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Abstract: 
 

 
Higher-order topological insulators (HOTIs) are recently discovered topological phases, 

possessing symmetry-protected corner states with fractional charges. An unexpected 

connection between these states and the seemingly unrelated phenomenon of bound states in 

the continuum (BICs) was recently unveiled. When nonlinearity is added to a HOTI system, 

a number of fundamentally important questions arise. For example, how does nonlinearity 

couple higher-order topological BICs with the rest of the system, including continuum states? 

In fact, thus far BICs in nonlinear HOTIs have remained unexplored. Here, we demonstrate 

the interplay of nonlinearity, higher-order topology, and BICs in a photonic platform. We 

observe topological corner states which, serendipitously, are also BICs in a laser-written 

second-order topological lattice. We further demonstrate nonlinear coupling with edge states 

at a low nonlinearity, transitioning to solitons at a high nonlinearity. Theoretically, we 

calculate the analog of the Zak phase in the nonlinear regime, illustrating that a topological 

BIC can be actively tuned by both focusing and defocusing nonlinearities. Our studies are 

applicable to other nonlinear HOTI systems, with promising applications in emerging 

topology-driven devices.   
 
 
 
 



 
 

Introduction 

Over the past decade, topological insulators have attracted tremendous attention across many 

disciplines of natural sciences1,2 including photonics3. One of their most appealing features is the 

topologically protected edge states immune to scattering at defects and disorders4-6. A few years 

ago, a novel class of higher-order topological insulators (HOTIs) was predicted7-9 and 

experimentally observed10-12. While a standard topological insulator usually obeys the bulk-

boundary correspondence principle (with edge states one dimension lower than the bulk), the 

HOTIs typically support zero-dimensional corner states regardless of their physical dimension, or 

more generally, (d-n)-dimensional states at the boundaries of d-dimensional lattices with n no less 

than 23,13. This is associated with topologically quantized quadrupole and higher-order electric 

moments in electronic systems7. The discovery of HOTIs broadened the concept of the symmetry-

protected topological phase and our common understanding of traditional topological insulators, 

which has thus launched an avalanche of research ventures on HOTIs in a variety of fields, 

including condensed matter physics, electric circuits, phononic systems, acoustics, and 

photonics7,10-12,14-31. In terms of fundamental interest, HOTIs are attractive because they are related 

to many intriguing phenomena such as higher-order band topology in twisted Moiré superlattices32, 

topological lattice disclinations33, Majorana bound states34  and their nontrivial braiding35. 

Towards applications, they have been touted and tested for robust photonic crystal nanocavities36 

and low-threshold topological corner state lasing28,37. 

Combining topology and nonlinearity leads to a number of fundamental questions, some of 

which have been addressed in the study of first-order nonlinear topological photonic systems38, 

including for example nonlinear topological solitons and edge states, nonlinearity-induced 

topological phase transitions, topological nonlinear frequency conversion, and nonlinear tuning of 

non-Hermitian topological states39-46. However, thus far, all of the studies on HOTIs have mainly 

been restricted to the linear regime, and only recently it became clear that unexpected phenomena 

may arise when nonlinearity is taken into account in HOTI systems47-49, with experiments 

implemented already in nonlinear electric circuits47 and photonic structures50-52. 

In a few recent papers, an intriguing connection between HOTIs and another widely studied 

phenomenon, namely, the bound states in the continuum (BICs), has been explored21,22,53,54, 

reinvigorating the interest in BICs and their topological nature as previously established55-57. BICs 



 
 

are counter-intuitive localized states with eigenvalues in the continuum of extended states, which 

may result from versatile mechanisms56,57. An exemplary model used for unveiling such a 

connection is the celebrated two-dimensional (2D) Su-Schrieffer-Heeger (SSH) lattices58, which 

possess the second-order localized modes protected by the chiral symmetry and crystalline 

symmetry53, as have been observed in a variety of synthetic structures10-12 including photonic 

crystals17,18. In such HOTIs, the corner-localized states appear right at the center of the eigenvalue 

spectrum (“zero-energy mode”) and are embedded in the continuum band rather than in the gap, 

in contrast to other types of HOTIs19,23,59. Such topological BICs have infinite lifetimes and are 

fully localized to the corner despite being degenerate with the bulk bands, but they become “leaky” 

when the required symmetries are broken53,54. Nonlinearity can be used to break these symmetries, 

and thus enable coupling of light into or out of these localized corner states, or performing their 

braiding, thus making them attractive for potential applications. However, to the best of our 

knowledge, nonlinear higher-order BICs and their associated dynamics have not been explored so 

far, in photonics or any other systems. 

