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Abstract

An H-packing of G is a collection of vertex-disjoint subgraphs of G such that each
component is isomorphic to H . An H-packing of G is maximal if it cannot be extended
to a larger H-packing of G. In this paper we consider problem of random allocation of
a sequential resource into blocks of m consecutive units and show how it can be success-
fully modeled in terms of maximal Pm-packings. We enumerate maximal Pm-packings
of Pn of a given cardinality and determine the asymptotic behavior of the enumerating se-
quences. We also compute the expected size of m-packings and provide a lower bound on
the efficiency of block-allocation.

Keywords: Maximal matching, maximal packing.

Math. Subj. Class.: 05C70, 05A15, 05A16

1 Matchings and packings
A matching M in a graph G is a collection of edges of G such that no two edges from M
have a vertex in common. The number of edges of M is called the size of the matching.
Small matchings are not interesting – they are easy to find and enumerate. Hence, we are
mostly interested in matchings that are as large as possible. There are two ways to quantify
the idea of “large” matchings, one of them based on their cardinality, the other based on
the set inclusion.

A matching M is maximum if there is no matching in G with more edges than M .
The cardinality of any maximum matching in G is called the matching number of G and
denoted by ν(G). The matching number of a graph on n vertices, obviously, cannot exceed
bn/2c, since each edge saturates two vertices. A matching that saturates all vertices of G
is called a perfect matching.
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A matching M in G is maximal if it cannot be extended to a larger matching in G,
i.e., if no other matching in G contains it as a proper subset. Obviously, every maximum
matching is also maximal, but the opposite is generally not true. The cardinality of any
smallest maximal matching in G, denoted by s(G), is the saturation number of G; the
largest size of a maximal matching is, of course, ν(G).

Matchings are natural models for many problems in natural, technical and social sci-
ences. Worth mentioning are applications of perfect matchings in organic chemistry and
solid state physics. For a general background on matching theory and terminology we refer
the reader to the classical monograph by Lovász and Plummer [14]. For graph theory terms
not defined here we also recommend [3, 19].

A closely related concept of packing is a generalization of matching. There are several
varieties of packing; we consider here only the simplest case. An H-packing of G is a
collection of vertex-disjoint subgraphs of G such that each component is isomorphic to H
[3]. Hence, a matching of G is a P2-packing in G, where P2 denotes a path on 2 vertices.
Again, we are interested only in large packings. If a packing is a spanning subgraph, we
say that the packing is perfect; if no other H-packing has more components, the packing is
maximum; finally, if an H-packing cannot be extended to a valid H-packing, we say that it
is a maximal H-packing. The H-packing number and H-saturation number are defined in
the same way as for matchings. When H = Pm we denote these two quantities by νm(G)
and sm(G) and call them the m-packing number and m-saturation number, respectively.
We refer the reader to [12, 13] for some aspects of P3-packings in claw-free and in subcubic
graphs and to [15] for similar problems in directed graphs.

Maximal matchings and packings can serve as models of several physical and technical
problems such as the block-allocation of a sequential resource or adsorption of dimers
and/or polymers on a structured substrate or a molecule. When that process is random, it
is clear that the substrate can become saturated by a number of units much smaller than
the theoretical maximum. The respective saturation numbers provide an information on
the worst possible case of clogging; they measure how inefficient the adsorption or the
allocation process can be. However, in order to assess its efficiency, we also need to know
how likely it is that a given number of units will saturate the substrate. Hence, we must
study the enumerative aspects of the problem.

For the matching case, the question has been answered in [7]. The main goal of this
paper is to contribute to the corpus of knowledge about the enumerative aspects of max-
imal Pm-packings in paths and cycles. Specifically, we compute the efficiency of block-
allocation of length m of a sequential linear or cyclic resource. In some cases we provide
explicit formulas for the number of maximal m-packings of a given cardinality, while in
other cases we establish the recurrences for the enumerating sequences and then use their
uni- and bivariate generating functions to determine their asymptotic behavior.

Finally, in the concluding section we discuss some open problems and indicate some
directions of possible future research.

