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Abstract: The construction sector has proven to be one of the slowest sectors to embrace
technology—a problem that must be addressed. This problem can be quickly and efficiently addressed
in certain aspects of seismic engineering: from seismic risk assessment to damage detection, as well
as condition assessments existing structures before or after an earthquake. In this paper, the literature
review of assessment methods and damage detection technologies for existing (mainly) masonry
structures is presented. Traditional methods are briefly explained, and modern are critically discussed.
Special focus is given to unmanned aerial vehicles, as well as, photogrammetry and close-range
remote sensing as a technology that can complement traditional ways of assessment and give us data
about a structure that is often different to obtain. Graphical interpretation of one post-earthquake
case study is provided. Open challenges and opportunities of emerging technologies for faster and
easier assessment of seismic safety and vulnerability are presented.

Keywords: earthquake; vulnerability; unmanned aerial vehicle; damage detection; assessment;
photogrammetry; close-range remote sensing

1. Introduction

Earthquake is an unpredictable and unexpected natural disaster that results in the devastation of
both natural and human-made environments. Studying the complexity of an earthquake, including its
prediction and its consequences, requires knowledge from various areas of scientific study, ranging
from seismology, geology, geodesy, mathematics, and applied statistics all the way to psychology,
humanities and social science and of course, structural engineering.

The seismic risk of a structure is a measure of the expected future damage caused by the earthquake,
which is expected to occur in the site of construction. It depends on three factors: hazard, vulnerability,
and exposure [1,2]. Most casualties from earthquakes are associated with collapsing buildings. In this
regard, the continuous assessment and monitoring of the seismic safety and vulnerability of buildings
is a challenging task, especially when large-area evaluations are required [3]. The construction sector
plays a significant role in the alleviation of the effects and consequences caused by earthquakes
and new technologies, products, systems, design approaches are regularly introduced to a broader
community [4–12].

It is generally assumed that an earthquake cannot be predicted (although it can be expected)
or simulated (although we can approximate it), and that its destructive effects cannot be prevented
(although they can be minimized or, at worst, optimized). However, building our infrastructure with
the basic state-of-the-art (STAR) principles in mind will provide us with the ability to keep it safe
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from a predicted level of seismic activity (a detail frequently overlooked) and, more importantly in
the seismic design to save lives. The importance of seismic design is to protect property and life in
buildings. But to have a proper seismic design, we need to learn from existing structures.

The construction sector is the slowest one to appropriate new technologies [13,14]—and this is
something that should be changed. This motivates the quest for finding the technological solution
for the safety assessment of existing structures. As the least innovative sector, civil engineering must
appropriate technological advances from other disciplines in order to be able to keep up with them.
This applies to all aspects of the sector, from construction and planning to seismic and safety assessment.

In this paper, the literature review on modern technologies for the assessment of seismic safety
and vulnerability of existing structures will be explained. Special focus will be set on unmanned aerial
vehicles (UAV) and supporting equipment, as well as, photogrammetry and close-range remote sensing.

2. The Assessment Methods for Condition Inspection and Identification of Seismic Vulnerability
of Existing Masonry Buildings

Regarding economy and sustainability, it is of great significance for a society to maintain existing
building stock instead demolish and rebuild them. The contribution of the assessment phase to the
decision-making process is crucial for the correct assessment, verification, and maintenance of existing
buildings [15–17].

The assessment of an existing structure can be done in various stages with increased accuracy,
the level of accuracy, thereby depending on the quantity and the quality of available data as well
as on the significance of the structure. The developments in the areas of inspection, nondestructive
techniques (NDT), structural health monitoring (SHM), and structural analysis of existing structures,
together with recent guidelines for reuse and conservation, allow for safer, economical and more
adequate remedial measures [18].