Here, we establish a nonlinear photonic HOTI platform and explore the role of nonlinearity in 

higher-order topological BICs (Figs. 1(a, b)). We demonstrate that a low nonlinearity, either self-

focusing or -defocusing, can induce coupling between corner states and edge states in a 2D SSH 

nontrivial lattice, enabling their beating oscillations. Interestingly, the nonlinear coupling of a 

higher-order BIC to the bulk states is significantly weaker, despite the fact that both chiral and 

crystalline symmetries are broken by nonlinearity. However, coupling to the bulk readily occurs 

under the same excitation conditions in a trivial lattice, indicating that the robustness of the weakly 

nonlinear topological BICs is inherited from the linear system. At a high focusing nonlinearity, a 

corner state becomes more localized, forming a semi-infinite gap soliton out of the continuum 

Bloch bands, whereas at a high defocusing nonlinearity it exhibits strong radiation into the edge 

and bulk (Fig. 1a). Theoretically, we analyze the dynamical evolution of the nonlinear eigenvalue 

spectrum and validate the robustness of the corner modes in the process of beating with the edge 

modes driven by a low nonlinearity. This is supported by calculating the bulk polarizations 

manifesting the topological invariant in the nonlinear regime.  

 

 

 



 
 

Results  

The wave dynamics in our HOTI system can be described by the continuous nonlinear 

Schrödinger-like equation (NLSE), typically used for simulating a light field with amplitude 

𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) propagating along the longitudinal z-direction of the photorefractive photonic lattice60: 
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where 𝐼𝐼𝐿𝐿(𝑥𝑥,𝑦𝑦)  accounts for the beam intensity for writing the 2D SSH lattice in a nonlinear 

photorefractive crystal, 𝐼𝐼𝑃𝑃 is the nonlinear contribution of the probe beam, k is the wavenumber in 

the crystal, ∆𝑛𝑛 is the linear refractive index change determined by the bias field 𝐸𝐸0 and the electro-

optic coefficient of the crystal (see Supplementary Material). The induced refractive index change 

forming the linear photonic lattice depends on the spatial coordinates 𝑥𝑥 and 𝑦𝑦, and it is uniform 

along the propagation axis as illustrated in Fig. 1a. The nonlinearity can be a self-focusing or –

defocusing type, depending on the direction of the bias field relative to the crystalline optical axis, 

while its strength can be controlled by the bias field and the beam intensity60,61. It should be pointed 

out that for low power probe beams (small 𝐼𝐼𝑃𝑃), the nonlinearity is in the low saturable regime and 

approximately Kerr-like, then the above NLSE is equivalent to the Gross-Pitaevskii equation that 

describes interacting atomic Bose-Einstein condensates in the mean-field approximation2. As such, 

even though we used a specific type of optical nonlinearity in our study, the concept and scheme 

on nonlinear control of HOTI corner modes developed here are expected to hold on other platforms 

beyond photonics.  

The topological features of the 2D SSH lattice are more transparent in the discrete model based 

on the coupled-mode theory. When the next-nearest-neighbor (NNN) coupling is negligible, Eq. (1) 

can be approximated with  

          𝑖𝑖 𝜕𝜕𝜓𝜓𝛼𝛼
𝜕𝜕𝜕𝜕

+ ∑ [𝐻𝐻𝐿𝐿]𝛼𝛼,𝛼𝛼′𝜓𝜓𝛼𝛼′𝛼𝛼 + 𝐸𝐸0′
𝛾𝛾|𝜓𝜓𝛼𝛼|2

1+𝛾𝛾|𝜓𝜓𝛼𝛼|2
𝜓𝜓𝛼𝛼 = 0,  (2) 

