine zapremine prostora gdje se voda zadržava.

Što je veća zapremina akumulacije, veće su razlike u obliku ulaznog i izlaznog hidrograma. Ovaj utjecaj se manifestira u tome što se vršni protok poplavnog vala smanjuje, a istovremeno produžuje njegova vremenska baza. Na slici 14 prikazan je grafički opis transformacije vodnog vala.

Slika 14. Grafički opis transformacije vodnog vala

Polazna točka transformacije vodnog vala je jednadžba kontinuiteta koja glasi:

$$\left(\frac{I_i + I_{i-1}}{2}\right) - \left(\frac{O_i + O_{i-1}}{2}\right) = \frac{\Delta S_i}{\Delta t} = \frac{S_i + S_{i-1}}{\Delta t}$$
(3)

Gdje su: I_i – ulazni hidrogram, O_i – izlazni hidrogram, S_i – volumen vode u akumulaciji definirana kao S = f(O), Δt – period diskretizacije vremena

3.5 Model brane u HEC RAS 2D programu

HEC RAS je alat koji je primijenjen u izradi numeričkog modela preljeva na brani u okviru diplomskog rada. Ovaj program omogućuje precizno modeliranje hidrauličkih i hidroloških uvjeta brane, uzimajući u obzir različite scenarije, uključujući postojeće i projektirano stanje. Kroz pravilno podešavanje parametara kao što su širina preljeva, visina krune, i nadvišenje, HEC RAS 2D omogućuje simulaciju prelijevanja vode preko brane za različite povratne periode, pružajući dragocjene informacije o hidrauličkim karakteristikama preljeva. Analiza rezultata ovog modela uključuje Q-H krivulje na preljevu, koje predstavljaju ključne informacije o dinamici vodnog toka preko preljeva. Usporediti će se s rezultatima proračuna transformacije vodnog vala kako bi se potvrdila valjanost numeričkog modela.

Razvijena su dva modela: postojeće stanje (Slika 15) i projektirano stanje (Slika 16). Postojeće stanje uključuje jednostruki preljev brane širine 21 m s kotom krune preljeva (KKP) od 40.85 m, dok je za projektirano stanje izrađen model s preljevom širine 40 metara, nadvišenjem kote krune preljeva za 1 m (KKP=41.85 m). Simulacije prelijevanja vode preko preljeva provedene su za povratne periode od 100, 1000 i 10000 godina u oba stanja.

Slika 15. Model postojećeg stanja - preljev širine 21 m

Slika 16. Model projektiranog stanja – preljev širine 40 m

Za pokretanje analize nestacionarnih tokova (unsteady flow analysis) potrebno je postaviti početne uvjete (initial conditions) i rubne uvjete (boundary conditions). Početni uvjeti odnose se na razinu vode na početku simulacije, koja za postojeće stanje u slučaju pune akumulacije iznosi 40.85 m, dok za slučaj nadvišenja iznosi 41.85 m. (Slika 17)

	Initial Elevation of Storage Areas/2D Flow Areas (Import Min SA Elevation(s)	
	Keep initial elevations constant during warmup	2	
	Storage Area/2D Flow Area	Initial Elevation	
1	2D: Model_boundary	41.85	

Slika 17. Početni uvjet za slučaj KKP = 41.85 m

Rubni uvjeti se dijele na uvjete na početku (uzvodno) i kraju (nizvodno) modeliranog vodnog toka. Rubni uvjeti na početku (uzvodno) nazivaju se uzvodni rubni uvjeti (upstream boundary conditions) (Slika 18) te obuhvaćaju protok na preljevu Q_{pr}. Nizvodni rubni uvjeti (downstream boundary conditions) (Slika 19) postavljeni su kao konstantan vodostaj razine 20 m.n.m., što predstavlja mirno stanje vode prije dolaska vode iz preljeva kroz brzotok u odvodni kanal.

