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Nontrivial coupling of light into a defect: the
interplay of nonlinearity and topology
Shiqi Xia1, Dario Jukić2, Nan Wang1, Daria Smirnova3, Lev Smirnov4, Liqin Tang1,5, Daohong Song1,5,
Alexander Szameit 6, Daniel Leykam7,8, Jingjun Xu1,5, Zhigang Chen 1,5,9 and Hrvoje Buljan1,10

Abstract
The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear
topological photonic structures. However, when nonlinearity is introduced, many intriguing questions arise. For
example, are there universal fingerprints of the underlying topology when modes are coupled by nonlinearity, and
what can happen to topological invariants during nonlinear propagation? To explore these questions, we
experimentally demonstrate nonlinearity-induced coupling of light into topologically protected edge states using a
photonic platform and develop a general theoretical framework for interpreting the mode-coupling dynamics in
nonlinear topological systems. Performed on laser-written photonic Su-Schrieffer-Heeger lattices, our experiments
show the nonlinear coupling of light into a nontrivial edge or interface defect channel that is otherwise not
permissible due to topological protection. Our theory explains all the observations well. Furthermore, we introduce the
concepts of inherited and emergent nonlinear topological phenomena as well as a protocol capable of revealing the
interplay of nonlinearity and topology. These concepts are applicable to other nonlinear topological systems, both in
higher dimensions and beyond our photonic platform.

Introduction
Topological photonics has become one of the most

active research frontiers in optics over the last decade1,2.
The initial ideas were drawn from condensed matter
physics, where the concept of topology was found to be
crucial for understanding the celebrated quantum Hall
effect (QHE)3,4 and, later on, for the development of
topological insulators5–7. In 2008, Raghu and Haldane
proposed that the Bloch bands of photonic crystals
designed with time-reversal symmetry-breaking elements
could have nontrivial topological invariants8,9, namely, the
non-zero Chern numbers. When two materials with dif-
ferent topological invariants are interfaced, bulk-edge

correspondence2,10,11 guarantees the existence of topolo-
gical edge states, which enjoy robust unidirectional pro-
pagation. Such correspondence holds in both quantum
and classical wave systems, which inspired the first
observation of the unidirectional propagation of electro-
magnetic waves in the microwave regime12. Topological
states of light and related phenomena were later realized
in various systems, including photonic lattices13, ring
resonators14, and metamaterials15 (see Ref. 2 for a recent
review).
In electronic systems, the interplay of topology and

quantum many-body interactions can result in intriguing
topological states of matter such as the fractional QHE4,16.
An analogous yet distinct avenue of research addresses
the interplay of topology and nonlinearity in photonics. In
conventional linear systems, the amount of energy present
in each eigenmode remains constant during time evolu-
tion. When nonlinearity is introduced, however, it shuffles
the energy between the eigenmodes, which brings back
memory of the pioneering numerical experiment by Fermi
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et al., who studied the thermalization induced by non-
linear coupling in 195517. Their discovery of the recur-
rence to a state very close to the initial condition in a
surprisingly short time is rooted in the underlying
integrability of the system. Such a recurrence was recently
observed with nonlinear optical spatial waves18. It is
natural to wonder whether the eigenmodes of a topolo-
gical system can be coupled by nonlinearity and, if so, how
the nontrivial topology can be reflected in the subsequent
dynamics, especially in the coupling of topologically
protected edge states.
Thus far, nonlinear topological effects have been

investigated far less than their linear counterparts,
although nonlinearity inherently exists in many topo-
logical photonic platforms, such as waveguide arrays,
coupled resonators, and metamaterials19–31. Seeking
unique functionalities and device applications, research
in nonlinear topological photonics has been focused
mainly on edge solitons in topological struc-
tures21,23,32–34, nonlinearity-induced topological tran-
sitions24,25, nonlinear frequency generation35–37, and
topological lasing38–40. Despite these efforts, the fun-
damental issue of the nonlinear coupling of eigenmodes
in topological systems remains largely unexplored.
Here, we demonstrate nonlinearity-induced coupling of

light into topologically protected edge states using a
photonic platform and develop a general theoretical fra-
mework for interpreting the mode-coupling dynamics in
nonlinear topological systems. The experimental results
are obtained in photonic Su-Schrieffer-Heeger (SSH)
lattices41 fabricated with a laser-writing technique in a
nonlinear crystal. We observe that only under nonlinear
excitation can a light beam traveling from the bulk to the
edge of a nontrivial SSH lattice be coupled to a topolo-
gically protected edge state. Furthermore, the nonlinear
interaction of two beams at opposite incident angles is
also observed, coupling into a topological interface state
that depends strongly on their relative phase. Our theory
explains these observations well: under proper nonlinear
excitation, the profile of the beam propagating along the
edge (or interface) waveguide is inherited from that of the
underlying linear topological system, overlapping more
than 98% with the linear topological edge states and with
propagation constants residing in the band gap. When the
nonlinearity is stronger than a certain critical value,
however, the nonlinear eigenvalue of the edge state moves
out of the gap and emerges above the first band, indi-
cating that the localization is now dominated by non-
linearity. The concepts introduced in this paper are
generally applicable to nonlinear topological systems.
The SSH lattice exhibits two topologically distinct (Zak)