 

where 𝜓𝜓𝛼𝛼 is the complex amplitude of the electric field at the site 𝛼𝛼, 𝐻𝐻𝐿𝐿  is the linear Hamiltonian 

matrix of the 2D SSH model; its entries [𝐻𝐻𝐿𝐿]𝛼𝛼,𝛼𝛼′  are either zero (when 𝛼𝛼  and 𝛼𝛼′  are not 

neighboring sites), or take the value of either the intra-cell coupling 𝑡𝑡 or the inter-cell coupling 𝑡𝑡’, 

as illustrated in Fig. 1b. Both the normalized bias field 𝐸𝐸0′  and the nonlinear coefficient 𝛾𝛾 control 



 
 

the saturable nonlinearity, which corresponds to the nonlinear photorefractive crystal used in the 

experiment60,61. 

In the linear regime, in full analogy with the 1D case62,63, the 2D SSH lattices exhibit two 

distinct Zak phases, which correspond to bulk polarizations. These are the topological invariants 

for this type of HOTIs17,18,58, which differentiate the topologically trivial and nontrivial structures 

(see Methods). They can be tuned by the dimerization parameter 𝑐𝑐 = 𝑡𝑡 − 𝑡𝑡′. In the discrete model, 

the topological characteristics of the 2D SSH lattices can be seen clearly from the linear eigenvalue 

spectrum calculated from  𝐻𝐻𝐿𝐿𝜑𝜑𝐿𝐿,𝑛𝑛 = −𝛽𝛽𝐿𝐿,𝑛𝑛𝜑𝜑𝐿𝐿,𝑛𝑛, as summarized in Figs. 1(c, d), where 𝛽𝛽𝐿𝐿,𝑛𝑛 is the 

linear spectrum, and 𝜑𝜑𝐿𝐿,𝑛𝑛  are the corresponding eigenmodes. When the intra-cell coupling is 

weaker than the inter-cell coupling (𝑐𝑐 < 0), the system is in the topologically nontrivial phase, and 

the band structure consists of characteristic edge and corner modes (Fig. 1c). In particular, in the 

middle of the band, there are four degenerated corner modes (Fig. 1d1), corresponding to “zero-

energy modes” in the condensed matter language. A typical corner mode structure is shown in the 

upper inset of Fig. 1d1, which clearly displays the features of the topological corner state (highly 

localized at the corner with zero amplitude in its nearest-neighbor site but nonzero out-of-phase 

amplitude in its NNN sites along the edges). Since these corner states are embedded in the 

continuum of the SSH lattice as well as protected by the C4v and chiral symmetries – they are 

topological BICs53,54. For comparison, the trivial phase, manifested by vanishing polarizations, 

occurs when the intra-cell coupling is stronger than the inter-cell coupling (𝑐𝑐 > 0), where there are 

two mini-gaps formed only by the bulk modes (Fig. 1d3). When the coupling strength is uniform 

across the whole lattice (𝑐𝑐 = 0), it turns to a trivial square lattice with a gapless spectrum (Fig. 

1d2), which sets apart the topologically nontrivial and trivial regimes. Representative edge and 

bulk modes are also displayed in the insets of Fig. 1d. 

In the nonlinear regime, the nonlinear eigenvalues are calculated from 𝐻𝐻𝑁𝑁𝑁𝑁𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛 =

−𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑍𝑍)𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛(𝑍𝑍) where the nonlinear Hamiltonian NL L NLH H V= + contains both the linear part 

and the nonlinear potential corresponding to the third term in Eq. (2). It is important to point out 

that the nonlinear eigenmodes 𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛(𝑍𝑍)  and nonlinear eigenvalues 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛(𝑍𝑍)  are 𝑍𝑍 -dependent 

(here 𝑍𝑍 is the normalized propagation distance playing the role of time), because the nonlinear 

beam dynamics are generally not stationary. Indeed, we use a general theoretical protocol 

(developed recently in ref.43) for interpreting the dynamics in nonlinear topological systems, where 

both inherited and emergent topological phenomena may arise. The calculated nonlinear 



 
 

eigenvalue spectrum (at 𝑍𝑍 = 50) for the nontrivial SSH lattice is plotted in Fig. 2a, where two sets 

of edge modes set apart the whole band as in the linear spectrum (Fig. 1d1). However, under the 

action of nonlinearity, the spectrum exhibits a dynamical evolution during propagation, while the 

corner modes are forced to couple with the lower (upper) edge states by a self-focusing (self-

defocusing) nonlinearity (see Supplementary movies). In other words, they are no longer stationary 