	2D: Model_boundary BCLine: UBC						
C Read from DSS before simulation				Select DSS file and Path			
	File:						
	Path:						
Enter Table Data time interval: 5 Minute Select/Enter the Data's Starting Time Reference Use Simulation Time: Date: 01Jan2000 Fixed Start Time: Date: 01Jan2000 Time: 0000							
i	No. (Ordinates Interpolate Missin	g Values Del Row Ins Ro	w			
		Data	Simulation Time	Elou	٦		
		Date	(bours)	(m3/c)	1		
	124	011ap2000-1015	10:15:00	41.2			
	125	01 Jap 2000 1020	10:20:00	44.61			
	126	01Jan2000 1025	10:25:00	48.23			
	127	01Jan2000 1030	10:30:00	52.05			
	128	01Jan2000 1035	10:35:00	56.09	1		
	129	01Jan2000 1040	10:40:00	60.34			
	130	01Jan2000 1045	10:45:00	64.8			

Slika 18. Uzvodni granični uvjeti (upstream boundary conditions)

	2D: Model_boundary BCLine: DBC							
C Rea	Read from DSS before simulation Select DSS file and Path							
File:	File:							
Patr	ו :ר							
💿 Ent	er Table	Dat	a time interval: 10 Minute	-				
⊢Sel	lect/Enter the Data's Starting Time	Reference		_				
•	Use Simulation Time: Date:	01Jan2000 Time: 00:00						
0	O Fixed Start Time: Date: Time:							
No	Ordinates Interpolate Missing	Values Del Row Ins Roy	v					
		Hydrograph Data						
	Date Simulation Time Stage 🔺							
		(hours)	(m)					
169	02Jan2000 0400	28:00:00	20					
170	02Jan2000 0410	28:10:00	20					
171	02Jan2000 0420	28:20:00	20					

Slika 19. Nizvodni granični uvjeti (downstream boundary conditions)

Nakon postavljanja svih potrebnih uvjeta, ako je model ispravno konfiguriran, uspješno će se pokrenuti simulacija nestacionarnog toka. Ključno je za provjeru ispravnosti modela usporediti vrijednosti protoka iz rezultata s protocima dobivenim transformacijom vodnog vala.

4 REZULTATI

Grafički su prikazani protoci dolaznog vodnog vala i protoka prelijevanja za postojeći, kao i za projektirani slučaj vodnih valova povratnog perioda od 100, 1000 i 10000 godina. Uz protoke, prikazane su i razine vode u akumulaciji u vremenu.

Slika 20. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za postojeće stanje, PP 100, 1000 i 1000 god, b=21 m

Slika 21. Grafički prikaz visina vode u akumulaciji za postojeće stanje, PP 100, 1000 i 1000 god,

b=21m

Slika 22. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za postojeće stanje, PP 100, 1000 i 1000 god, b=40m

Slika 23. Grafički prikaz visina vode u akumulaciji za postojeće stanje, PP 100, 1000 i 1000 god, b=40m

Numerički model tečenja na preljevu brane

Slika 24. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za KKP=41.85, PP 100, 1000 i 1000 god, b=21m

Slika 25. Grafički prikaz visina vode u akumulaciji za KKP=41.85, PP 100, 1000 i 1000 god, b=21m

Slika 26. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za KKP=41.85, PP 100, 1000 i 1000 god, b=40m

Slika 27. Grafički prikaz visina vode u akumulaciji za KKP=41.85, PP 100, 1000 i 1000 god, b=40m

U slijedećoj tablici su navedeni ekstremi za Q_{max} i H_{max} za svaki pojedini slučaj koji je analiziran.

Tablica 3. Prikaz ekstrema Qmax i Hmax svih slučajeva

	PP 100				
	Postojeće stanje KKP				
	Qmax	Hmax	Qmax	Hmax	
	[m³/s]	[m]	[m]	[m]	
b=21 m	70.33	42.23	65.90	43.20	
b=40 m	104.51	41.98	94.50	42.97	

	PP 1000					
	Postojeće	Postojeće stanje KKP				
	Qmax	Hmax	Qmax	Hmax		
	[m³/s]	[m]	[m]	[m]		
b=21 m	109.31	42.70	103.02	43.67		
b=40 m	155.98	42.41	148.94	43.37		

	PP 10000				
	Postojeće stanje KKP				
	Qmax	Hmax	Qmax	Hmax	
	[m³/s]	[m]	[m]	[m]	
b=21 m	147.08	43.16	141.72	44.10	
b=40 m	215.88	42.79	206.76	43.74	

4.1 Raspodjela brzina u brzotoku

Izradom modela u programu HEC RAS 2D dobivene su vrijednosti brzina duž brzotoka. HEC RAS omogućuje vizualizaciju brzina u različitim bojama, što olakšava identifikaciju općih trendova na određenom području i otkrivanje mogućih grešaka u rezultatima. Iz programa su izvađeni situacijski prikazi raspodjele brzina u brzotoku za maksimalne protoke kod preljeva širine 21 m i 40 m u postojećem stanju, kao i za slučaj nadvišenja preljeva za vodne valove s povratnim periodima od 100, 1000 i 10000 godina.