The assessment techniques focus mainly on damage identification, damage localization,
and damage evaluation, as well as the determination of certain material properties of existing
structures. There are several new NDT and semi-NDT methods on the market, different in
sophistication and purpose. As the focus of this research is mainly on masonry structures or combined
masonry and concrete/timber structures, the most important NDT methods for existing masonry
structures can be summarized: visual inspection [19], rebound hammer [20,21], measurement of
reinforcement location [22], stress wave transmission [23], ultrasonic velocity testing [24], sonic velocity
testing [25,26], surface penetrating radar [25,27], infrared thermography [28], flatjack tests [29,30],
damage identification using impact vibrations [31], acoustic emission [32], etc. The basic advantages
and disadvantages of the mentioned methods are described in Table 1. More detailed information can
be found in [33].

The issue of seismic vulnerability assessment and restoration of underperforming existing
buildings is a very significant and difficult problem [34]. To develop efficient assessment methods,
it is necessary to draw knowledge and information from various other scientific fields. The seismic
vulnerability requires specialized technical skills [35].

The preliminary work on seismic assessment was based only on visual inspection of the
buildings [19,36], NDT [15,24,32,37,38], and the experience of an engineer. The last decade has
seen a growth in the technological advancement of various instruments that can considerably help
in the estimation of structural safety and seismic behavior of existing structures. The applicability
of the thermal camera for building diagnostics and detection of energy-related building defects
has been investigated by numerous authors [39–44]. The importance close-range remote sensing
and using multispectral cameras for damage assessment and crack detection on buildings was
emphasized by numerous researchers [45–47]. In the last few years, a growing number of studies
have shown the great potential of hyperspectral cameras for detection and mapping cracks on
buildings [48,49]. Unmanned aerial vehicles (UAV) can be used for i.e., disaster management [50,51],
crack identification using image processing [47,52], seismic vulnerability [53], architectural assessment
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of heritage sites and structures [54], and structural assessment using image processing techniques [55].
UAV-based photogrammetry [56–58] and LiDAR (Light Detection and Ranging) [59–61] devices
are indeed used after earthquakes to scan affected areas, but this method is mostly used for larger
areas only. The advantages and disadvantages of the new technologies which should complement
traditional methods are given in Table 2. Mentioned techniques are especially proven to be good at a
post-earthquake evaluation of the complete urban/rural areas and buildings individually.

Table 1. Basic advantages and disadvantages of NDT and semi-NDT inspection methods for existing
masonry structures.

Method Advantages Disadvantages

Visual inspection
• Cheap
• Fast (or no) preparation
• Immediate results
• Non-destructive

• Skilled working force needed
• Detection of only larger defects
• Possible misinterpretation of cracks

Stress wave transmission
• The presence of reinforcements or moisture do

not affect the results
• Non-destructive

• The results should be used for qualitative purposes
• Highly affected by moisture and salt content

Ultrasonic & sonic velocity
testing, acoustic emission • Fast and higher accuracy in results

Non-destructive method
• Accessibility to just one side of the

element needed
• Not affected by moisture

• High skilled and educated working force needed
• Misreading of signals
• Wrong interpretation of data
• Transducers must be coupled on the material surface
• Small defects can affect results
• The wave speed is automatically calculated

Impact echo
• Non-destructive method
• Accessibility to just one side of the

element needed

• Slow method – requires a lot of measurements to map
larger regions

• Stress wave energy is reflected at air boundaries

Surface penetrating radar
• Cracks, bonds, delamination does not affect

the results
• Fast method
• Non-destructive method
• Possibility to investigate different conditions

such as salt content and moisture content,
location of reinforcements, deterioration, etc.

• Relatively expensive
• Mortar interfaces can mask energy reflected from

points of interest

Rebound hammer test
• Ease of use
• Relatively cheap
• Fast method

• Results are for a local point
• The results are not directly related to the strength

of surface
• Affected by surface and moisture condition
• Not completely suitable for masonry (better in

assessment of concrete structures)
• Not completely NDT – leaves a little hole in the

masonry unit

Flatjack system
• Gives compressive strength with

reasonable accuracy
• Ease of use

• Semi-destructive method
• Time-consuming
• Drilling and cutting is not always easy (especially for

stone masonry)
• Requires repair of a mortar joint
• Frequent calibration required
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Table 2. Basic advantages and disadvantages of new technologies for the rapid assessment of the
vulnerability of structures.