phases, representing a prototypical one-dimensional (1D)
topological system with chiral symmetry2,41,42. SSH
models have been implemented in a variety of platforms,

including photonics and nanophotonics43–49, plas-
monics50,51, and quantum optics52–55, and particularly in
the context of topological lasing38,56–58. Such SSH-type
models with driven nonlinearity have also attracted great
attention19,24,30,32,34–36,59. In particular, nonlinearity has
been employed for spectral tuning30 and time-domain
pumping59 of topological edge states and for the genera-
tion of topological gap solitons32,34 in such systems.

Results
We study the propagation of light in photonic lattices

with a refractive-index variation given by n0 þ δnL xð Þþ
δnNL ψj j2� �

, where n0 is the constant part of the material’s
index of refraction, δnL(x) describes the linear photonic
lattice, which is uniform along the propagation axis z, and
δnNL ψj j2� �

is the nonlinear index change, which depends
on the intensity of the light (with ψ(x, z) being the com-
plex amplitude of the electric field). In the paraxial
approximation, the propagation of the light is modeled by
the following Schrödinger-type equation with a nonlinear
term:

i
∂ψ

∂z
¼ � 1

2k0
∇2ψ � k0δnL xð Þ

n0
ψ � k0δnNL ψj j2� �

n0
ψ x; zð Þ ¼ ðK þ VL þ VNLÞψ

ð1Þ
which includes the kinetic term K, the linear index
potential VL from δnL(x), and the nonlinear index
potential VNL due to δnNL ψj j2� �

; k0 is the wavenumber
of light in the medium. The above equation holds for both
1D and 2D photonic lattices. In 1D systems, the spatial
coordinate is a scalar x, and in 2D systems, it is a vector
x ¼ xx̂þ yŷ. Here, we consider a 1D topological system;
that is, we assume that the photonic lattice VL can have
nontrivial topological invariants. In our experiments and
numerical simulations, we use the SSH lattice for VL(x).
The photonic lattice and excitation scheme are illustrated
in Fig. 1, where Fig. 1(a1) corresponds to a nontrivial
lattice (Zak phase π) with two topological edge modes in
the gap, and Fig. 1(c1) corresponds to a trivial lattice (Zak
phase 0) without an edge state. In our theory, we use the
above continuum model to describe the wave dynamics
rather than its discrete version to obtain better corre-
spondence with the experiments.
In our experiment, a 1D SSH photonic lattice, as illu-

strated in Fig. 1, is established by the continuous-wave
(CW) laser-writing technique, which writes the wave-
guide lattice site-to-site in the bulk of a 20-mm-long
nonlinear photorefractive crystal60. This technique allows
a topological defect to be induced not only at the edge
(Fig. 1(a1)) but also at the center, forming an interface
(Fig. 2(a1)). Unlike femtosecond-laser writing in fused
silica61, the lattice written in the nonlinear crystal is
reconfigurable, so it can be readily changed from a trivial
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to a nontrivial structure in the same crystal. Once a
chosen structure is written, it remains invariant during
the period of experimental measurements (see “Meth-
ods”). In fact, since the SSH lattice is established here in a
nonlinear crystal, it provides a convenient platform to
investigate nonlinear wave dynamics in such a topological
system, where the photorefractive nonlinear index
potential VNL is easily controlled by a bias field and the
beam intensity19,62. Below, we demonstrate nonlinearity-
induced coupling of light into topologically protected
states in two different cases.