Slika 28. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=68.92 m³/s za postojeće stanje, PP=100 god, b=21 m

Slika 29. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=99.21 m³/s za postojeće stanje, PP=100 god, b=40 m

Slika 30. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=109.31 m³/s za postojeće stanje, PP=1000 god, b=21 m

Slika 31. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max} =155.98 m³/s za postojeće stanje, PP=1000 god, b=40 m

Slika 32. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=147.08 m³/s za postojeće stanje, PP=10000 god, b=21 m

Slika 33. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=215.88 m³/s za postojeće stanje, PP=10000 god, b=40 m

Slika 34. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=65.90 m³/s za nadvišenje preljeva, KKP=41,85, PP=100 god, b=21 m

Slika 35. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=94.50 m³/s za nadvišenje preljeva, KKP=41,85, PP=100 god, b=40 m

Slika 36 Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=103.02 m³/s za nadvišenje preljeva, KKP=41,85, PP=1000 god, b=21 m

Slika 37. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=148.94 m³/s za nadvišenje preljeva, KKP=41,85, PP=1000 god, b=40 m

Slika 38. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=141.72 m³/s za nadvišenje preljeva, KKP=41,85, PP=10000 god, b=21 m

Slika 39. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max}=206.76 m³/s za nadvišenje preljeva, KKP=41,85, PP=10000 god, b=40 m

4.2 Brzine u brzotoku

Grafički su prikazane brzine u brzotoku duljine 55 m za postojeće stanje, kao i za varijantu s povišenjem krune preljeva za 1 m za preljeve širine 21 m i 40 m. Ovi prikazi obuhvaćaju vodne valove s povratnim periodima od 100, 1000 i 10000 godina. Za svaki analizirani slučaj, radi usporedbe prikazane su brzine kod maksimalnog protoka, Q_{max}, te za protoke Q u 11 h i 20 h.

Slika 40. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=100 god, b=21 m

Slika 41. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=100 god, b=40 m

Slika 42. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=1000 god, b=21 m

Slika 43. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=1000 god, b=40 m

Slika 44. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=10000 god, b=21 m

Slika 45. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=10000 god, b=40 m

Slika 46. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=100 god, b=21 m

Slika 47. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=100 god, b=40 m

Slika 48. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=1000 god, b=21 m

Slika 49. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=1000 god, b=40 m

b=21 m

Slika 51. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41.85 m, PP=10000 god,

b=40 m

4.3 **Dubine u brzotoku**

Dubine u brzotoku su grafički prikazane za trenutno stanje, kao i za slučaj nadvišenja krune preljeva za 1 m kod preljeva širine 21 m i 40 m. Analiza obuhvaća vodne valove s povratnim periodima od 100, 1000 i 10000 godina. Za svaki od analiziranih slučajeva, radi usporedbe, prikazane su dubine za maksimalni protok , Q_{max}, te za protoke Q u 11 h i 20 h. Usporedni prikaz dubina za različite protoke daje bolji uvid u utjecaj veličine protoka na vodno lice u brzotoku.

Slika 52. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=100 god, b=21 m

Slika 53. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=100 god, b=40 m

Slika 55. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=1000 god, b=40 m

Slika 56. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=10000 god, b=21 m

Slika 57. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=10000 god, b=40 m

Slika 59. Grafički prikaz dubina duž u brzotoka za nadvišenje KKP=41.85, PP=100 god, b=40 m

Slika 61. Grafički prikaz dubina duž u brzotoka za nadvišenje KKP=41.85, PP=1000 god, b=40 m

Slika 62. Grafički prikaz dubina duž u brzotoka za nadvišenje KKP=41.85, PP=10000 god, b=21 m

Slika 63. Grafički prikaz dubina duž u brzotoka za nadvišenje KKP=41.85, PP=10000 god, b=40 m

5 DISKUSIJA

Analizom podataka vidljivo je da širina preljeva značajno utječe na brzinu vode u brzotoku. Na primjer, kod slučaja KKP=41.85 m, za širinu preljeva od 21 metra, u trenutku maksimalnog protoka Q_{max} =65.9 m³/s prosječna brzina vode iznosi 8.2 m/s, dok za širinu od 40 metara i Q_{max}=95.5 m³/s iznosi 22.2 m/s za 100-godišnji vodni val. Do viših brzina dolazi jer širi preljev omogućuje veći protok vode kroz brzu dionicu. Ako je preljev širi, može propustiti veći volumen vode, što rezultira povećanjem brzine vode nizvodno od brane. Za širinu od 21 metra, 100-godišnjeg vala, do uspora dolazi već na 40 metara brzotoka, te se brzina smanjuje do prosječne brzine od 5.2 m/s. Za širinu od 40 m, uspor se javlja tek na 45 metara, rezultirajući naglijim padom brzine koja na kraju brzotoka iznosi 13.1 m/s. Brzine i protoci također imaju velik utjecaj na visinu i oblik linije vodnog lica.