Technology/Method Advantages Disadvantages

UAV
• Affordable
• Fast (or no) preparation
• Ease of use
• Immediate results
• Nondestructive
• Constant improvement of technology
• Safety—remote control of the vehicle
• Available inspection of literally any place of

the building

• Limited battery capacity
• Depends on weather conditions
• Legal restrictions related to drone flight
• Limited amount of damage which can be detected

LiDAR
• Data can be collected quickly and with

great precision
• Can be used during the day and night
• Mostly independent of weather conditions
• Noncomplex postprocessing
• 3D data acquiring

• Unprofitable for detecting small building cracks
• Ineffective in heavy rain
• Large database that is difficult to interpret
• Price
• Non or low-quality textures

High-resolution cameras
• Quickly available data
• High quality and precision photography

• Price
• A large amount of data and sometimes takes a long

time to get useful information

Infrared thermography
• Rapid evaluation of big areas
• NDT method
• Real-time measurements

• High skilled and educated working force needed
• Affected by moisture content, texture, or reflections

which can lead to inaccurate measurements
• Relatively expensive

Photogrammetry
• Nondestructive method
• Cheap, simple, and fast data collection process
• Very precise
• It is possible to measure displacements and

deformations of structures without contact
• High-resolution photorealistic 3D

building models
• High-resolution textures
• Better for smaller building cracks detection

compared to LiDAR

• Not possible without the presence of light (during
the day)

• Depends on the weather conditions
• Vegetation can create problems when taking photos
• Large data sets
• Complex postprocessing
• Required postprocessing to get 3D data

360 cameras
• Fast and efficient technology
• Can be mounted on vehicles that are then

passed through the area affected by
the earthquake.

• Possible to create an online platform (such as
Google Street View) where earthquake damage
can be identified and documented

• If the distances at which the photos were taken are
large or the vehicle is moving too fast, there may be a
problem connecting the images

• Vegetation and certain objects can create problems
when taking photos

• Inability to detect roof damage
• Unprofitable for detecting small building cracks

3. UAV Platform for Multi-Sensor Photogrammetry Aerial Mapping

Nowadays, technology and sensor minimization enable the development of the multi-sensor
custom-made UAVs (unmanned aerial vehicles) for multi-sensor aerial mapping. As already mentioned,
UAVs can be applied to acquiring spatial data about the condition of buildings [59], cultural heritage [56],
but also for acquiring spatial data of larger areas for risk assessment of damage detection and
mapping, e.g., after earthquakes [57,58]. These platforms are equipped with the newest sensors for
in-flight position determination. These sensors include GNSS (Global Navigation Satellite System),
RTK (real-time kinematic), and IMU (inertial measurement unit) systems that allow positioning in
centimeter accuracy in real time. Today, significant importance in the development of the UAV platform
was devoted to developing new technologies for stabilization and orientation of the multi-sensor
system [62–64]. The UAV platforms for multi-sensor aerial mapping can be made based on the
open-source or commercial flight controllers and technologies and are able to carry out mapping
missions autonomously [65–67]. For high-accuracy photogrammetric measurement of the safety
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and seismic vulnerability of existing structures, the systems are equipped with sensors that measure
the obstacle distance and therefore enable flights at a close distance to buildings (e.g., microradar
and/or LiDAR). Furthermore, these systems are the foundation for fast and accurate collection of
large amounts of spatial data for building damage detection and mapping. In Figure 1, one scenario
of the post-earthquake assessment with a UAV is shown. An engineer cannot see what happened
to a building at higher floors or roof of a structure when doing on-site assessment from the street.
Very often, the main problems (especially for moderate intensity earthquakes) are chimneys, damaged
roof structures, damaged gable walls, etc. With a UAV device, all of the mentioned information can be
easily assessed.
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3.1. Multi-Sensors System for Photogrammetry Data Acquisition