BICs, but rather undergo periodic energy exchange with the edge modes. The robustness of the 

corner localized BICs is evident, as they do not couple (for the parameters used here) with the bulk 

modes even when they are driven in and out of the central bulk band via nonlinearity, reflecting 

the topological nature of BICs. For the snapshot selected at 𝑍𝑍 = 50 shown in Fig. 2a, the whole 

spectrum is down-shifted from its linear position by the focusing nonlinearity, while the corner 

modes are approaching and coupling with the lower edge modes. This shifting direction is reversed 

when a self-defocusing nonlinearity is employed (see discussion in Supplementary material). 

When the strength of nonlinearity is low (𝐸𝐸0′ = 5, 𝛾𝛾 = 1.1), a representative corner mode excited 

by the focusing nonlinearity undergoes beating with the edge modes (Figs. 2(b2, b4)), but only at 

sufficiently high nonlinearity (𝐸𝐸0′ = 5, 𝛾𝛾 = 3.5) it is “liberated” from the continuum and turns into 

a self-trapped semi-infinite gap soliton (Fig. 2b3). Such corner solitons formed only in the strongly 

nonlinear regime with eigenvalues (i.e., propagation constants) residing beyond the lattice Bloch 

band, have been explored previously in the 2D square lattices61,64 but not in the context of HOTIs. 

In our experiments, we establish the nonlinear photonic HOTI platform by site-to-site writing 

of the 2D SSH lattices in a photorefractive crystal with a continuous-wave (CW) laser65. 

Experimental details can be found in Methods.  For direct comparison, the lattices are written into 

three different structures (nontrivial SSH, square, and trivial SSH, as illustrated in the top panel of 

Fig. 3) by tuning the dimerization parameter, in accordance to Figs. 1(d1-d3), which in the 

experiment is achieved by controlling the intra-cell and inter-cell waveguide distances. We then 

excite the same corner site with a single Gaussian probe beam. Results obtained under linear 

excitation are shown in Fig. 3, where the probe beam itself has no nonlinear self-action but evolves 

into a characteristic corner state with non-zero intensity distribution at the two NNN sites along 

edges (Fig. 3a2), representing a typical topological BIC realized in the nontrivial SSH lattice. For 

all other cases of excitation, either at the edge and bulk of the nontrivial lattice, or at the same 

corner of the trivial lattices, the probe beam simply cannot be localized but instead displays strong 

radiation into the bulk/edge as shown in Figs. 3(a2-c2). To simulate such linear corner excitation, 



 
 

we set 𝐼𝐼𝑃𝑃 = 0 in Eq. (1), and results obtained from numerical simulations in three different lattices 

are displayed in Figs. 3(a3-c3), which agree qualitatively well with the experimental observations. 

We now discuss the experimental results pertinent to the nonlinear control of HOTI corner 

states as illustrated in Figs. 1(a-b) and analyzed in Fig. 2. Measurements of the output intensity 

profile of the probe beam under a corner excitation of the nontrivial lattice with both self-focusing 

and -defocusing nonlinearities after 20-mm propagation are shown in Fig. 4, where for reference 

Fig. 4a plots the linear output of the topological corner state. At low nonlinearity, a direct 

comparison with the linear output shows that the corner-localized state differs in this case from the 

topological corner mode, since now the energy goes to the second (nearest neighbor) and even the 

fourth sites along the edges [Figs. 4(b, e)]. This is because of the nonlinearity-induced coupling 

between the corner and edge modes, as illustrated in Fig. 1b. In our experiments, because the 

propagation distance set by the crystal length is typically smaller than the period of beating, we 

cannot observe a distinct beating oscillation between the corner and edge modes numerically 

shown in Fig. 2b4. At high self-focusing nonlinearity, the probe beam is localized again in the 

corner, forming a self-trapped semi-infinite gap corner soliton as shown in Fig. 4c61,64, in agreement 

with what illustrated in Fig. 2b3. On the other hand, at a high defocusing nonlinearity, the corner 

excitation leads to strong spreading of the energy into the bulk as well as into the edges (Fig. 4f) 

due to nonlinear mode beating involving higher-band bulk states. These experimental results are 

corroborated by our numerical simulations based on the NLSE of Eq. (1) (see Supplementary 

Material for details), demonstrating clearly the concept of nonlinear control of the topological 

BICs in the HOTIs.  