Brzina i volumen vode u brzotoku direktno utječu na liniju vodnog lica. Brzina vode određuje dinamiku strujanja na tom području, dok volumen vode utječe na razine vode duž linije vodnog lica. Za vodne valove većih povratnih perioda, zbog većih brzina i protoka posljedično se i povećava dubina u brzotoku.

KKP = 41.85m						
VODNI VAL	b [m]	Q _{max} [m ³ /s]	Δv [m/s]	∆h [m]		
10000	21	65.9	8.2	1.9		
TOOPP	40	95.5	22.2	1.0		
100000	21	103.0	9.7	2.5		
1000PP	40	148.9	25.2	1.2		
1000000	21	141.7	10.9	3.1		
10000PP	40	206.8	31.0	1.5		

Tablica 4. Prikaz srednjih brzina i dubina vode za slučaj nadvišenja KKP=41.85m za postojeću širinu preljeva i produljenu širinu od 40 m.

Za lakšu usporedbu podataka, izrađena je tablica s prosječnim vrijednostima brzina i dubina proračunatih osrednjavanjem podataka u brzotoku prije pojave uspora za slučaj nadvišenja preljeva (Tablica 4). Kod širine preljeva od 21 metra, dubina vode duž brzotoka je veća nego kod širine preljeva od 40 metara.

Za slučaj širine preljeva od 21 metra kod 100-godišnjeg vodnog vala dubina vode u brzotoku iznosi oko 1.9 m, dok kod 40 metara iznosi 0.9 m. Ovo se događa jer širi preljev omogućuje veći protok kroz brzotok, što rezultira povećanjem brzine vode. Brži tok uzrokuje porast dubine vode u brzotoku. (Slika 64)

Slika 64. Prikaz brzina i dubina u brzotoku za Qmax, Q u 11h i Q u 20h za nadvišenje preljeva, KKP=41.85, PP=1000 god, b=40 m

Za sve analizirane slučajeve, razina vodnog lica otprilike je dvostruko manja kod preljeva širine 40 metara u usporedbi sa preljevom širine 21 metra. Maksimalni protoci su veći za 45-50%, a srednje brzine su 2.6 do 2.8 puta veće kod preljeva širine 40 metara.

6 ZAKLJUČAK

Analizom hidrauličkih karakteristika preljeva na brani koristeći numerički model, dobiven je detaljniji uvid u protok vode na brani.

Širina preljeva pokazala se ključnim faktorom u određivanju protoka vode u brzotoku. Širi preljev omogućuje veći protok vode, što rezultira povećanjem brzine nizvodno od brane. Razlike u dubinama vode u brzotoku također ovise o širini preljeva, smanjujući se kod širih preljeva. Numerički model pokazao se korisnim za analizu hidrauličkih karakteristika preljeva brane, no naglasak je na važnosti preciznosti u konfiguraciji parametara kako bi se osigurala relevantnost rezultata.

Povećanjem nadvišenja krune preljeva za 1 m, volumen akumulacije povećan je za 2,5 milijuna m³ ili 13%, što predstavlja značajno povećanje za potrebe vodoopskrbe. Nadvišenjem krune preljeva smanjen je rizik od poplava nizvodno od brane jer se veća količina vode zadržava u akumulaciji prije pojave prelijevanja. Navedene karakteristike ukazuju da povećanje nadvišenja krune preljeva za 1 m može biti adekvatno rješenje za poboljšanje iskorištenosti brane za njenu svrhu i osiguranje sigurnijeg upravljanja vodnim resursima.