In the first case, the topological defect is located at the
SSH lattice edge (Fig. 1, left panels). When a narrow stripe
beam (FWHM 12 μm; input power 2.5 μW) is launched
straight into the edge waveguide under linear conditions
(the beam itself does not exhibit nonlinear self-action
when the bias field is turned off), it evolves into a topo-
logical edge state (Fig. 1(a2)). Such an edge state, with a
characteristic amplitude and phase populating only the
odd-numbered waveguides counting from the edge, is
topologically protected by the chiral symmetry of the SSH
lattice2, as previously observed in the 1D photonic

(a2) (b1)(a1) (b2) (c1) (c2) (d1) (d2)

(b3) (d3)

x

z

x

y

a

38
 �

m

x
z

y

Linear Nonlinear NonlinearLinear

Fig. 1 Comparison of the edge excitation between topologically trivial and nontrivial SSH lattices. The two illustrations show the tilted
excitation (green arrows) for nontrivial (left) and trivial (right) lattices, where the red dot marks the position of the nontrivial edge. (a1–b2) The
experimental results obtained with the nontrivial lattice, where (a1) shows the written SSH waveguide lattice examined by a probe beam, (a2) shows
the output of a topological edge state under normal (straight) excitation, and (b1) and (b2) show the outputs with a tilted beam (kx=−1.4π/a) in
linear and nonlinear cases. (b3) The simulation results show a side-view (up to a crystal length of 20 mm) of the beam dynamics under nonlinear
excitation. The right panels (c1–d3) have the same layout as the left panels except that the results are obtained with the trivial lattice. The white
dashed-dotted line marks the edge position of the SSH lattice in all figures
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Fig. 2 Nonlinearity-induced coupling into and “escaping” from the topological interface state. The illustration on the left shows two-beam
tilted excitations (green arrows) of the topological defect from opposite directions. The top panels are from the experiment, where (a1) shows the
cross-section of the lattice, (a2) shows the output of a topological interface state under single-beam (straight) excitation, and (b1) and (b2) show the
outputs of two tilted in-phase beams (kx ¼ ± 1:4π=a) under linear and nonlinear excitation conditions. The bottom panel (b3) is from the simulation,
showing a side view of the beam dynamics (up to a length of 40 mm) under nonlinear excitation. The right panels (c1–c3) have the same layout as
(b1–b3) except that the defect is excited with two tilted out-of-phase beams. The white dashed-dotted line marks the position of the nontrivial
interface defect channel in the SSH lattice in all figures
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superlattice43. On the other hand, when the excitation is
shifted away from the edge with a tilted broad beam to
pump the defect (kx ¼ 1:4π=a; where a= 38 μm is the
lattice constant), we observe that the beam does not
couple into the edge channel under linear conditions
(Fig. 1b1). However, when the beam experiences a self-
focusing nonlinearity (at a bias field of 160kV/m), a sig-
nificant portion of the beam is coupled into the edge
channel (Fig. 1b2), indicating that the nonlinearity
somehow enables the energy to flow from the bulk modes
into the topological edge mode of the SSH lattice.
According to Eq. (1), we perform numerical simulation to
examine the nonlinear beam dynamics using the para-
meters from the experiments, and the results are shown in
Fig. 1(b3). We clearly see nonlinear coupling of the beam
to the topological edge state of the SSH lattice, in agree-
ment with the experiment.
For direct comparison, in the right panels of Fig. 1, we

present the corresponding results obtained with the trivial
SSH lattice. A dramatic difference is observed: (1) Under
straight excitation, the input beam transports to quite a
few waveguides close to the edge, but there is no domi-
nant coupling to the first waveguide to form an edge state
under linear conditions (Fig. 1(c2)). (2) For tilted excita-
tion, however, the beam can easily enter the edge wave-
guide under linear conditions (Fig. 1(d1)), while it does
not efficiently excite the edge waveguide within 20mm of
nonlinear propagation (Fig. 1(d2) and (d3)). Simulations
for much longer distances beyond the crystal length
indicate that the energy of the initial beam will eventually
dissipate into the bulk under linear propagation. There is
a key difference between trivial and nontrivial lattices
under nonlinear propagation for tilted excitation: a dis-
tinct edge state persists in the nontrivial lattice, but no
edge state exists in the trivial lattice. The underlying
mechanism is analysed below in detail on the basis of
nonlinear wave theory.
In the second case, the topological defect is located

inside the SSH lattice (Fig. 2). To validate the nontrivial
lattice established by laser writing, as shown in Fig. 2(a1),
a single probe beam is launched straight into the defect
channel, which leads to a topological interface state (Fig. 2
(a2)). Then, two tilted beams are launched from opposite
directions (kx ¼ ± 1:4π=a) to pump the interface defect
simultaneously, as illustrated in the left panel of Fig. 2.
When the two beams are in-phase, light cannot couple
into the defect channel in the linear condition (Fig. 2b1),
but significantly enhanced coupling into the channel
occurs in the nonlinear condition (Fig. 2(b2)). For com-
parison, similar experiments were performed on the same
lattice under the same conditions except for two out-of-
phase beams, which cannot couple into the defect channel
under either linear or nonlinear excitation conditions
(Fig. 2(c1) and (c2)). For linear excitation, topological