 

Discussion   

The concept of topologically protected (higher-order) BICs, which is explored here under 

the action of nonlinearity, is somewhat an oxymoron. If two states are close in energy (or, in the 

optics language, the propagation constants are close), then it should be energetically inexpensive 

to couple these states. In a nonlinear HOTI system, topology is involved in the dynamics, and thus 

for the system studied here this common sense is questioned.  

In our theoretical simulations and experiments, we have clearly interestingly found that 

topological higher-order BICs, which are corner states of our nonlinear 2D SSH lattice, are 

dominantly coupling to the edge states rather than to the bulk states. This happens despite the fact 



 
 

that the corner-localized BICs are embedded in the continuum of bulk states, gapped from the edge 

states, as clearly illustrated in Fig. 1d1. The weak self-focusing or -defocusing nonlinearity, for 

practically all excitations employed in this work, breaks the chiral symmetry and the crystalline 

symmetry of the lattice (the only exception is the excitation in Fig. 2, which preserves the 

𝐶𝐶4𝑣𝑣 symmetry). By breaking these symmetries, nonlinearity in principle allows the corner states to 

couple with the bulk states of the continuum they are embedded in53. However, the overlap with 

the edge states induced by the nonlinearity is obviously much larger, which leads to the dominant 

coupling between the corner and the edge states. It should be noted that this behavior depends (also 

somewhat unintuitively) on the dimerization parameter 𝑐𝑐. If its magnitude increases (on the highly 

topologically nontrivial side), the gap between the topological corner BICs and the edge states 

increases (Fig. 1c), yet the dominant corner-edge coupling persists as opposed to the corner-bulk 

coupling.  

A feature of interest for technological applications is the possibility to nonlinearly couple 

two corners; such coupling was proposed with exciton-polariton corner modes48. From the 

simulations presented in Fig. 2, it follows that such coupling should be possible in our lattice. 

Namely, if one excites a single corner, the initial state is then a superposition of four corner states 

that will beat; another view of the dynamics is that the nonlinearity will enable coupling to the 

edge states, and then to the adjacent corner. This type of dynamics is verified in our numerical 

simulation under proper initial conditions. It should be noted that in our experiments the coupling 

length between adjacent waveguides is not small compared to the length of the crystal along the 

propagation direction, such that it is not possible to observe the beating oscillations presented in 

Fig. 2. However, by using longer samples with different lengths, or using different platforms with 

stronger coupling, such beating should be observed.   

The distinction between the discrete and the continuous models under large nonlinearities 

merits further discussion. The continuous NLSE of Eq. (1) offers a quantitatively better description 

of the experiment than the discrete model in Eq. (2) under the tight-binding approximation. 

However, it is well known when the two models start to deviate. For a linear lattice that is 

sufficiently deep, the discrete model is a good approximation of the dynamics; the parameters of 

the linear lattice employed here are in this regime. When the nonlinearity is weak, the lattice will 

not be strongly perturbed, and the discrete model is still a good approximation. However, for a 

large self-defocusing nonlinearity, the whole lattice structure at the excitation can be strongly 



 
 

deformed. For example, if a corner gets excited, a large self-defocusing nonlinearity significantly 

molds the corner area and enables coupling between the NNN sites and changes the nearest 

neighbor coupling as well, which is not  captured by the discrete model of Eq. (2). In contrast, for 

a large self-focusing nonlinearity, the whole lattice structure is preserved despite the deep potential 

at the excitation site, and we found that the discrete model is still qualitatively accurate for the 

presented self-focusing dynamics. 

