Usporedba rezultata fizikalnog i numeričkih ravninskih modela tečenja

Lončar, Goran; Andročec, Vladimir; Gjetvaj, Goran

Source / Izvornik: Građevinar, 2008, 59, 1067 - 1072

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:237:357922

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-09

Repository / Repozitorij:

Repository of the Faculty of Civil Engineering, University of Zagreb

Prethodno priopćenje

Usporedba rezultata fizikalnog i numeričkih ravninskih modela tečenja

Goran Lončar, Vladimir Andročec, Goran Gjetvaj

Ključne riječi

ravninski modeli tečenja, fizikalni model, numerički model, HE Ombla, usporedba rezultata

Key words

in-plane flow models, physical model, numerical model, Ombla HEPP, comparison of results

Mots clés

modèles d'écoulement plan, modèle physique, modèle numérique, CH d'Ombla, comparaison des résultats

Ключевые слова

плоскостные модели течения, физическая модель, числовая модель, ГЭС Омбла, сравнение результатов

Schlüsselworte

ebenes Modell des Fliessens, physikalisches Modell, numerisches Model, WKW Ombla, Vergleich der Ergebnisse

Usporedba rezultata fizikalnog i numeričkih ravninskih modela tečenja

Prikazana je usporedba rezultata proračuna i mjerenja polja brzine strujanja na dionici umirivanja toka i ulijevanja u more za projektno rješenje HE Ombla u područje izvorišne špilje i jezerca. U istraživanjima su uspoređeni rezultati brzina dobiveni mjerenjem na fizikalnom modelu i proračunom ravninskih modela. Rabljena su dva numerička modela temeljeni na metodama konačnih diferencija i volumena. Numerički rezultati uspoređeni su s rezultatima mjerenja na fizikalnom modelu.

G. Lončar, V. Andročec, G. Gjetvaj

G. Lončar, V. Andročec, G. Gjetvaj

Preliminary note

Comparison of results obtained by physical and numerical in-plane flow models

The comparison of calculated and measured field flow velocities at the flow steadying and sea discharge section, for the zone of the source cave and lake, is presented in the scope of design solution development for the Ombla hydropower plant. Velocity results obtained by physical model measurements and in-plane model analyses are compared. Two numerical models, based on the finite difference and volume methods, are used. Numerical results are compared with results obtained by physical model measurements.

G. Lončar, V. Andročec, G. Gjetvaj

Note préliminarie

Comparaison des résultats relatifs aux modèles d'écoulement plan physiques et numériques

La comparaison des vélocités d'écoulement calculées et mesurés dans la section de dissipation et de décharge dans la mer, pour la zone de la caverne de source et du lac, est présentée dans le cadre de développement de la solution d'étude pour la centrale hydraulique d'Ombla. Les vélocités obtenues par mesure sur modèles physiques, et par calcul sur modèles plans, sont comparées. Deux modèles numériques, basés sur la méthode des différences finies et la méthode des volumes finis, sont utilisés. Les résultats numériques sont comparés avec résultats obtenus par mesure sur modèles physiques.

Г. Лончар, В. Андрочец, Г. Джетвай

Предварительное сообщение

Сравнение результатов физической и числовых плоскостных моделей течения

В работе показано сравнение результатов расчёта и измерения поля скорости течения на части замирания потока и вливания в море для проектного решения ГЭС Омбла в район пещеры-источника и озерка. В исследованиях сравнены результаты скоростей, полученные измерением на физической модели и расчётом плоскостных моделей. Употреблены две числовых модели, основанные на методах конечных разностей и объёма. Числовые результаты сравнены с результатами измерений на физической модели.