protection prevents energy from flowing into the defect.
For the nonlinear excitation, the nonlinear interaction of
the two out-of-phase beams leads them to repel each
other. This remarkable difference can be seen more
clearly in the numerical simulation, where the
nonlinearity-induced coupling (Fig. 2(b3)) and “repulsion”
(Fig. 2(c3)) are evident. These results clearly show that
optical beams from different directions can be pumped
into a nontrivial defect channel due to optical nonlinearity
under proper excitation conditions.
Now that we have presented our experiment and

simulation results, which demonstrate nonlinear coupling
into topologically protected states, we develop a general
theoretical protocol for interpreting dynamics in non-
linear topological systems and employ it for our experi-
ments. Let us assume that the linear component of the
index of refraction VL(x) in Eq. (1) represents a topolo-
gical photonic lattice, which is characterized by a topo-
logical invariant such as the Chern number for 2D lattices
or the Zak phase for 1D lattices. The initial excitation is
given by ψðx; z ¼ 0Þ. The subsequent propagation, gov-
erned by Eq. (1), gives us the complex amplitude of the
electric field ψ(x, z) along the propagation direction,
which in turn modulates the total index potential (linear
and nonlinear) for any z: V x; zð Þ ¼ VL xð Þ þ VNLðx; zÞ. To
determine and interpret the topological properties of the
dynamically evolving nonlinear system, we use the total
index potential V(x, z). The corresponding nonlinear
eigenmodes φNL;n x; zð Þ and nonlinear eigenvalues βNL;nðzÞ
are defined by the equation:

ðK þ VL þ VNLÞφNL;n ¼ �βNL;nφNL;n ð2Þ

We note that nonlinear eigenmodes and their eigenva-
lues are a function of the propagation distance z because
nonlinear beam dynamics are generally not stationary. In
contrast, the topological invariants of a linear system are
drawn from the linear eigenmodes φL;nðxÞ with propaga-
tion constants βL,n, obtained from

ðK þ VLÞφL;n ¼ �βL;nφL;n ð3Þ

which are obviously not z-dependent. In both cases,
n denotes the “quantum” numbers associated with the
eigenmode, which can be associated with the Bloch
wavevector and the band index for periodic photonic
structures.
We emphasize several consequences of this approach:

(i) The topological properties depend on the state of the
system ψ(x, z) (this is natural because the system is
nonlinear). These properties can be inherited from the
underlying linear topological system, or they can emerge
due to nonlinearity (see, e.g., Ref. 24). The inherited and
emergent topological properties should be distinguished,
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as explained in the “Discussion” section below. (ii) The
topological properties can change along the propagation
direction. For example, we envision that for some initial
conditions, the gap in the nonlinear spectrum βNL;nðzÞ
could dynamically close and re-open, leading to a topo-
logical phase transition driven by nonlinearity. (iii) The
evolution of the topological properties depends on the
initial condition ψðx; z ¼ 0Þ. For a given initial condition,
the subsequent dynamics yielding V(x, z) are unique.
Let us apply the protocol to interpret the dynamics

observed in the experiment of Fig. 1 (left panel). The
linear SSH lattice with VL(x) is in the topologically non-
trivial regime, which has two degenerate edge states, as
illustrated in Fig. 3a. The propagation constants of the
linear eigenmodes βL,n are illustrated in Fig. 3b, c (they are
plotted in the region z < 0 for clarity, although they are z-
independent); there are two bands corresponding to
extended states, while the propagation constants of the
localized edge states are in the middle of the gap as
expected41. However, they are not at “zero energy”
because we employ a continuous model with the experi-
mental parameters. One can obtain the zero-energy states
by adjusting the bottom of the linear potential through a

transformation VL xð Þ ! VL xð Þ þ constant, but shifting
the zero energy by a constant does not change the physics.
First, we analyse the initial excitation, which has the

shape of the left edge state (colored red in Fig. 3a):
ψ x; z ¼ 0ð Þ ¼ ffiffiffiffi

I0
p

φL;edge. This corresponds to the obser-
vation of Fig. 1a2. This linear edge state φL;edge has a
typical mode profile of topological characteristics:
populating only odd-numbered waveguides with alter-
nating opposite phases along the SSH lattice44. It is
convenient to introduce the following quantities: (i) the
edge state of the nonlinear system, φNL;edgeðx; zÞ, as the
eigenmode of the potential K + V, which has the largest
overlap with the linear edge state φL;edge, defined as

Fedge zð Þ ¼ φNL;edgejφL;edge

D E���
���
2
; (ii) the overlap of the

overall complex amplitude ψ x; zð Þ with the linear edge

state, defined as Fall zð Þ ¼ ψ x; zð ÞjφL;edge

D E���
���
2
= ψjψh ij j2.