Quite generally, for a weak nonlinearity and practically any excitation, the symmetries 

responsible for the nontrivial topology of the 2D SSH model are broken53. However, in a weakly 

nonlinear system, the topological properties can persist as they are inherited from the 

corresponding linear system43. This is the origin of the weak nonlinear coupling between the corner 

and the bulk modes discussed above. The fact that the topological properties are inherited is 

quantified and illustrated in Fig. 4d, showing the bulk polarizations 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 (related to the 2D 

Zak phase15,17) as a function of the parameter 𝑐𝑐  and the strength of the nonlinearity 𝛾𝛾𝑘𝑘 . The 

nonlinear system corresponding to Fig. 4d is the 2D SSH lattice with one out of four lattice sites 

in all unit cells excited, i.e., its on-site refractive index is changed in comparison to the other three 

sites in the unit cell. Even though this is a specific nonlinear excitation, it serves well to quantify 

how the topological feature is preserved after nonlinearity is introduced.  

It is well known that, for the linear 2D SSH lattice, the polarizations are topologically 

quantized, 𝑃𝑃𝑖𝑖 = 1
2
  for 𝑐𝑐 < 0 , and 𝑃𝑃𝑖𝑖 = 0  otherwise. In the nonlinear case, the symmetry and 

topological protection are broken in the strict sense, however, we easily see from the illustrations 

that there is a sharp jump in the polarization as 𝑐𝑐  crosses zero, which is inherited from the 

topological phase transition occurring in the underlying linear system. We see that the jump 

signifying this phase transition is preserved in the nonlinear system as well. We expect that such 

inherited nonlinear topological properties exist also in HOTIs of the third-order or even higher-

order formed in synthetic dimensions. 

 In conclusion, we have reported what we believe to be the first theoretical and experimental 

study of nonlinear BICs in HOTIs. Understanding the nonlinear topological phases is not only of 

fundamental interest, but it may also be crucial for the development of photonic devices based on 

topological corner modes, including HOTI lasers. 

 

 



 
 

 
Materials and Methods 
 
Experimental method for lattice writing and probing 

To demonstrate the scheme for the nonlinear control illustrated in Figs. 1(a, b), we employ a 

simple yet effective CW-laser writing technique65 to establish the finite-sized photonic 2D SSH 

lattices with the desired structures shown in Figs. 3(a1-c1). The technique relies on writing the 

waveguides site-to-site in a 20mm-long nonlinear photorefractive (SBN:61) crystal. Different 

from the femtosecond laser writing method developed for glass materials5, the SSH lattices written 

in the crystal can be readily reconfigurable in terms of lattice spacing and boundary structures. The 

experimental setup involves a low-power (up to 100mW) CW-laser beam (λ=532nm) to illuminate 

a spatial light modulator (SLM), which creates a quasi-non-diffracting writing beam with 

reconfigurable input positions. For the writing process, the modulated light beam (ordinarily-

polarized) is used with self-focusing nonlinearity, but for the probing during the nonlinear control 

process, we use an extraordinarily-polarized Gaussian beam for lattice excitation with either self-

focusing or –defocusing nonlinearity by switching the bias field direction60,61. Because of the 

noninstantaneous photorefractive nonlinearity, all waveguides remain intact during the writing, 

probing, and data acquisition period, except for the local index change due to the nonlinear self-

action of the probe beam. Through a multi-step writing approach, the desired SSH lattices can be 

reconfigured from a nontrivial to a trivial structure by controlling the lattice spacing between the 

strong and weak bonds63. After the writing process is completed, the whole lattice structures can 

be examined by sending a set of Gaussian beams into the crystal to probe the waveguides one by 

one, then plot the superimposed outputs of the probe beam to get the lattice structure as shown in 

Figs. 3(a1-c1). Moreover, the probe beam can undergo either linear or nonlinear propagation 

through the lattice, depending on whether the bias field is turned on or not.  

 
Numerical methods for beam propagation simulation and Zak phase calculation  

The evolution of a light beam propagating in a photonic lattice is obtained by numerically 

solving Eq. (1) with the split-step Fourier technique, also referred to as the beam propagation 

method (BPM). The 2D SSH lattice structure has four lattice sites per unit cell (Fig. 1b), that is,  
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where �𝑎𝑎1𝑖𝑖𝑖𝑖, 𝑏𝑏1𝑖𝑖𝑖𝑖� = (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) , �𝑎𝑎2𝑖𝑖𝑖𝑖, 𝑏𝑏2𝑖𝑖𝑖𝑖� = (𝑎𝑎 + 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) , �𝑎𝑎3𝑖𝑖𝑖𝑖, 𝑏𝑏3𝑖𝑖𝑖𝑖� = (𝑖𝑖𝑖𝑖, 𝑎𝑎 + 𝑗𝑗𝑗𝑗) , and 