2 Paths and cycles
2.1 Paths

We remind the reader that throughout this paper Pn denotes the path on n vertices, hence of
length n− 1. As a motivation, we consider a parking lot made of n parallel concrete strips
such that a car can be parked on any two neighboring strips. In ideal situation, when all
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drivers take care and park responsibly, the lot can accommodate bn/2c cars. However, if
the drivers are careless, the lot can become saturated by a smaller number of cars, as shown
in Figure 1. In the worst possible case, it can become saturated by as few as b(n + 1)/3c

Figure 1: A saturated parking lot and the corresponding maximal matching.

cars. Hence, it is of interest to find out how likely is this to happen, and what is the expected
number of cars under the random regime.

In the continuous setting, this problem is known as the random car-parking problem
of Rényi [16, 17], while in discrete setting it has a natural representation as a problem of
maximal matching in Pn, as shown in Figure 1; it was considered in detail in [7], where
its full solution was obtained, including the explicit formulas for the number of different
configurations accommodating a given number of cars. Also, the expected number of cars
under the random regime was computed, and the asymptotic behavior of the sequence
enumerating all possible parking arrangement was determined.

But what happens if we wish to park trucks such that each of them is twice as wide as
a car? Each truck will then consume three consecutive strips, as shown in Figure 2, and the
corresponding graph-theoretical model will not be a matching, but a packing of copies of

Figure 2: A parking lot saturated with trucks.

P3 in Pn. Obviously, the structure of the problem remains the same if instead of parking
lots and cars and trucks we consider any sequential resource of length n which is allocated
in blocks of m ≥ 2 consecutive units. All such situations can be studied as problems of
packing copies of Pm in Pn. We call such a packing an m-packing. In this subsection we
consider the enumerative aspects of m-packings in paths. Before counting them, we state
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(without proof) two results about the smallest and the largest possible size of m-packings
in Pn.

Proposition 2.1. Let Pn be a path on n vertices. Then

sm(Pn) =

⌊
n+m− 1

2m− 1

⌋
and νm(Pn) =

⌊ n
m

⌋
.

We now start counting all maximalm-packings in Pn. Letψ(m)
n,k denote the total number

of maximal m-packings in Pn with exactly k copies of Pm.

Proposition 2.2. The sequence ψ(m)
n,k is given by the recurrence

ψ
(m)
n,k =

2m−1∑
l=m

ψ
(m)
n−l,k−1

for n ≥ 2m− 1 and with the initial conditions

ψ
(m)
0,0 = ψ

(m)
1,0 = · · · = ψ

(m)
m−1,0 = 1

and ψ(m)
l,0 = 0 for all other values of l.

Proof. Let us label the vertices of Pn by v1, . . . , vn. Let vl be the vertex with the highest
label that is covered by a copy of Pm in a maximal m-packing of size k. Clearly, vl ∈
{vn−m+1, . . . , vn} (otherwise there would be enough place to pack one more copy of Pm,
contrary to the assumption of maximality), and the remaining k − 1 copies of Pm must
form a valid maximal packing of Pm of size k − 1 in the remaining portion of Pn, i.e., in
Pl−m+1. The initial conditions count trivial packings of size zero.

From the above recurrence one can immediately compute the bivariate generating func-
tion for the numbers ψ(m)

n,k by multiplying them throughout by xnyk and summing over all
n ≥ 2m− 1, k ≥ 1. We state the result omitting the computational details.

Theorem 2.3. Let Fm(x, y) =
∑
n,k≥0 ψ

(m)
n,k x

nyk be the bivariate generating function of

ψ
(m)
n,k . Then

Fm(x, y) =
pm(x)

1− yqm(x)
,

where pm(x) = 1−xm
1−x and qm(x) = xmpm(x).

Corollary 2.4. The bivariate generating function of ψ(m)
n,k is given by

Fm(x, y) =
1− xm

1− x− xm(1− xm)y
.

