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Abstract: The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through uti-
lization of the soil parameters obtained by in situ and laboratory tests, or by the means of trans-
formation models. To reach a prescribed safety margin, the inherent soil parameter variability is
accounted for through the application of partial factors to either soil parameters directly or to the
resistance. However, considering several sources of geotechnical uncertainty, including the inherent
soil variability, measurement error and transformation uncertainty, full probabilistic analyses should
be implemented to directly consider the site-specific variability. This paper presents the procedure of
developing fragility curves for levee slope stability and piping as failure mechanisms that lead to
larger breaches, where a direct influence of the flood event intensity on the probability of failure is
calculated. A range of fragility curve sets is presented, considering the variability of levee material
properties and varying durations of the flood event, thus providing crucial insight into the vulnera-
bility of the levee exposed to rising water levels. The procedure is applied to the River Drava levee,
a site which has shown a continuous trend of increased water levels in recent years.

Keywords: levee; slope stability; piping; overtopping; fragility curves; Monte Carlo simulation

1. Introduction

As earthen structures constructed for the purpose of flood defence, the levees should
be verified for several potential failure modes. According to Wolff [1], these include over-
topping, slope stability, external erosion, underseepage and through-seepage, with the
latter two being considered as internal erosion mechanisms. These failure modes are
conditioned by the levee’s geometrical configuration, its material properties, and overall
hydraulic conditions of the site. Based on the examined breach characteristics of hundreds
of failures, Özer et al. [2] identified the external erosion as the most frequent for levees,
while failures due to internal erosion and instability are less frequent but lead to larger
breaches, and as such are emphasized within this study. Of all the internal erosion mech-
anisms, backward erosion piping is considered to be the primary failure mechanism for
levees [3], and even accounts for one-third of all piping failures that occurred in the last cen-
tury [4]. Various design situations such as rainfall, high water level, seismic peak ground
acceleration, etc., can be triggering factors for one or more failure mechanisms, directly or
indirectly. Extensive studies have been conducted with various approaches regarding
slope stability, Figure 1a, with respect to rainfall [5,6], high water levels [7,8], and peak
ground accelerations [9,10], as well as combinations of various events [11]. Regarding the
piping failure, Figure 1b, and depending on the mechanism of soil particle removal (e.g.,
removal of particles by water forces, chemical dispersion of clays, migration of fine material
through coarse matrix, etc.), various modes are identified, all pertaining to internal erosion
under or through the levee [12–15].

The analysis of different levee failure mechanisms within the Eurocode 7 design
code [16] is based on the use of recommended, singular values of partial safety factors
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(PSFs), with a defined combination of PSFs for action and resistivity (material), depend-
ing on the adopted calculation approach for a specific design situation. The code, however,
prescribes constant values of PSFs for limit states, with no variation depending on the
nature or the duration of the design situation and no recommendation regarding the target
reliability values. Du Thinh [17] notes that, during the design process, an engineer must
select a set of characteristic values and the corresponding PSFs, hoping to obtain in the
end a design that satisfies a prescribed reliability level. On the other hand, the design code
Eurocode 0 [18] provides minimum values for the reliability index for three consequence
classes, but these are only defined for buildings, not for geotechnical structures. Some other
design codes, such as those in [19], acknowledge the uncertain nature of soils, by defining
target values of pf and equivalent reliability indices for three consequence levels, based on
random finite-element analyses.
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Figure 1. Levee failure mechanisms analysed in the study: slope instability (a) and internal erosion (b).

Concerning the soil related uncertainties, Phoon and Kulhawy [20] identified three
main sources of geotechnical uncertainties: (1) inherent soil variability, which describes
the variation of properties from one spatial location to another, (2) measurement er-
ror, which implies the scatter of measurements on presumably homogeneous soil vol-
umes, and (3) transformation uncertainty, where, in the process of model characterization,
which includes linking the on-site and laboratory test results to the design parameters,
some degree of uncertainty is introduced. By implementing a Eurocode 7 semi-probabilistic
approach, which utilizes statistical methods to select characteristic values of geotechnical
parameters, both spatial correlations between the same parameter sat different sampling
points and cross-correlations between different parameters at the same sampling point
are neglected [21]. Further, depending on the associated failure mechanisms of levees,
different material parameters will control the limit states and different models are necessary
to predict the resistance, and thus no uniform reliability level can be obtained with the
load and resistance factor design method [22]. The degree of uncertainty involved in
calculation of levees is especially high for slope stability [23] and piping mechanisms [24].
Even though the geotechnical community has been more progressive in the implementation
of different probability-based methods in analyses of levees, understanding of levee failure
mechanisms is still limited [25], while their behaviour during critical conditions mostly
remains uncertain.