LITERATURA

[1] Butoniga, vodoopskrbni sustav, *Istrapedia.hr*Dostupno: <u>https://www.istrapedia.hr/hr/natuknice/4231/butoniga-vodoopskrbni-sustav</u> [Pristupljeno: 18. siječnja 2024.]
[2] Sveučilište u Zagrebu, Građevinski fakultet. 7_Brane, *grad.hr*Dostupno: <u>https://moodle.srce.hr/2022-2023/pluginfile.php/7174087/mod_folder/content/0/7_Brane.pdf?forcedownload=1</u> [Pristupljeno: 21. siječnja 2024.]
[3] P. Stojić *Hidrotehničke građevine, knjiga II.* Split: Građevinski fakultet sveučilišta u Splitu; 1998.
[4] Zavod za prostorno uređenje Istarske županije, Prostorni plan Istarske županije, *zpuiz.hr*Dostupno: <u>https://www.zpuiz.hr/media/filer_public/c7/f7/c7f7fa0c-6e99-4903-8399-99ad1c4e8b4e/2_3_3_koristenje_voda_navodnjavanje_i_uredenje_vodotoka_i_dr_voda.pdf
</u>

[Pristupljeno: 5 svibnja 2023.]

[5] Hrvatske vode, Elaborat Akumulacija Botoniga – Korištenje i upravljanje, VGO Rijeka, 2005.

POPIS SLIKA

Slika 1. Geografski položaj akumulacijskog jezera Butoniga2
Slika 2. Čeoni preljev(lijevo), bočni preljev(desno) i samostojeći preljev(dolje) [2]3
Slika 3. Prikaz slobodnog preljeva (lijevo) i preljeva kontroliranog zapornicom(desno) [2]4
Slika 4. Bezvakuumski profil preljeva [3]
Slika 5. Bočni preljev sa rastom dubine nizvodno(lijevo) i bočni preljev sa padom dubine
nizvodno(desno) [4]
Slika 6. Brzotoci na gravitacijskim branama: a) brzotok s paralelnim zidovima, b) brzotok s
kanalskim dovodom vode s preljevne krune, c) brzotok s konvergentnim zidovima, d) široki
brzotok s kanalskim odvodom uz nizvodni rub temelja [3]
Slika 7. a, b) nepotopljen skok, c, d) potopljen skok [3]7
Slika 8. Geodetski prikaz akumulacije Butoniga – DOF9
Slika 9. Geodetski prikaz akumulacije Butoniga – HOK 10
Slika 10. Geodetski prikaz akumulacije Butoniga – TK 10
Slika 11. Grafički prikaz prostornog plana [4]11
Slika 12. Grafički prikaz vodnih valova različitih povratnih perioda
Slika 13. Grafički prikaz krivulje volumena i površine akumulacije
Slika 14. Grafički opis transformacije vodnog vala
Slika 15. Model postojećeg stanja - preljev širine 21 m
Slika 16. Model projektiranog stanja – preljev širine 40 m 17
Slika 17. Početni uvjet za slučaj KKP = 41.85 m
Slika 18. Uzvodni granični uvjeti (upstream boundary conditions) 18
Slika 19. Nizvodni granični uvjeti (downstream boundary conditions) 18
Slika 20. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za postojeće
stanje, PP 100, 1000 i 1000 god, b=21 m
Slika 21. Grafički prikaz visina vode u akumulaciji za postojeće stanje, PP 100, 1000 i 1000
god, b=21m19
Slika 22. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za postojeće
stanje, PP 100, 1000 i 1000 god, b=40m
Slika 23. Grafički prikaz visina vode u akumulaciji za postojeće stanje, PP 100, 1000 i 1000
god, b=40m20