The values of the overlaps Fedge(z) and Fall(z) are always
between 0 and 1 by definition; the former tells us how
similar the nonlinear and linear edge states are, and the
latter tells us how much of the power of the beam
populates the linear topological edge state.
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normal (straight) excitation conditions at low (b) and high (c) nonlinearity; the insets show the linear topological edge mode (green dashed line) and
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panels of Fig. 1). The red (black) line denotes the nonlinear (linear) edge eigenvalue as in b, c, while the individual blue dotted lines correspond to
nonlinear localized states not inherited from the linear topological edge states. The three stages of the dynamics described in the text are denoted
with the magenta, gray, and green shaded regions, respectively. e The overlap of the whole beam with the linear edge state Fall(z). f The overlap of
the linear and nonlinear edge modes Fedge(z) at the three stages of evolution. See the text for details
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In Fig. 3b, we show the eigenvalue evolution of the
nonlinear system βNL;nðzÞ for a low nonlinearity (see the
Supplementary Material for the calculation details and
parameter values). The bands and the nonlinear eigen-
value of the right edge state (plotted for z > 0) are essen-
tially identical to those of the linear spectrum βL;n (for
comparison, βL;n is also plotted for z < 0, even though it is
independent of z). However, the nonlinear eigenvalue
βNL;edge of φNL;edge (for the left edge state) is pushed
towards the higher band, although it is still in the gap34.
The nonlinear spectrum βNL;nðZÞ is almost z-independent
for this initial excitation. Our calculation shows that in
this case, Fedge(z) ≈ 0.99, while most of the power popu-
lates the left edge state, as Fall(z) ≈ 0.99. The inset in
Fig. 3b shows the profile of the topological linear edge
state φL;edge;, along with that of the nonlinear edge state
φNL;edge (at z= 15 mm). We see that the profile of the
nonlinear edge state has the proper oscillations pertaining
to the topological edge state, with the amplitude in odd
waveguides (starting from the edge waveguide as the first
one) and opposite phases in neighboring peaks. The edge
state has an amplitude mainly in the first (edge) wave-
guide and then the third waveguide. If the nonlinearity is
increased above some threshold value, the nonlinear
eigenvalue βNL;edge moves across the band to appear above
the first band, as illustrated in Fig. 3c. From the mode
profiles shown in the inset of Fig. 3c, we find that the
nonlinear edge state is essentially identical to the linear
one in the edge waveguide, but it lacks an amplitude in
the third waveguide. This difference is more easily seen
when we use a larger lattice coupling than the one
obtained from the experimental parameters.
We conclude that for the initial excitation

ψ x; z ¼ 0ð Þ ¼ ffiffiffiffi
I0

p
φL;edge, when βNL;edge is in the gap, the

localization is induced by the topology, and the nonlinear
edge state can be regarded as a topological edge state.
When βNL;edge is above the upper band (in the semi-
infinite gap), the localization is induced by nonlinearity.
Even though the mode profile in the edge channel is
inherited from the linear topological system (see the inset
in Fig. 3c), due to the lack of mode features in the third
waveguide, the nonlinear edge mode should not be
characterized as topological when βNL;edge is in the semi-
infinite gap. A related analysis of similar scenarios can be
found in Refs. 30,59.
A theoretical analysis of the experiments corresponding

to tilted excitation in Fig. 1(b2) is more involved because
in this case, the dynamics are far from stationary, yet this
case captures the essence of the theoretical protocol. The
beam is launched at x= 1.2a at an angle kx ¼ �1:4π=a
towards the edge located at x= 0 (see Fig. 3a). For this
initial excitation, Fall(z= 0) ≈ 0; i.e., at the input of
the medium, the beam does not excite the linear edge
state. Figure 1(b1) is easily understood, as Fall(z) is