G. Lončar, V. Andročec, G. Gjetvaj

Vorherige Mitteilung

Vergleich der Ergebnisse des physikalen und und numerischer ebener Fliessungsmodelle

Dargestellt ist der Vergleich der Berechnungsergebnisse und der Messungen des Feldes der Strömungsgeschwindigkeit an der Teilstrecke der Strömungsberuhigung und der Mündung ins Meer für die Entwurfslösung des Wasserkraftweks Ombla im Gebiet von Quellhöhle und - Teich. Im Rahmen der Untersuchung verglich man die Geschwindigkeitsergebnisse erhalten am physikalischen Modell und der berechnung der ebenen Modelle. Genützt wurden zwei numerische Modelle begründet auf den Methoden der endlichen Differenzen und Volumen. Die numerischen Ergebnisse verglich man mit den Ergebnissen der Messung am physikalischen Modell.

Autori: Doc. dr. sc. **Goran Lončar**; prof. dr. sc. **Vladimir Andročec**; prof. dr. sc. **Goran Gjetvaj**, Građevinski fakultet Sveučilišta u Zagrebu, Kačićeva 26, Zagreb

1 Uvod

Fizikalni hidraulički model HE Ombla kojim su obuhvaćeni *šahtni* preljev, vertikalno okno, obilazni vod, izvorišna špilja i izvorišno jezero s preljevnim pragom u Rijeku dubrovačku te temeljni ispust također s preljevom u Rijeku dubrovačku, izgrađen je u hidrotehničkom laboratoriju IGH-Zagreb (slika 1.).

Slika 1. Fizikalni model elemenata HE Ombla izrađen u IGH-u Zagreb

Na fizikalnom modelu mjerene su razine, brzine, protoci i tlakovi za niz varijanti projektnih režima rada odnosno protoka. U ovom radu prikazani su rezultati mjerenja brzina na području izvorišne špilje za slučaj kada se voda iz strojarnice odvodi kroz dva tunela (slike 2., 3. i 4.). Kroz veći tunel (dimenzija 6 m x 6 m) evakuira se voda iz dvaju agregata kapaciteta 2 x 24 m³/s, a kroz manji (dimenzija 4,20 m x 6,30 m) voda iz dvaju agregata kapaciteta 2 x 6 m³/s (ukupni protok 60 m³/s). Tečenje u tunelima je sa slobodnim vodnim licem. Voda iz tunela ulazi u izvorišnu špilju, a iz nje kroz izlaznu građevinu u izvorsko jezerce i odatle preko preljevnog praga u Rijeku dubrovačku (slika 1.).

Slika 2. Dio fizikalnog modela (područje izvorišne špilje) s pogledom iz smjera utoka kanala malih agregata (12 $m^3\!/\!s)$

2 Mjerenje brzina na fizikalnom modelu

Fizikalni model izgrađen je prema Froudeovu kriteriju sličnosti [1]. Mjerilo duljina fizikalnog modela $L_r = 18$. Na slici 3. prikazane su dubine na području izvorišne

špilje, izvorišnog jezerca i preljevnog praga i položaji mjernih točaka na kojima su mjerene brzine.

Slika 3. Dubine na području izvorišne špilje, izvorišnog jezerca i preljevnog praga i položaji mjernih točaka na kojima su mjerene brzine na fizikalnom modelu

Brzine su mjerene na tri dubine po naznačenim mjernim vertikalama u svakoj mjernoj točki (slika 3.). Mjerenja brzine provedena su SEBA aluminijskim hidrometrijskim krilom tip *Mini Current meter M1* na koje se mogu postavljati različiti propeleri ovisno o očekivanom rasponu mjerenih brzina. Uz krilo ide i mjerač broja okretaja propelera *Signal Counter Z6*.

3 Numerički modeli

Numerička analiza polja strujanja provedena je sa 2D numeričkim modelima. Primijenjena su dva pristupa u numeričkom modeliranju. Prvi je baziran na metodi konačnih diferencija a drugi na osnovi konačnih volumena. Kako bi rezultati polja brzina bili usporedivi, uporabljene su identične vrijednosti hidrauličkih parametara kinematičke viskoznosti i hrapavosti na području prostorne domene. Naravno, u oba pristupa modeliranja primijenjeni su isti početni i rubni uvjeti. Područje koje je obuhvaćeno prostornom domenom numeričkih modela naznačeno je na slici 3.