�𝑎𝑎4𝑖𝑖𝑖𝑖, 𝑏𝑏4𝑖𝑖𝑖𝑖� = (𝑎𝑎 + 𝑖𝑖𝑖𝑖,𝑎𝑎 + 𝑗𝑗𝑗𝑗)  , with 𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏  being the lattice period, and 𝑎𝑎  and 𝑏𝑏  being the 

spacing between lattice sites for the weak and strong bonds (corresponding to intracell and intercell 

coupling in Fig. 1b, respectively). The total number of unit cells is 𝑁𝑁2/4, where 𝑤𝑤0 is a scaling 

factor and 𝐼𝐼𝐿𝐿0  is the lattice magnitude. In the experiments, depending on the relative values 

between 𝑎𝑎 and 𝑏𝑏, the photonic lattice can be reconfigured into a simple square lattice (𝑎𝑎 = 𝑇𝑇/2), 

a nontrivial SSH lattice for 𝑎𝑎 > 𝑇𝑇/2  and a trivial SSH lattice for 𝑎𝑎 < 𝑇𝑇/2 . Similarly, we 

numerically excite only one corner (the left one in Fig. 3) with a Gaussian beam and perform the BPM 

simulation for subsequent dynamics under linear and nonlinear conditions. Linear propagation 

results obtained with different lattice parameters are illustrated in Figs. 3(a3-c3). For the nonlinear 

regime (𝐼𝐼𝑃𝑃 ≠0), simulations are performed for both self-focusing and -defocusing nonlinearities in 

the nontrivial SSH lattice, and the results obtained at low and high nonlinearity are in good agreement 

with experimental observations (see Supplementary Material).   

To characterize the topological properties of the 2D SSH lattices, we calculate the topological 

invariant based on the 2D polarization, which is defined for an infinite periodic system as17,18  

 

                  𝑃𝑃𝑖𝑖 = − 1
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where  𝑖𝑖 = 𝑥𝑥,𝑦𝑦, (𝐴𝐴𝑖𝑖)𝑚𝑚𝑚𝑚(𝐤𝐤) = 𝑖𝑖〈𝑢𝑢𝑚𝑚(𝐤𝐤)�𝜕𝜕𝑘𝑘𝑖𝑖�𝑢𝑢𝑛𝑛(𝐤𝐤)〉  is the Berry connection, and 𝑢𝑢𝑚𝑚(𝐤𝐤)  is the 

eigenmode in the mth band. The 2D polarization is directly related to the 2D Zak phase: 𝑍𝑍𝑖𝑖 = 2𝜋𝜋𝑃𝑃𝑖𝑖. 

One can readily calculate the polarization in the linear regime, which yields 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 1
2
  for 𝑐𝑐 <

0, and 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 0 for 𝑐𝑐 > 0.  

In order to test whether the signature of the topological phase transition at 𝑐𝑐 = 0 is still present 

in the nonlinear regime, we calculate the nonlinear polarization by employing Eq. (4) for the 

following modified Hamiltonian for the 2D SSH lattices:  
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� ,  (5) 

 
 
where 𝛾𝛾𝑘𝑘 accounts for the nonlinearity strength, and its sign manifests the difference between self-

focusing and -defocusing nonlinearities. This Hamiltonian corresponds to exciting one out of four 

lattice sites in all unit cells and changing its on-site potential via the employed nonlinearity. 

Calculated results for the nonlinear polarization are plotted in Fig. 4d, as a function of the 

dimerization parameter 𝑐𝑐 = 𝑡𝑡 − 𝑡𝑡’  defined earlier.  
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Figure 1. Illustration of nonlinear control of a higher-order topological insulator. (a) Schematic of 

corner excitations in a 2D SSH photonic lattice under high nonlinearity, where a focusing nonlinearity leads to 

corner soliton formation while a defocusing nonlinearity leads to radiation into the bulk/edge. (b) Coupling and 

beating between corner and edge states under weak nonlinearity. (c) Calculated linear eigenvalues of the SSH 

lattice 𝛽𝛽𝐿𝐿 as a function of the dimerization parameter c, where the corner and edge states are highlighted with 

red and green colors in the highly topologically nontrivial regime. (d1-d3) Calculated band structures for the 

nontrivial, square and trivial lattices, showing the topological phase transition as the dimerization parameter is 

tuned, where the insets plot the selected mode profiles corresponding to the marked color points. A topological 

BIC with characteristic corner-localized mode profile is shown in the upper-right inset, with zero amplitude in 

the nearest neighboring sites but nonzero amplitude and opposite phase in the NNN sites. 