The aforementioned advances in technology and sensor minimization give us the opportunity
to the development of unique, highly specialized multi-sensors system for photogrammetry data
acquisition. Today, these systems can contain four independent types of cameras: RGB camera,
thermal, multispectral, and hyperspectral camera. All these cameras complement each other in spectral,
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radiometric, and geometric characteristics. The new multi-sensor system is capable for the detection of
damage and anomalies on a building that is not visible to the human eye. The importance of using
various kinds of different cameras, from thermal to multispectral cameras for damage assessment and
crack detection on buildings, was emphasized by numerous researchers [48,52]. Although all these
cameras were already used for building diagnostics assessment, so far, a multi-sensor system has not
been developed for this purpose. It should be noted that the multi-sensor system should be modular,
and it should be able to use different camera lenses, depending on building size and a priori accuracy.
The newly built multi-sensor system should enable accurate data acquisition for building damage
assessment, and the system harness the potential of all implemented cameras.

After the design and development of the multi-sensor system, it is necessary to develop
new methods for calibration, synchronization, and fusion of the collected data. For each camera,
the development of the new calibration method based on photogrammetric methods must be obtained.
The geometric calibration for internal camera parameters calculation must be done [68,69] and followed
by the radiometric calibration for each camera [70–73]. Further, for the autonomous spatial data
acquisition from all cameras in a multi-sensor system, the system synchronization is crucial [70,74,75].
Adequately synchronized multi-sensor system are able to autonomously and/or remotely capture
images from all cameras at the same time. Once the data has been properly collected, it is necessary
to research and develop new imagery fusion methods. The new fusion methods developed for the
multi-sensor system with various independent cameras allow the collection of a fused image that
contains the data of all the above sensors (visible part of the spectrum, thermal, multispectral and
hyperspectral data). The fusion process increases the spatial resolution of final multi-band imagery.
The usage of fused, high-resolution, multi-band imagery enables better and more accurate damage
detection on buildings.

3.2. Remote Sensing Methods for Automatic Detection and Mapping of Weak Structural Parts and Components

After the multi-sensor system has collected the data, to speed up the process, the mapping of weak
structural parts and components should be performed. Such methods allow for the rapid analysis
of large amounts of spatial data, which cannot be processed manually. The current development
of new methods is based primarily on the analysis of all available data of the multi-sensor system.
Taking advantage of individual bands outside the visible spectrum, such as images captured by a
thermal, multispectral, and hyperspectral camera, enable detection, highlighting, and mapping of
features that are not visible to the human eye [45,46]. The use of fused imagery further enhances
the spatial resolution of the imagery and enables the detection of even the smallest cracks in the
object [76,77]. The development and use of these methods enable rapid detection and accurate mapping
of the smallest cracks that may not be visible on the objects themselves. The application of developed
methods significantly accelerates the process of gathering information on the structure and condition
of existing buildings.

3.2.1. Photogrammetric Three-Dimensional (3D) Building Modeling Methods

Optimal photogrammetric methods need to be developed for an accurate and measurable
high-resolution photorealistic 3D building model based on a multi-sensor system and GeoSLAM
system [78]. Photogrammetric methods are primarily based on an adequate phototriangulation
procedure for all images. During the process of phototriangulation, the self-calibration of cameras
control the stability of their internal elements [71]. The development of methods for the rapid creation
of 3D models include the test of sensor accuracy for determining the elements of the external orientation
of real-time images (GNSS + RTK, IMU) [62,69]. Markers can be used on the objects to control the
phototriangulation process and the final 3D model. Nowadays, indoor spatial data for 3D models are
usually acquired with the GeoSLAM system. The final 3D model can be made by the combination of data
acquired with the multi-sensor system and GeoSLAM system data. Furthermore, spectralon and other
markers to perform radiometric calibration can be placed on the objects [71]. This ensures the accuracy