The generating function Fm(x) =
∑
n≥0 ψ

(m)
n xn for the sequence enumerating the

total number ofm-packings in Pn is now obtained by substituting y = 1 into the expression
for Fm(x, y).
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Corollary 2.5. The generating function of the sequence enumerating the total number of
maximal m-packings in Pn is given by

Fm(x) =
1− xm

1− x− xm + x2m
.

From the above result we can deduce the recurrence satisfied by ψ(m)
n .

Corollary 2.6. The numbers ψ(m)
n satisfy the recurrence

ψ(m)
n = ψ

(m)
n−m + · · ·+ ψ

(m)
n−2m+1

for n ≥ 2m− 1 with the initial conditions ψ(m)
0 = · · · = ψ

(m)
m = 1 and ψ(m)

m+i = i+ 1 for
1 ≤ i ≤ m− 2.

The numbers ψ(m)
n,k form a triangular array with rows indexed by n and columns indexed

by k. It can be deduced from the form of the bivariate generating function that the columns
are, in fact, shifted rows of the triangle of multinomial (m-nomial) coefficients. Recall that
the (p, q)-th m-nomial coefficient

t(m)
p,q =

bq/mc∑
i=0

(−1)i
(
p

i

)(
p+ q − 1− im

p− 1

)
is the coefficient of xq in (1 + x+ · · ·+ xm−1)p. (See, for example, sequence A035343 in
[18] for m = 5.) The observation can be formally stated in the following way.

Corollary 2.7.
ψ

(m)
n,k = t

(m)
k+1,n−mk.

As a consequence, we can obtain formulas for ψ(m)
n,k and ψ(m)

n . We refer the reader
to the On-Line Encyclopedia of Integer Sequences for more details on multinomial coeffi-
cients [18].

Corollary 2.8.

ψ
(m)
n,k =

b nm−kc∑
i=0

(−1)i
(
k + 1

i

)(
n+ k −m(i+ k)

k

)
;

ψ(m)
n =

b nmc∑
k=0

b nm−kc∑
i=0

(−1)i
(
k + 1

i

)(
n+ k −m(i+ k)

k

)
.

Whenm = 2, the above formulas reduce to known results about the number of maximal
matchings [7].

As a further consequence, we note that the number of all maximal m-packings of size
k in all paths is given by mk+1.

Our next goal is to determine the asymptotic behavior of the enumerating sequences
and then use it to compute the expected size of a maximal m-packing in Pn. We rely on
the following version of Darboux’s theorem [2].

https://oeis.org/A035343
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Theorem A. A If the generating function f(x) =
∑
n≥0 anx

n of a sequence (an) can be
written in the form f(x) =

(
1− x

w

)α
h(x), where w is the smallest modulus singularity of

f and h is analytic in w, then an ∼ h(w)n−α−1

Γ(−α)wn , where Γ denotes the gamma function.

As a consequence, the expected size of a maximal m-packing in Pn, πm(Pn), can be
computed as

πm(Pn) =
[xn]∂Fm(x,y)

∂y |y=1

[xn]Fm(x, y) |y=1
,

where [xn]F (x) denotes the coefficient of xn in the expansion of F (x).
We refer the reader to [2, 20] for more information on obtaining the asymptotics of a

sequence from its generating function.
We start by observing that Fm(x) = Fm(x, y) |y=1 and ∂Fm(x,y)

∂y |y=1 can be repre-
sented as

Fm(x) =

(
1− x

wm

)−1
pm(x)

wm
1−qm(x)
wm−x

=

(
1− x

wm

)−1

gm(x)

and

∂Fm(x, y)

∂y

∣∣∣
y=1

=

(
1− x

wm

)−2
pm(x)qm(x)[
wm

1−qm(x)
wm−x

]2 =

(
1− x

wm

)−2

hm(x).

Here wm denotes the smallest (and the only) real solution of the equation qm(x) = 1. By
plugging this into Theorem A we obtain following results.

Theorem 2.9. The asymptotics of the number of m-packings in Pn is given by

ψ(m)
n ∼ gm(wm) · w−nm .

Theorem 2.10. The expected size of a maximal m-packing in Pn is given by

πm(Pn) =
1

wmq′m(wm)
n,

where wm is the only real solution of qm(x) = 1.