Slika 24. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za KKP=41.85,
PP 100, 1000 i 1000 god, b=21m21
Slika 25. Grafički prikaz visina vode u akumulaciji za KKP=41.85, PP 100, 1000 i 1000 god,
b=21m21
Slika 26. Grafički prikaz protoka dolaznog vodnog vala i protoka prelijevanja za KKP=41.85,
PP 100, 1000 i 1000 god, b=40m22
Slika 27. Grafički prikaz visina vode u akumulaciji za KKP=41.85, PP 100, 1000 i 1000 god,
b=40m
Slika 28. Situacijski prikaz raspodjele brzina u brzotoku za $Q_{max}=68.92 \text{ m}^3/\text{s}$ za postojeće stanje, PP=100 god b=21 m
Slika 29. Situacijski prikaz raspodjele brzina u brzotoku za $\Omega_{max}=99.21 \text{ m}^3/\text{s}$ za postojeće stanje
PP=100 god. b=40 m
Slika 30. Situacijski prikaz raspodjele brzina u brzotoku za Q _{max} =109.31 m ³ /s za postojeće
stanje, PP=1000 god, b=21 m
Slika 31. Situacijski prikaz raspodjele brzina u brzotoku za Q _{max} =155.98 m ³ /s za postojeće
stanje, PP=1000 god, b=40 m
Slika 32. Situacijski prikaz raspodjele brzina u brzotoku za Q _{max} =147.08 m ³ /s za postojeće
stanje, PP=10000 god, b=21 m
Slika 33. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max} =215.88 m ³ /s za postojeće
stanje, PP=10000 god, b=40 m27
Slika 34. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max} =65.90 m ³ /s za nadvišenje
preljeva, KKP=41,85, PP=100 god, b=21 m
Slika 35. Situacijski prikaz raspodjele brzina u brzotoku za $Q_{max}\!\!=\!\!94.50~m^3\!/\!s$ za nadvišenje
preljeva, KKP=41,85, PP=100 god, b=40 m
Slika 36 Situacijski prikaz raspodjele brzina u brzotoku za $Q_{max}\!\!=\!\!103.02~m^3\!/\!s$ za nadvišenje
preljeva, KKP=41,85, PP=1000 god, b=21 m
Slika 37. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max} =148.94 m ³ /s za nadvišenje
preljeva, KKP=41,85, PP=1000 god, b=40 m
Slika 38. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max} =141.72 m ³ /s za nadvišenje
preljeva, KKP=41,85, PP=10000 god, b=21 m
Slika 39. Situacijski prikaz raspodjele brzina u brzotoku za Q_{max} =206.76 m ³ /s za nadvišenje
preljeva, KKP=41,85, PP=10000 god, b=40 m
Slika 40. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=100 god, b=21 m 31

Slika 42. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=1000 god, b=21 m 32
Slika 43. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=1000 god, b=40 m 33
Slika 44. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=10000 god, b=21 m 33
Slika 45. Grafički prikaz brzina u brzotoku za postojeće stanje, PP=10000 god, b=40 m 34
Slika 46. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=100 god,
b=21 m
Slika 47. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=100 god,
b=40 m
Slika 48. Grafički prikaz brzina u brzotoku za nadvišenje preljeva, KKP=41,85, PP=1000 god, b=21 m
Slika 49. Grafički prikaz brzina u brzotoku za padvišenie preljeva. KKP=41.85. PP=1000 god
h=40 m
Slika 50 Grafički prikaz brzina u brzotoku za nadvišenie prelieva KKP=41.85 m PP=10000
sold b=21 m
Slika 51. Grafički prikaz brzina u brzotoku za nadvišenie prelieva. KKP=41.85 m. PP=10000
god, b=40 m
Slika 52. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=100 god, b=21 m 38
Slika 53. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=100 god, b=40 m 39
Slika 54. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=1000 god, b=21 m. 39
Slika 55. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=1000 god, b=40 m. 40
Slika 56. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=10000 god, b=21 m
Slika 57. Grafički prikaz dubina duž u brzotoka za postojeće stanje, PP=10000 god, b=40 m
Slika 58. Grafički prikaz dubina duž brzotoka za nadvišenje KKP=41.85, PP=100 god, b=21 m
Slika 59. Grafički prikaz dubina duž u brzotoka za nadvišenie KKP=41.85. PP=100 god. b=40.
$m \qquad \qquad$
Slika 60. Grafički prikaz dubina duž u brzotoka za nadvišenie KKP=41.85. PP=1000 god b=21
m
Slika 61. Grafički prikaz dubina duž u brzotoka za nadvišenie KKP=41.85. PP=1000 god. b=40
m
Slika 62. Grafički prikaz dubina duž u brzotoka za nadvišenie KKP=41.85. PP=10000 god.
b=21 m

Slika 63. Grafički prikaz dubina duž u brzotoka za nadvišenje KKP=41.85, PP=10000 go	od,
b=40 m	44
Slika 64. Prikaz brzina i dubina u brzotoku za Qmax, Q u 11h i Q u 20h za nadvišenje prelje	va,
KKP=41.85, PP=1000 god, b=40 m	46

POPIS TABLICA

Tablica 1. Prognozirani val za različita povratna razdoblja	12
Tablica 2. Ovisnost razine vode i volumena u akumulaciji Butoniga [5]	13
Tablica 3. Prikaz ekstrema Qmax i Hmax svih slučajeva	23
Tablica 4. Prikaz srednjih brzina i dubina vode za slučaj nadvišenja KKP=41.85m za pos	tojeću
širinu preljeva i produljenu širinu od 40 m	45