Appl. Sci. 2020, 10, 5060 8 of 16

of the spectral signature of the recorded objects. For controlling thermal images, the temperature of the
object can be measured by a measuring device and sensors at the time of data collection. This enables
obtaining an accurate 3D model in the thermal spectrum, i.e., the accuracy of the temperature obtained
by the multi-sensor system. The development and implementation of methods for photogrammetric
creation of SfM (Structure-from-motion) point clouds enable the creation of high-resolution, dense
3D point clouds [79–81]. The dense point clouds are filtered by newly developed outlier detection
algorithms for gross error points detection (e.g., glass area) [82–84]. For quality and accurate point cloud
collection on objects with uniform textures, methods for radiometric enhancement of textural features
were developed. Radiometric equalization of photogrammetric images based on new methods allow
for the creation of seamless photorealistic 3D models [85,86]. Further, with new 3D modeling methods,
the point cloud can be transformed into a high-resolution photorealistic 3D building model (Figure 2).
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3.2.2. Automatic Methods for Building Damage Detection and Mapping

The photorealistic 3D models and products (e.g., from orthophoto) can be used for the detection and
mapping of building damage. The developed methods are based on a combination of unsupervised
and supervised image classification methods. Furthermore, the methods can be technologically
developed on object-based machine learning algorithms [87–90]. Such an approach allows rapid
damage detection on buildings, which is important because of the large amount of high-resolution
spatial data. Preliminary research related to the topic of developing automatic methods for the
classification has been made [91]. Newly developed methods for the detection and mapping of building
damage can use all bands of the multi-sensor system, but also spectral indices. Spectral indices allow
further highlighting of certain phenomena on earth or objects [91–93]. The use of spectral indices has
been shown to increase the accuracy of classifications. In some cases, spectral indices allow features to
be highlighted on an object that cannot be detected on any single band in the visible or out of the visible
part of the spectrum. In addition to the spectral indices, the newly developed methods also use the
Haralick texture features (Gray Level Co-occurrence Matrix) to detect and emphasize the edge between
damaged and undamaged parts on objects [94–98]. Using an object-based approach enables rapid and
accurate mapping of damage. After the mapping, the system immediately assigns statistical indicators
such as area, depth, etc. (Figure 3). The development of a new automatic method for structural damage
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detection and mapping is a major scientific contribution in the field of photogrammetry and remote
sensing applications in civil engineering.
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4. Discussion and Conclusions

The knowledge of seismic behavior of structures has seen significant advancements in recent
decades. Still, there is much left to be considered. We are still unfamiliar with a number of things that
must be taken into account, such as the magnitude, direction, and scale of earthquakes themselves,
as well as their stochastic (random) nature. Some fundamental decisions still need to be made,
e.g., whether to opt for deterministic or probabilistic modeling, static or dynamic load modeling, linear
or nonlinear seismic behavior of structures.

Are we able to minimize the effects of an earthquake, or is optimizing them still the only option?
How much do we know about the seismic risk or the potential consequences of seismic activity on our
infrastructure? How accurate are we in assessing the seismic vulnerability of existing buildings? Alas,
most of these questions remain unanswered as more research needs to be done on seismic risk and
seismic vulnerability assessment. Concentrating only on visible issues cannot resolve this questions.

Conventional approaches only allow us to assess the condition of an existing structure once its
stability has already been compromised. They also only help us when we know from experience
that a certain building is vulnerable to seismic activity. But what about any invisible parameters?
Are we ready to appropriate new technologies in the engineering sector? Can the use of thermography
and UAVs help us expand our abilities in seismic vulnerability assessment? Can any new methods
point us to other parameters crucial to the development of this scientific field? How do we precisely
characterize data gathered with the help of new technologies? Answering these questions may give
way to new principles in the field and foster the use of new technologies of photogrammetry and
close-range remote sensing much needed in such a traditional sector as civil engineering.