 
 

 

 
 
 
 
 

Figure 2. Calculated nonlinear band structure and corner mode tuning under self-focusing 

nonlinearity. (a) Calculated nonlinear eigenvalues of the SSH lattice 𝛽𝛽𝑁𝑁𝑁𝑁 for the nontrivial lattice using the 

discrete model, where the transparent dots are linear modes superimposed for direct comparison. The 

black arrow illustrates that four corner states (red dots) undergo coupling and beating with lower edge 

states under low self-focusing nonlinearity (see also Supplementary video), and the red arrow marks the 

initially excited corner mode which sustains the topological feature under linear condition as shown in 

(b1) without any light distribution in the nearest neighboring sites. Under a low focusing nonlinearity, 

the corner mode couples with the edge modes (b2), and a beating oscillation occurs. This can be seen 

clearly from the side-view propagation of (b4), taking from the upper-left edge marked by a dashed line 

in (b2). Under a high focusing nonlinearity, a localized semi-infinite gap discrete soliton forms at the 

corners, with evident light distribution in the nearest neighboring sites (b3). 



 
 

 
  

Figure 3. Experimental realization and probing of linear 2D photonic SSH lattices. (a1-c1) Laser-

written 2D SSH lattices tuned to nontrivial, square and trivial regimes at different dimerizations, where the 

dashed circles indicate the lattice sites for corner, edge, and bulk excitations, and a and b mark the 

waveguide distances for the weak and strong bonds. (a2-c2) Experimental results of linear output 

corresponding to single-site excitations in (a1-c1), where the corner excitation in (a1) leads to a localized 

BIC with evident topological features: no light distribution in the nearest neighboring sites but a non-zero 

intensity in the NNN sites along two edges. Discrete diffraction is observed for all other excitations. (a3-

c3) Numerical results corresponding to corner excitations in (a2-c2) obtained using the continuum model, 

where the propagation distance is 20 mm corresponding to the length of the crystal used in the experiments. 

Experimental parameters: 𝑎𝑎 = 31𝜇𝜇𝜇𝜇,𝑏𝑏 = 23𝜇𝜇𝜇𝜇; the bias field during writing process is 𝐸𝐸0 = 130𝑘𝑘𝑘𝑘/𝑚𝑚. 

 



 
 

 
 

 

Figure 4. Experimental demonstration of nonlinear control of a higher-order topological insulator. 

(a) 3D-view of a typical linear corner state experimentally observed in a nontrivial lattice. (b, c) Nonlinear 

self-focusing leads to (b) coupling into the edges (non-zero intensity along the edge sites compared with 

linear case) when the nonlinearity is low, and (c) a highly localized corner soliton when the nonlinearity is 

high. (d) Plot of the calculated nonlinear polarization as a function of the nonlinear control parameter 𝛾𝛾𝑘𝑘 as 

well as the dimerization parameter c. Characteristic jump in the bulk polarization manifesting the 

topological phase transition extends beyond the linear condition (𝛾𝛾𝑘𝑘 = 0) because of the inherited topology 

under the nonlinear condition. (e, f) Experimental results of nonlinear control with a low and high self-

defocusing nonlinearity. Under a high defocusing nonlinearity, the energy spreads dramatically to both the 

edge and the bulk (f). For the focusing (defocusing) case, the bias filed is 𝐸𝐸0 = 160𝑘𝑘𝑘𝑘/𝑚𝑚  (𝐸𝐸0 =

−80𝑘𝑘𝑘𝑘/𝑚𝑚 ), and the average power of the probe beam is about 15𝑛𝑛𝑛𝑛 (70𝑛𝑛𝑛𝑛)  for the low (high) 

nonlinearity. See Supplementary material for corresponding numerical simulation results.  
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