z-independent in the linear dynamics. The evolution of
the nonlinear spectrum βNL;nðzÞ is depicted in Fig. 3d.
First, we note that the band structure (thick blue lines)
corresponding to the bulk states is essentially z-invariant
and is equivalent to that of the linear system. Due to the
self-focusing nonlinearity, the dynamics are manifested in
the localized modes of V x; zð Þ ¼ VL xð Þ þ VNLðx; zÞ; there
are quite a few evolving localized modes of V(x,z), with
eigenvalues βNL;nðzÞ indicated by the dotted blue lines in
Fig. 3d. We focus only on the nonlinear edge state φNL;edge
and its eigenvalue βNL;edge, plotted in Fig. 3d with a solid
red line. From Fig. 3e, f, which illustrate Fall(z) and
Fedge(z), respectively, we see that the dynamics can be
divided into three stages. More specifically, the sudden
drop of Fedge(z) at z= 5 mm indicates the end of the first
stage, while the sudden increase at z= 11mm indicates
the end of the second stage of the dynamics (see Fig. 3f).
In the first stage (shaded magenta in Fig. 3d, f), the
launched beam travels towards the edge, and the edge
state is not populated, as FallðzÞ � 0; consequently,
βNL;edge is in the gap (see the left red line in Fig. 3d), and
Fedge(z) is close to unity. In the second stage (shaded gray),
when the beam is at the edge, the linear edge state
becomes populated, and Fall(z) increases. In this stage, the
beam strongly perturbs the local structure of the lattice at
the edge, as seen from the drop in Fedge(z) in Fig. 3f, which
means that none of the nonlinear localized states are
similar to φL;edge (thus, none of the nonlinear eigenvalues
is colored red in Fig. 3d in the second stage). In the third
stage (shaded green), a large portion of the beam is
reflected, but ~30% of the beam becomes trapped in a
localized edge state: Fall(z) ≈ 0.3, as shown in Fig. 3e. There
is a well-defined nonlinear edge state with eigenvalue
βNL;edge above the first band, not in the gap, as indicated by
the right red line in Fig. 3d. The profile of this nonlinear
edge state is mostly inherited from the topology of the
linear structure, as seen in the inset of Fig. 3e and the
overlapping Fedge(z) ≈ 0.98 shown in Fig. 3f; however, it
lacks the topological mode feature in the third waveguide.
We conclude that the localization is dominantly induced
by nonlinearity. We should emphasize that the linear edge
state does not continuously transform into the nonlinear
edge state during propagation, because of the strong
deformation of the lattice in the second stage of the
dynamics. After this distortion, one of the localized states
from stage two re-emerges as the new nonlinear localized
edge state in stage three, as can be traced by following the
nonlinear eigenmodes alongside the F-functions plotted
in Fig. 3d, e.
The details of the theoretical analysis corresponding

to the right panel of Fig. 1 (for the SSH lattice in the
topologically trivial regime) and Fig. 2 (for excitation of
the topological defect with two beams) are shown in the
Supplementary Material and summarized here. The
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results in the right panels of Fig. 1 can be interpreted as
follows: all the linear modes are extended, as the SSH
lattice is in the topologically trivial regime. The beam
initially excites many of these states. In the linear regime
illustrated in Fig. 1(d1), the beam approaches the wave-
guide at the edge and then travels along the edge for the
length of the crystal. In other words, for short propagation
distances (smaller than the length of the crystal), the
phases of all linearly excited (extended) modes add
together such that the intensity of the beam populates the
waveguides close to the edge in Fig. 1(d1). However, for a
very long propagation distance, due to the de-phasing of
the excited bulk modes, the beam will spread into the
lattice. In the nonlinear case corresponding to Fig. 1(d2),
(d3), the nonlinearity creates evolving localized states,
which are not related to the topological origin, as none of
the nonlinear modes resemble the linear topological edge
state. In fact, in this trivial lattice structure, the localized
modes arise purely due to the nonlinear index change, as
is typically the case with optical solitons. A light beam
forms a few self-trapped filaments around these states and
evolves in this fashion for the propagation distance of the
crystal length in the experiment. As the initial excitation is
not at the edge, the location of the self-trapped filaments
is also not at the edge, as illustrated in Fig. 1(d2), (d3).
Regarding the excitation of the defect mode with two

beams at opposite angles, when the beams are in phase,
there are again three stages of the dynamics, which are
equivalent to those shown in Fig. 3d–f. In the first stage,
the beams travel towards the linear defect channel in the
center of the lattice; the defect state is not yet populated,
and its eigenvalue is in the gap. Many evolving nonlinear
localized states arise due to nonlinearity but not to
topology. In the second stage, the linear defect state starts
to become populated, but the lattice is distorted locally
due to nonlinear action, so none of the nonlinear states
are similar to the linear defect state. In the third stage,
some of the incident light (~20–30% for the parameters
used here) is trapped in the defect state, while the rest is
repelled. There is a well-defined nonlinear defect state
with a profile in the defect channel inherited from the
linear defect state and a nonlinear eigenvalue emerging
above the first band. Thus, conceptually, an identical
scenario to that shown in Fig. 3d–f occurs. The difference
is that the defect state can now be coupled from both
sides, and this could be extended to coupling light from all
directions in a 2D SSH-type system, leading to a nonlinear
“tapered” topological waveguide. Such potential applica-
tions certainly merit further research.
When the two incident input beams at opposite angles

are out of phase, again there are three stages of
the dynamics analogous to those presented above (see the
Supplementary Material). However, the linear defect
state is not populated by any of them. The eigenvalue of

the nonlinear defect state is within the gap in the first and
third stages of the dynamics. In the second stage, when
the light is close to the defect state, the lattice structure is
distorted, and none of the nonlinear localized states are
very similar to the linear defect state. In fact, the two
beams stay away from each other, and the defect in this
case is related to the nonlinear interaction of out-of-phase
soliton-like beams rather than to topology.