Now we can define the efficiency of random m-packing in Pn as the quotient of the
expected and the optimal size of an m-packing. Since the size of any largest possible
m-packing in Pn is bn/mc, the efficiency is given by

ε(m) =
m

wmq′m(wm)
.

It is, hence, of interest to investigate the behavior of the above quotient for large values of
n and m. (We will assume that n � m, since the opposite case is not very interesting.)
Numerical computations indicate that it initially decreases from 0.823 for m = 2 and
achieves the minimum value of 0.758317 for m = 9, and then increases slowly (apparently
monotonously) so that for m = 100 it has the value of approximately 0.796. In the rest of
this subsection we show that ε(m) remains bounded from below for all values of m.
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For the beginning, we transform the expression for q′m(x) as follows:

q′m(x) =
mxm−1

1− x
(1− 2xm) +

xm(1− xm)

1− x

=
xm(1− xm)

1− x

[
2m

x
+

1

1− x
− m

x

1

1− xm

]
By plugging in x = wm, the first term on the right-hand side becomes 1, and by multiplying
the resulting equation through by wm, we obtain

wmq
′

m(wm) =

(
2− 1

1− wmm

)
m+

wm
1− wm

.

We would like to estimate the right-hand side and give some upper bound. The first term
never exceeds m; it is enough to note that wm > 1/2 for all m ≥ 2, and from there it
follows 2 − 1

1−wmm
< 2 − 1

1−2−m < 1. In order to bound the second term, we notice that
for large enough values of m we must have wm < 1− 3

m . Indeed, this is equivalent to(
1− 3

m

)m
−
(

1− 3

m

)2m

>
3

m
,

and this is true, since the left-hand side tends to e−3 − e−6 ≈ 0.047308, while the right-
hand side tends to zero. Numerical computations show that “large enough” here means
m = 68. By plugging in the upper bound wn < 1 − 3

m into the second term, we obtain
wm

1−wm < m
3 . Now the right-hand side can be bounded from above by 4m

3 . This gives us a
lower bound on the efficiency.

Proposition 2.11. The efficiency of m-packings is bounded from below. For all m ≥ 2,

ε(m) >
3

4
.

The same argument as above could be used to show that for large enough values of m
and for any real a > 0, an expression of the type 1 − a

m will be an upper bound on wm.
This implies that the right-hand side of the expression for wmq′m(wm) can be bounded
from above by a+1

a m, and consequently, that limm→∞ ε(m) = 1.
Our results indicate that longer blocks achieve better efficiency of random block allo-

cation of a sequential resource. The dependency is rather mild, and the growth is slow. For
example, a hundredfold increase of the block length from m = 1000 to m = 100 000 re-
sults in the moderate increase of efficiency from ε(1000) = 0.844 to ε(100 000) = 0.903.
Still, the block length of nine seems to be a bad choice.

Before we move to the cycles, we mention that our analysis assumes that all packings
are equally probable. It is known for maximal matchings that the efficiency is slightly better
if instead one considers dynamics, i.e., the situation where the dimers arrive sequentially
and try to bind to the substrate [9]. It would be interesting to see how such approach would
affect the efficiency here.

2.2 Cycles

Let us now consider the number of maximal m-packings in a cycle Cn of length n ≥ 3,
n ≥ m. We denote it by ϕ(m)

n , and the number of maximal m-packings in Cn of size k
by ϕ(m)

n,k .
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Proposition 2.12. The numbers ϕ(m)
n,k are given by

ϕ
(m)
n,k = mψ

(m)
n−m,k−1 +

m−1∑
i=1

iψ
(m)
n−2m−1,k−2

for n ≥ 3, k ≥ 2, where ψ(m)
n,k count maximal m-packings of size k in Pn.

Proof. Let us consider vertex vn in Cn. If it is not covered by a copy of Pm in an m-
packing, then it must be in a “hole” of size i for some 1 ≤ i ≤ m − 1. At each side of
the hole there must be a copy of Pm. Hence the remaining k − 2 copies of Pm must form
a valid m-packing in Pn−2m−1, and those are counted by ψ(m)

n−2m−1,k−2. As there are i
holes of size i containing vertex vn, the second term in the right-hand side of the above
expression counts all of them. The first term counts the m-packings in Cn that cover vn by
a copy of Pm.