2.1 Diskretizacija prostorne domene numeričkih modela

Za potrebe modeliranja polja strujanja u različitim smjerovima odabrana je prostorna domena numeričkog modela prikazana na slikama 4. (konačne diferencije) i 5. (konačni volumeni) s naznačenim tekućim granicama.

Slika 4. Prostorna domena numeričkog modela s tekućim granicama za provedbu numeričkih analiza metodom konačnih diferencija

Slika 5. Prostorna domena numeričkog modela s tekućim granicama za provedbu numeričkih analiza metodom konačnih volumena

U numeričkom modelu uporabljen je 3D realni prostorni raspored dubina. Prostorni je inkrement numeričkog modela konačnih diferencija $\Delta x = \Delta y = 1$ m (6057 numeričkih čvorova), a mreža konačnih volumena je od triangularnih elemenata s površinama $\Delta A_1 = 1$ m² i $\Delta A_2 = 4$ m² (3100 numeričkih čvorova). Vremenski korak u metodi konačnih diferencija jest $\Delta t = 0,125$ s (Courantov broj = 0,875), a u metodi konačnih volumena $\Delta t = 0,035$ s (Courantov broj = 0,387). Ipak, potrebno je napomenuti da metodologija konačnih volumena ima ograničenje vremenskog koraka (CFD kriterij) referencirano na maksimalni Courantov broj koji mora biti manji od 0,5, dok u metodi konačnih diferencija on može postizati i vrijednosti 8 ako je strujna slika relativno jednostavna (nema područja naglih divergencija). Za postizanje stacionarnoga stanja u metodi konačnih volumena iskorišteno je 50.000 vremenskih koraka, a u metodi konačnih diferencija 25.000 koraka, čime je ostvareno približno isto vrijeme potrebno za provedbu numeričkog proračuna.

2.2 Formulacija numeričkih modela

Hidrodinamički numerički modeli kojima su provedene numeričke analize je MIKE 21 i MIKE 21/fm (DHI, 2005). Njime je moguće ostvariti numeričke analize nestacionarnog i stacionarnog strujanja u dvije dimenzije i jednom vertikalnom homogenom sloju. Osnovne su jednadžbe primijenjene u sklopu numeričkog modela Reynoldsove jednadžbe dobivene osrednjavanjem Navier-Stokesovih jednadžbi, jednadžbe kontinuiteta (1) i količine gibanja (2 - x smjer, 3 - y smjer) kojima su opisane prostorne varijacije toka i razina vodnog lica [2, 3, 4]:

$$\frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} = hS \tag{1}$$

$$\frac{\partial h\overline{u}}{\partial t} + \frac{\partial h\overline{u}^{2}}{\partial x} + \frac{\partial h\overline{u}\overline{v}}{\partial y} = -gh\frac{\partial\xi}{\partial x} - \frac{gh^{2}}{2\rho_{0}}\frac{\partial\rho}{\partial x} + \frac{\partial\tau_{sx}}{\partial\rho_{0}} - \frac{\partial\tau_{bx}}{\partial\rho_{0}} + \frac{\partial}{\partial\tau_{sx}} + \frac{\partial}{\partial\tau_{sx}}(hT_{xx}) + \frac{\partial}{\partial\overline{y}}(hT_{xy}) + hu_{S}S$$
(2)

$$\frac{\partial h\overline{v}}{\partial t} + \frac{\partial h\overline{u}\overline{v}}{\partial x} + \frac{\partial h\overline{v}^{2}}{\partial y} = -gh\frac{\partial\xi}{\partial y} - \frac{gh^{2}}{2\rho_{0}}\frac{\partial\rho}{\partial y} + \frac{\partial\tau_{sy}}{\partial\rho_{0}} - \frac{\partial\tau_{by}}{\partial\rho_{0}} + \frac{\partial}{\partial x}(hT_{sy}) + \frac{\partial}{\partial y}(hT_{yy}) + hv_{s}S$$
(3)

gdje je:

- *h* trenutačna dubina vode (= $\xi + d$)
- d normalna dubina
- ξ nadvišenje razine vodnog lica iznad normalne dubine
- u, v brzine osrednjene po dubini
- C Chezyjev koeficijent ($C = (1/M) h^{1/6}$)
- *M*-Manningov koeficijent hrapavosti)
- g gravitacijsko ubrzanje
- ρ_0 referentna gustoća vode
- x, y prostorne koordinate
- t vrijeme
- τ_{bx}, τ_{by} naprezanja na dnu
- τ_{sx} , τ_{sy} naprezanja na površini vodnog lica

 T_{xx} , T_{xy} , T_{yy} – lateralna naprezanja.