Discussion
The interplay of nonlinearity and topology is somewhat

analogous to the interplay of locality and globality, as
most of the studied optical nonlinearities are local, and
the topology describes the global properties of a system.
To analyse nonlinear topological systems, one must find
an appropriate way to connect the local and global
properties of the underlying systems. The proposed the-
oretical protocol does just that: it takes the total change in
the index potential V x; zð Þ ¼ VL xð Þ þ VNLðx; zÞ (which
includes the nonlinear term), and analyses the topological
properties of the nonlinear system.
Our theory is designed to unravel non-stationary

dynamics, which are at the heart of the nonlinear cou-
pling presented here. In this case, the potential V x; zð Þ ¼
VL xð Þ þ VNLðx; zÞ evolves along z (z is the “time” in our
system), and the topological quantities can in principle
change during the evolution. In the specific lattice system
studied above, the gap in the nonlinear spectrum βNL;nðzÞ
does not close at any z, and the bands remain fairly intact
in the presence of nonlinearity. However, we observe that
the interplay of nonlinearity and topology can couple light
into the topological edge state of the linear system, which
is inadmissible for entirely linear dynamics (e.g., see Fig. 1
(b2) and Fig. 3d–f). When this happens, we can identify
the nonlinear edge mode φNL;edge, which inherits the
profile of the linear edge mode φL;edge in the edge channel
and is quantified by Fedge(z) ≈ 0.98 after the nonlinear
coupling has occurred, although it lacks the amplitude in
the third waveguide. Thus, for a high nonlinearity, the
eigenvalue of φNL;edge moves outside the gap (see Fig. 3c),
and the edge mode is dominated by nonlinearity but has
some features inherited from the linear topological edge
mode; for a low nonlinearity, its eigenvalue stays inside
the gap, so it is dominated mainly by the topology. For the
other initial conditions studied in the experiment, pre-
sented in Fig. 2, the interplay of topology and nonlinearity
is conceptually the same.
Let us comment on the calculation of topological

invariants in finite nonlinear lattices. Topological invar-
iants for periodic lattices, the Chern number for 2D lat-
tices and the Zak phase for 1D lattices, are calculated for
an infinite periodic system by integrating over the Bril-
louin zone2. These invariants, in a finite lattice, are
manifested by edge states (edge modes), such as those in
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the SSH model. When we deal with a finite nonlinear
system, we cannot straightforwardly use the formulae for
calculating the Chern number and the Zak phase for
infinite periodic systems. This problem has already been
addressed in the literature; see, e.g., Refs. 63,64, where the
so-called Bott index was calculated. Here, we develop an
approach that explores nonlinear eigenmodes and com-
pares them with the relevant linear eigenmodes. This
approach relies on the following facts: (i) the Zak phase
(as well as the Chern number) is calculated from the
eigenmodes, and (ii) for a linear system, the Zak phase is
well known in the topologically trivial or nontrivial
regime. Thus, we focus on how the eigenmodes change
when we introduce nonlinearity. This is quantified by the
overlaps of the linear and nonlinear modes and shown in
the mode profiles and the positions of their eigenvalues in
the spectrum.
Before closing, let us discuss the distinction between

inherited and emergent nonlinear phenomena. If the
underlying nonlinear system is topological, this distinc-
tion is manifested in the topological invariants pertinent
to the edge modes of the system and perhaps in other
quantities. During nonlinear evolution, some of the local
quantities, such as the edge modes, can be modified by
nonlinearity without closing the gap or changing the
topological invariants. If these modified nonlinear modes
are similar according to some measure (such as the
quantity Fedge used here) to the modes of the underlying
linear system, we say that their properties are inherited.
However, if the underlying linear system is initially
topologically trivial, under some conditions, it may hap-
pen that the nonlinear dynamics change the topological
invariants and turn the system into a topologically non-
trivial regime. Because the action of nonlinearity is nor-
mally local, for such a scenario to occur, it appears that
the excitation must be extended. For this type of scenario,
which is in principle possible, we say that the topological
properties of the nonlinear system are emergent because
they are not present in the corresponding linear system.
Although emergent nonlinear phenomena such as band
inversion and topological phase transitions have not been
observed in the particular setting employed in this study,
we believe that they should exist in some nonlinear
topological systems.
In conclusion, we have established trivial and nontrivial