Insight in material and structural properties obtained by assessments and structural analyses and
evaluation can help us is in modeling, analyzing, and predicting the performance of existing structures
and is always a base for the preparation of the data for more precise analyses. However, it is not always
possible to have a comprehensive on-site assessment for rapid evaluation of buildings.

The basic idea of this paper is to show the possibilities for the development of an easy and fast
procedure for seismically generated damage detection of buildings with new technologies such as
UAVs and optical inspections. The open questions and possible future trends in the assessment of the
seismic vulnerability of the existing structures is also discussed. The seismic vulnerability of a structure
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is a quantity associated with its weakness in the case of earthquakes of a given intensity so that the
value of this quantity and the knowledge of seismic hazard allows us to evaluate the expected damage
from future earthquakes [99]. In modern assessment methods, the seismic vulnerability is represented
by vulnerability curves, considering, in individual cases only, some structural characteristics of the
affected buildings [100]. Throughout history, a variety of methods have been used to assess the
vulnerability that can be divided into empirical and analytical (both approaches can also be used in
different hybrid methods) and an approach based on engineering judgment by experts. Methods of
vulnerability assessments mainly model damage to a discrete scale of damage commonly using three
to six categories [101], but still, there are no unified approaches on a European level. High-definition
precision images of buildings using satellites, LiDARs, drones, Google Street View and the like can
give us information on floor dimensions, height, floors, etc. It is important to emphasize that such
information alone is not sufficient, and it needs to be processed by experts, but also supplemented by
other data relevant for damage assessments (e.g., structural system, function, and usage).

A compilation of all the data can be obtained to get a unique view of the seismic vulnerability of
existing structures. A combination of the data from “traditional” assessments with the results from
modern techniques can help us in the identification of weak structural parts and components (faults,
big cracks, and openings, short cantilevers, and walls, short columns, soft storeys). With the knowledge
of the architectural background and styles of the city, a quick estimation of the period when the
building was built can be obtained, i.e., in Croatia, tall windows can tell us that the building was built
during the Austro-Hungarian times. This data can relate to construction methods, wooden ceilings,
lack of glazing and confiners, greater wall thickness, different material quality, etc. All these important
factors are influencing the seismic behavior of the existing structure. With measurement data of
foundation settlings, soil stiffness can be assessed or may indicate some differential settling. In addition,
the building stiffness can be estimated, which can lead to an estimation of the number of internal walls.
Assessment of roofs with UAVs can identify the deformation of roof plates and can serve as a basis for
the identification of internal walls, which can also lead to estimation of stiffness. With thermography,
different building materials can be identified (masonry vs. concrete) and existing confining elements
with their dimensions and location in the structures can be pointed out. With a combination of methods,
and estimation of wall thicknesses (with basic geometry) quick interpretation of structural safety can
be estimated. Deformation of outer walls obtained by photogrammetry combined with energy losses
by thermography and architectural rules of the construction period, and with expert opinions can lead
us to a rough estimation of the number of walls (considering the knowledge of load-bearing plate
system). All of the mentioned activities can give us the level of seismic vulnerability and safety of the
existing structures. The obtained data, new procedures, and techniques can help us in the estimation
of seismic risks of bigger regions or building blocks (Figure 4).

A conceptual design of building blocks can be easily identified (weak parts, floors on different
heights, and influence of one building to another), which gives the information of seismic risk.

The development of a modern procedure for structural damage detection and estimation of
seismic risk and vulnerability must be improved with new and accessible technologies.
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84. Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Meas. J. Int. Meas. Confed. 2019,
133, 99–111. [CrossRef]

85. Pintus, R.; Gobbetti, E.; Callieri, M.; Dellepiane, M. Techniques for Seamless Color Registration and Mapping on
Dense 3D Models, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 355–376. [CrossRef]
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