Proposition 2.13. The numbers ϕ(m)
n satisfy the same recurrence as the numbers ψ(m)

n ,
i.e.,

ϕ(m)
n = ϕ

(m)
n−m + · · ·+ ϕ

(m)
n−2m+1

with the initial conditions
ϕ

(m)
3 = · · · = ϕ

(m)
m−1 = 1

and ϕ(m)
m+i = m+ i for 0 ≤ i ≤ m− 1.

Hence, the asymptotic behavior, the expected size and the efficiency of m-packings in
Cn are the same as in Pn.

3 Future developments
This manuscript presents a systematic attempt to address enumerative aspects of maximal
Pm-packings in some classes of graphs with simple connectivity patterns. It continues the
line of research of a recent paper concerned with maximal matchings [7]. As this is, to the
best of my knowledge, the first paper of this type, it leaves unanswered many questions that
arise in the course of research. In this last section we outline some of the open problems
and suggest some possible directions for future research.

The most natural thing would be to count m-packings in some other families of graphs
with repetitive structure that have low connectivity. Examples of such graphs are cactus
chains, such as those considered in [5, 6, 7]. Due to their simple structure, it is reasonable
to expect that the enumerating sequences will satisfy (rather short) linear recurrences with
constant coefficients, yielding thus to the same type of asymptotic analysis as obtained
here. Besides finding the asymptotics, an interesting problem would be to find the extremal
chains. For maximal matchings (m = 2) the problem is solved for hexagonal cacti and it
would be interesting to see if the pattern persists for larger values of m.

Another promising class could be the so-called thorny graphs. From a given graph G
one obtains the t-thorny graph Tt(G) by appending t pendent vertices to every vertex of
G. When G has a simple structure, the methods of this paper could be employed to obtain
the recurrences for the number of m-packings in Tt(G). As an example, we consider 3-
packings in Tt(Pn).
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Proposition 3.1. Let p(3)
n denote the number of 3-packings in Tt(Pn). Then

p(3)
n =

(
t

2

)
p

(3)
n−1 + 2tp

(3)
n−2 + p

(3)
n−3

for n ≥ 3 with the initial conditions than can be verified by direct computation.

The next step could be to consider linear polymers of connectivity 2. Among them,
the most interesting are without doubt the benzenoid chains. Again, there are some results
for maximal matchings [6, 7] for benzenoid and polyomino chains, but for other classes of
fascia- and rota-graphs [11] not even that case is investigated.

Another direction could be to consider structural and enumerative problems of m-
packings in composite graphs, i.e., in graphs that arise from simpler building blocks via
various binary operations known as graph products. We have considered here one such ex-
ample of low connectivity (the thorny graph, that could be thought of as the corona product
of G and Kt). However, many interesting operations such as, e.g., the Cartesian product,
actually increase the connectivity. It would be too optimistic to expect that complete results
of the type presented here could be obtained in general cases, but we believe that the cases
when one component is a path or a cycle should be feasible. Another interesting problem
would be to determine the m-saturation number of such graphs, in particular for the finite
portions of grids and lattices. Also, nanostructures and fullerenes are natural candidates for
investigation of structural properties related to m-packings. The results would generalize
those for maximal matchings [1, 4].

A graphG is equimatchable [10, 14] if every maximal matching inG is also maximum,
i.e., if all maximal matchings are of the same size. What can be said about equipackable
graphs in which every maximal m-packing is also maximum m-packing?

Finally, it would be interesting to see if packing polynomials and maximal packing
polynomials, modelled after their matching counterparts [7, 8, 14], would be useful in the
study of packing enumeration.
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[5] T. Došlić and F. Måløy, Chain hexagonal cacti: matchings and independent sets, Discrete Math.
310 (2010), 1676–1690, doi:10.1016/j.disc.2009.11.026.
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