Trenje s dnom definirano je na način:

$$\tau_{bx} = \frac{\rho g \overline{u} |\overline{u}|}{C^2}; \qquad \tau_{by} = \frac{\rho g \overline{v} |\overline{v}|}{C^2}$$
(4)

Lateralna naprezanja T_{xx} , T_{xy} , T_{yy} u jednadžbama količine gibanja sadrže utjecaje turbulentne količine gibanja, osrednjavanja po vertikali i fluktuacije na podinkrementalnom prostornom modelskom mjerilu formulacijom efektivnoga kinematičkog koeficijenta turbulentne viskoznosti E [5, 6, 7, 8]. Njime se omogućuje prigušenje oscilacija kratkih valova i reprodukcija efekata vezanih na podinkrementalno mjerilo.

$$T_{xx} = E \frac{\partial \overline{u}}{\partial x} \quad ; \quad T_{xy} = \frac{1}{2} E \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right) \quad ; \quad T_{yy} = E \frac{\partial \overline{v}}{\partial x} \tag{5}$$

$$E = C_{sm}^2 l^2 \left[\left(\frac{\partial \bar{u}}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \bar{u}}{\partial y} + \frac{\partial \bar{v}}{\partial x} \right)^2 + \left(\frac{\partial \bar{v}}{\partial y} \right)^2 \right]^{1/2}$$
(6)

gdje je:

- karakteristična duljina (udaljenost između dvaju numeričkih čvora)
- *C_{sm}* konstanta Smagorinski formulacije (usvojena vrijednost 0,4 [4])

2.3 Rubni i početni uvjeti

Rubni uvjeti na tekućim granicama 1 (lijevo gore) i 2 (desno gore), prikazanim na slici 5., definirani su kao stacionarni protok 48 i 12 m³/s s početnim periodom u kojem se ulazni protok postupno povećava sinusoidnim prirastom od vrijednosti 0 m³/s do konačne vrijednosti. Rubni uvjet na tekućoj granici 3 (dolje-preljev) definiran je sa stacionarnom razinom vodnog lica dobivenom mjerenjem na fizikalnom modelu (1,81 m). Za početni uvjet iskorištena je konstantna razina vodnog lica na cijelom području prostorne domene koja odgovara konstantnoj razini rubnog uvjeta na tekućoj granici 3 (preljev-1,81 m).

4 Usporedbe brzina strujanja na fizikalnom i numeričkim modelima

Na slikama 6. i 7. prikazane su prostorne raspodjele brzina na području domene numeričkog modela. Usporedba vrijednosti brzina u čvorovima numeričkih modela koje po svom položaju odgovaraju položajima mjernih točaka na fizikalnom modelu prikazane je na slikama 8.-11.

Kako je sa slika 8.-11. razvidno, odstupanje brzina izmjerenih na fizikalnom modelu i proračunanih s numeričkim modelom po metodi konačnih volumena znatno je manje nego po metodi konačnih diferencija. Razlog je tome svakako bolji opis krute granice postignut metodom konačnih volumena. Slika stacionarnog polja brzina dobivena upotrebom metode konačnih diferencija ima izraženije odbacivanje kanalskih «mlazova» od krutih granica izvorišne špilje. S obzirom na relativno velike brzi ne koje se pojavljuju u kanalima velikih agregata («izvori» količine gibanja) za poboljšanje rezultata u modelu

Slika 6. Prikaz prostorne raspodjele brzina na području domene numeričkog modela (konačne diferencije)

Slika 7. Prikaz prostorne raspodjele brzina na području domene numeričkog modela (konačni volumeni)

Slika 8. Usporedba vrijednosti brzina na fizikalnim i numeričkim modelima (profil 3 – vidi sliku 3.)