This paper contributes to the efforts of levee vulnerability evaluations, through the
demonstration of a methodology for calculation of fragility curves for relevant failure mech-
anisms of slope stability and piping. Among the many available probabilistic methods [26],
this study adopts the Monte Carlo simulation to determine the levee probability of failure
when the hydraulic head rises on the riverside up to the levee crown and over, to simulate
overflowing. Even though this method takes the most time to run due to its slow conver-
gence, which is its largest disadvantage, it gives the most accurate results when a sufficient
number of runs is chosen. For relatively simple calculations such as the limit equilibrium
formulation, the number of runs and computation time to solve the problem are accept-
able. Additionally, given that it is applicable to both linear and particularly to nonlinear
problems [26,27], with many random variables which may be differently distributed [26],
this method is used in this study. The method does not identify the relative contribution of
each random variable to the safety factor, as some other methods do (e.g., FOSM), but for
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this purpose sensitivity analyses were conducted. The demonstrated methodology, ap-
plied to the river levee in Croatia, results in sets of fragility curves, which can then be used
in risk assessment and categorization of levees [28,29], based on calculated probabilities of
failures. This provides a support for the decision making process regarding the optimiza-
tion of resources for levee reconstructions or maintenance [30]. Furthermore, future design
protocols and monitoring activities of levees can be enhanced [31].

2. Methodology for the Development of Fragility Curves

To assess the vulnerability of the levee exposed to raising water levels up to and over
the levee crown, with respect to identified failure mechanisms of landside slope stability
and piping in the foundation soil, a series of numerical simulations were conducted.
Within these simulations, the water level on the riverside is raised until the levee is sure to
fail (pf ≈ 1). Overtopping (i.e., overflow) is usually a result of a high-water event (surge)
or it can occur due to wave overtopping. The combined effect of surge and wave overflow
is discussed by many authors [32–34]. However, if a river levee is considered, only a surge
type of overflow is relevant. The results of numerical simulations feed into the proposed
methodology of fragility curve development, giving insight into the probability of failure
relative to the design event intensity. Sensitivity analyses indicate the influence of certain
parameters on the fragility curves’ shapes—i.e., on the variation of the failure probability.

2.1. Slope Stability Evaluation

Slope stability analyses can generally be conducted by limit equilibrium (LEM) and
numerical methods incorporated in many commercially available programs, where each
method has its own pros and cons [35]. As one of the oldest methods for slope stability
calculations, the LEM has been significantly modified, from the introduction of the circular
sliding surface [36] to its enhanced versions [37,38], and is still one of the most used
methods for slope stability analyses.

Opposite to the deterministic approach which searches and pinpoints a critical slip
surface with the lowest factor of safety, many probabilistic studies, such as multivariate
adaptive regression splines analysis (Wang et al. [8]), utilize slope stability methods to
identify a slip surface with the highest probability of failure. To give an overview of
different possibilities and the results they yield, Akbas and Huvaj [39] compared results of
probabilistic slope stability analyses by using LEM with integrated Latin Hypercube and
Monte Carlo simulation, and by a numerical finite element method (FEM) with integrated
Rosenblueth’s point estimate method, as well as random finite element method analyses.
They found that FEM analyses resulted in higher probabilities of failure.

This study utilizes LEM and Monte Carlo simulations to conduct series of probabilistic
slope stability analyses. The initial total stress state and the pore pressure distribution
from steady and transient seepage analyses are modelled separately for each water level
increment using FEM, with triangle mesh element sizes of 0.2 m in the body, and 0.5 m
elsewhere. The results of both analysis types are tested with different element shapes and
sizes, and the resulting distributions are unchanged. Both steady state and transient two-
dimensional seepage analyses are governed by a partial differential equation (Equation (1)),
where the term on the right-hand side is equal to zero for the steady state.

∂

∂x

(
kx

∂H
∂x

)
+

∂

∂y

(
ky

∂H
∂y

)
+ Q =

∂θ

∂t
(1)

where H (m) is the total head, ki (m/s) is the hydraulic conductivity in the i direction,
Q
(
m3/s/m2) is the applied boundary flux, and θ (−) is the volumetric water content.

The stress states as well as the water pressures feed into the LEM for slope stability
calculation, as shown on the diagram in Figure 2.