photonic SSH lattices by direct cw-laser writing in a bulk
nonlinear crystal and thereby experimentally demon-
strated the nonlinearity-induced coupling of light into a
topological edge state. In particular, we have shown that
two optical beams from different directions can couple
into (stay away from) a nontrivial defect channel under
nonlinear (linear) excitation upon collision. We have
developed a theoretical protocol to explain the dynamics
observed in this lattice system. Our theory shows that, by

nonlinear excitation of bulk modes, depending on the
input power (i.e., the strength of the nonlinearity),
the trapped light beam can evolve into a nonlinear edge
mode with a profile featuring a topological edge state fully
inherited from the underlying linear system. These fea-
tures exemplify the interplay of topology and nonlinearity
in topologically nontrivial systems. The protocol pre-
sented in this work is general, applicable not only to non-
stationary and dynamically evolving systems such as the
one studied here but also to systems other than SSH
lattices and even to systems beyond the photonic
platform.
For future research, we envision that many fundamental

issues could arise from systems with emergent, rather than
solely inherited, nonlinear topological phenomena, where
nonlinear dynamics can close and reopen the gap and
induce topological phase transitions. A toolkit for such
studies is presented here. Our results may bring about
insights and advances in the nonlinear control of topo-
logical quantum states in similar systems28,36,54,55 as well
as in photonic parity-time-symmetric and anomalous
Floquet topological systems where the excitation can be
tuned by nonlinearity48,65.

Materials and methods
Our experimental method for laser-writing the 1D SSH

photonic lattice is shown in Fig. 4, where Fig. 4a illustrates
the idea of establishing the superlattice by overlapping
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Fig. 4 Experimental scheme for laser-writing photonic SSH
lattices in a nonlinear crystal. a Illustration of the SSH model, where
t and t′ represent strong and weak coupling, respectively. The green
solid curve shows the SSH lattice formed by superimposing the two
periodic lattices depicted by the dashed curves. b Experimental setup
for writing and probing the SSH lattice. SLM spatial light modulator, BS
beam splitter, M mirror, L circular lens, S single slit, CL cylindrical lens,
SBN strontium barium niobite crystal, CCD camera. The upper path is
for the lattice-writing beam (ordinarily polarized), and the lower path
is for the probe beam (extraordinarily polarized). The lattice structure
in the crystal is magnified and shown in the lower inset
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two periodic index potentials of different periods43 and
Fig. 4b shows the experimental setup. The two periodic
potentials are indicated by the dashed curves in Fig. 4a,
which are written into the nonlinear SBN crystal one after
another due to the optically induced local index change.
Superposing these two potentials produces the SSH lattice
(solid curve), where the coupling of neighboring sites can
be fine-tuned by shifting their relative position. When the
lattice is terminated at the strong-coupling “bond”
denoted by t, this corresponds to the nontrivial case
shown in the left panels of Fig. 1, since in this case the
intra-cell coupling is weaker than the inter-cell coupling.
The opposite case occurs when the lattice is terminated
at the weak-coupling “bond” denoted by t′, which repre-
sents the trivial lattice shown in the right panels of Fig. 1.
Since the cw-laser writing technique60 is used to induce
the potential one by one, the lattice edge (and interface)
can be readily reconfigured by this method.
In the setup of Fig. 4b, the upper and lower paths cor-

respond to the lattice-writing and probing beams,
respectively. A collimated laser beam (with wavelength
532 nm and power 100mW) illuminates a programmable
spatial light modulator (SLM), which alternatively gen-
erates the writing and probing beams. In the writing path,
the beam exiting the SLM is collimated and spatially fil-
tered with a narrow single slit and then further com-
pressed into a narrow stripe beam with an FWHM of
~10 μm by a pair of cylindrical lenses, so it is long enough
to cover the entire 20-mm-long SBN:61 crystal. Its input
position to the crystal is precisely controlled by the SLM.
Through a multi-step writing process in the biased crystal
(with an applied field 240 kV/m), the desired SSH lattice is
established with a lattice constant of 38μm. Because of the
“memory” effect of the photorefractive crystal, this index
lattice remains intact for more than one hour, enough
time to measure the beam dynamics. In the lower path,
the probe (stripe) beam is launched into the lattice, and its
input size, position, and direction can all be adjusted by
the SLM. In addition, the probe beam can undergo linear
or nonlinear propagation through the lattice, depending
on whether or not a proper bias field is applied62. The
CCD camera in the writing beam path is used to examine
the position of the stripe writing beam, and the other
CCD is used to monitor the input and output of the probe
beam propagating through the lattice. To image a parti-
cular SSH photonic lattice after it is written, a single stripe
beam is launched into the crystal to probe the waveguides
one by one, and then all guided outputs of the probe beam
are superimposed to obtain the lattice structure of Fig. 1
(a1), (c1).
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