Slika 9. Usporedba vrijednosti brzina na fizikalnim i numeričkim modelima (profil 4 – vidi sliku 3.)

Slika 10. Usporedba vrijednosti brzina na fizikalnim i numeričkim modelima (profil 5 – vidi sliku 3.)

Slika 11. Usporedba vrijednosti brzina na fizikalnim i numeričkim modelima (profil 6 – vidi sliku 3.)

s konačnim diferencijama bilo bi potrebno koristiti se lokalnim progušćenjem prostorne diskretizacije (engl. *nesting*) na tom području ili alternativnim progušćenjem prostorne diskretizacije na cijeloj prostornoj modelskoj domeni.

5 Zaključak

Prikazani su rezultati mjerenja polja brzina izmjerenih na fizikalnom modelu i proračunanih sa 2D numeričkim modelima i metodom konačnih diferencija i konačnih volumena za dionicu umirivanja toka (izvorišna špilja i jezerce) i zone ulijevanja u more za projektno rješenje HE Obla. Na analiziranoj dionici ostvaruje se tečenje sa slobodnim vodnim licem. Fizikalni model izgrađen je u mjerilu duljina $L_r = 18$. Za kvantifikaciju kinematičke viskoznosti i hrapavosti, rubne i početne uvjete u numeričkim modelima upotrijebljene su jednake vrijednosti, a prostorna i vremenska diskretizacija odabrana je tako da vrijeme potrebno za provedbu numeričkog proračuna bude približno isto za obje korištene metodologije (konačni volumeni i konačne diferencije).

Provedba numeričke analize metodom konačnih diferencija pokazala je znatnije odstupanje proračunanih i izmjerenih brzina, dok je ta razlika relativno mala pri upotrebi numeričkog modela metodom konačnih volumena. Mogućnost boljeg opisa linije krutih granica na području izvora količine gibanja (područje relativno velikih brzina), uz zadržavanje relativno malog broja numeričkih čvorova u metodi konačnih volumena, razlog je boljem slaganju s izmjerenim vrijednostima brzina.

Na području naglije promjene dna, poput naglog izdizanja na položaju preljevnog praga, metoda konačnih volumena također nudi veću fleksibilnost i ostvarenje «realnije» slike strujanja uz jednako vrijeme potrebno za provedbu proračuna.

Ove zaključke svakako ne treba shvatiti kao restriktivne za metodu konačnih diferencija, s obzirom na to da danas također postoje podmoduli numeričke procedure koji omogućuju lokalno progušćenje prostorne diskretizacije. Nadalje, ograničenje Courantova broja koji mora biti manji od 0,5 za metodu 2D konačnih volumena nije prisutno u konačnim diferencijama u kojima Courantov broj može postizati i vrijednosti 7-8, a da se ne naruši numerička stabilnost.

LITERATURA

- Novak, P.; Čabelka, J.: *Physical Principles and Design Applications*, Models in Hydraulic Enginering, Pitman advanced publishing program, Boston, 1981
- [2] DHI (2005): MIKE Zero Marine Tools User Guide, 2005
- [3] DHI (2005): MIKE 21 Coastal Hydraulics and Oceanography User Guide
- [4] DHI (2005): MIKE 21 Scientific documentation
- [5] Smagorinsky, J.: General circulation experiment with the primitive equations, Monthly Weather Review, 91, No. 3, 1963, pp 99-164.
- [6] Abbott, M.; McCowan, A., Warren, I. R.: Numerical modelling of free-surface flows that are two-dimensional in plan, Academic Press, New York, 1981
- [7] Leslie, D., Quarini, G. (1979): The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech 97(1)
- [8] Abbott, M.; Basco, D.: Computational fluid dynamics, John Wiley & Sons, New York, 1989