A reason for generating a stress state separately is to yield more realistic results
by defining a stress state with stress concentrations closer to the levee toe, instead of
calculating it as the product of unit weight and depth. The advantages of defining the
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stress state in this way do not come to fore with a low angle of levee slope where a low
stress concentration can be expected; however, a significant difference is evident in the
case of levee overflow where shear stress can be applied on the surface of the slope and
the stress state adjusted accordingly. Thus, for consistency reasons, all the analyses are
conducted using this procedure. Another benefit of separate generation of the stress state
is a drastic reduction in calculation time, since the LEM utilizes an iterative procedure to
find the interslice forces and thus requires multiple calculations to find the safety factor for
just one slip surface. With the imported stress state, the stresses are already defined so the
safety factor can be immediately calculated for a trial slip, which is significant considering
the number of runs required to conduct a Monte Carlo simulation.
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Since the intention of this study is to inspect the probability of failure of the levee
due to the water rising, the fragility curves were constructed by incrementally increasing
the water level from the levee toe to the levee crown, and over for the case of surge
overflow, by calculating the pore pressure distribution from seepage analyses. The overflow
was simulated by applying the equivalent shear stress, caused by water flow, along the
crown and landside slope, while keeping the water level at the crown height for the free
water surface generation through the levee body. When the complete fragility curve was
obtained, based on the input of parameters with probabilistic distribution, a sensitivity
analysis followed. This included varying the values of parameters, while keeping the other
parameters at their means, to assess their influence on the shape of the curve and stability
of the levee. The investigated parameters are the statistics of the strength parameters,
the permeability, and the duration of the flood. For the latter, additional transient flow
analyses were conducted with various water level durations, and the results were then
once incorporated into the LEM calculations. The results of these variations are shown as
new fragility curves, shifted to the left or right of the ones from the mean analyses.

2.2. Internal Erosion (Piping) Evaluation

The most prominent trigger for internal erosion is the high-water event, and as such
this has been subject of many studies. To investigate the erosional behaviour of soil at
the microscale (granular) and macroscale (levee), various methods have been used from
physical models [40,41]—numerical simulations such as FEM, FDM, DEM [13–15,42,43],
the material point method [44] and random lattice models [4]. Other tools such as neural
networks were also used to help predict soil behaviour under seepage forces based on
laboratory and field tests [12,45,46]. Despite many advantages of these advanced tools,
the geotechnical community in many cases still relies on the simple empirical or semiem-
pirical rules [47].

Within this study the closed-form analytical Sellmeijer 2-force rule [46], which resulted
from a neural network based on field and laboratory tests and numerical analyses, was used
for piping analyses. This approach is used in many state-of-the-art levee risk assessment
methodologies, such as the VNK2 approach [47,48]. The closed-form solution predicts
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that for a given head difference a pipe of specific length will form. Once the critical head
difference value is reached (∆Hcrit), the pipe will start to progress continuously until failure:

∆Hcrit

L
= FR·FG·FS (2)

In Equation (2), L (m) is a seepage path, equal to the width of the levee, and the
factors F are the resistance, geometry, and scale term, respectively, and are functions of
unit weight, drag force factor, angle of repose, relative density, effective grain size (d70),
kinematic viscosity, coefficient of uniformity and particle angularity. The critical head
difference needs to be higher than the actual head difference reduced by the value of
0.3·Dblanket (thickness of the top clay layer that covers the aquifer), assuming the levee
lays on a clay cover over the underlaying sandy aquifer. The parameter which was used
as the random variable is the hydraulic conductivity of the aquifer, while all the other
values were kept constant at their measured mean values or suggested mean values for
the parameters for which measurements or correlations were not available. To assess the
validity of the results obtained by the Sellmeijer’s equation, the levee and the subsoil
geometry and parameters should fall within certain limitations for which the rule was
developed. The levee should lay on top of a homogeneous sandy aquifer of finite thickness,
with horizontal ground surface in the cross-section direction [47]. Some guidelines [31]
suggest applying the Sellmeijer method only if the thickness of the aquifer is less than
the seepage length. Regarding the range of the parameters, Sellmeijer and Koenders [49]
note that the routine is stable over the entire range of practically feasible parameters,
while Sellmeijer et al. [42] give ranges for some new parameters introduced in the formula.
The ratio of seepage length to hydraulic head difference for which the formula should be
applied is L/∆H > 10.

3. Case Study Example: River Drava Levee

River Drava, with the overall length of 710 km, flows from Italy to eastern Croatia
where it merges with Danube, and is historically known for major flood events [50],
where prominent events have occurred in the last several years. The case study levee
stretches across 6.8 km of the Drava old riverbed, from county Selnica to accumulation
lake Dubrava. The levee is fragmented into three segments because of the presence of two
smaller rivers, Bednja and Plitvica, flowing perpendicularly to the Drava (Figure 3).
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The reach of interest for this study is defined by height and is the starting section
of second segment, just after the Bednja river, where the levee’s highest cross-section is
present (Figure 4). By the request of the stakeholders, the designed crown level is 0.5 m
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above the 100-year high water, while the crown is 4.0 m wide. The levee slopes are at 1:3
and the service road is located on the levee’s landside toe.
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3.1. Conducted Investigation Works

To obtain insight into the layering and physical-mechanical characteristics of the
subsoil, an extensive geotechnical investigation campaign was conducted, consisting of
12 boreholes at equal spacings along with conduction of Standard Penetration Tests (SPTs),
12 Cone Penetration Tests with pore water measurements (CPTus) and 12 seismic refraction
geophysical profiles. Both undisturbed and disturbed samples were taken during the
geotechnical drilling, which were tested in a laboratory to determine their physical and
mechanical characteristics. In addition to the in situ and laboratory direct test results,
transformation models were implemented to relate the on-site and laboratory test results
with the design parameters to infer geotechnical properties from indirect measurements.
Based on these field and laboratory investigation works, a reliable geotechnical model of
the subsoil was formed for the reach of interest regarding stratification and soil parameters
to conduct calculations.

The subsoil was divided into a top layer of lower permeability underlined by the
thick coarse-grained layer. At the location of the analysed cross-section, the upper low
permeability layer was not detected (Dblanket = 0) and only coarse-grained soil was iden-
tified. Considering the investigation data scattering because of the mentioned inherent
soil variability, measurement error and transformation uncertainty, to develop fragility
curves by the means of probabilistic analyses some variation in the soil parameters, need to
be considered.

3.2. Probabilistic Characterization of Soil Parameters

Since the soil parameter distributions can vary significantly, they should be limited to
keep the values in the realm of possibility for a specific soil, thus avoiding illogical values.
Phoon and Kulhawy [20] give a detailed literature review showing the ranges and number
of samples for certain obtained statistics. These values for the internal friction angle are
taken as guidelines for specifying the limits of their distributions. Since the slope stability
of the levee is governed dominantly by the body and berm materials, these materials were
probabilistically evaluated. Effective cohesion has seldom been reported in the literature
on soil parameters variability, where it is considered as either normally or log-normally
distributed, with CoV values similar to those for undrained shear strength reported in the
literature [51–53]. This study assumes log-normal distribution and the commonly accepted
CoVs, thus only the upper limit would be needed. However, as the mean values are already
very low, the range for the distribution of ±5σ is acceptable. Various authors reported
that neglecting the correlation coefficient between cohesion and internal friction angle
yields conservative results in slope stability calculations if their correlation is actually nega-
tive [54,55]. Results from tests conducted by Lumb [54] show a strong negative correlation
for the compacted samples, and since the levee in the case study is compacted during con-
struction, a negative correlation, thus a correlation of zero, can be assumed. Some sources
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suggest using some other value for the correlation coefficient [55,56]. The values and
statistics (µ as mean value and CoV as coefficient of variation) of each random variable
for stability analysis were assumed from the literature [20,27,57] and are shown in Table 1.
As the levee was constructed from materials from an undefined borrow site, the mean
values of the levee soil parameters were obtained during the deterministic design phase
of the levee, such that the stability criteria were met (Table 3) and represent the minimum
required values that the materials must have to deterministically ensure slope stability.

Table 1. Parameters and the statistics used for slope stability analyses.

Material γ [kN/m3]
ϕ [◦] c [kPa] kx [m/s] (Mean)

ky/kx [−]
µ [kPa] CoV [−] µ [kPa] CoV [−] SDC1 SDC2

Levee body 18 26 0.15 2 0.30 1 × 10−8 1 × 10−8 0.5

Crown and berm 20 30 0.12 1 0.30 1 × 10−4 1 × 10−8 0.5

Foundation soil 19 36 - 0 - 1 × 10−5 0.5

Distribution constant normal log-normal constant constant

Two stability design cases (SDCs) were analysed regarding hydraulic conductivity,
one where the crown/berm is constructed from a more permeable material, and the other
where the whole levee is homogeneous—i.e., the crown/berm and the body have the
same conductivity.

Hydraulic conductivities for the subsoil were obtained from correlations with CPTu
tests, while the hydraulic conductivities for levee materials were determined from deter-
ministic steady seepage analyses, as minimally required to maintain hydraulic stability
of levee in terms of the critical exit hydraulic gradient and free water surface position.
To assess the sensitivity of the slope stability to the hydraulic conductivity of the levee
body material, an arbitrary value of two orders of magnitude was selected since the range
of reported hydraulic conductivity’s CoV is too great to assume a value (30–750%) [26],
while the foundation’s and crown/berm’s conductivities were kept the same as those
defined for each SDC. For the piping analysis, the statistics of the hydraulic conductivity of
the subsoil for case study location were estimated from the correlation with the CPTu test
and assumed a log-normal distribution [58,59]. Since the CPTu showed a mixed subsoil
profile with lenses of fine-grained soil, the profile was idealized to just one layer with one
highly variable hydraulic conductivity. The distribution was described by the median
(1× 10−5 m/s) and the extremely high CoV due to the soil profile idealization by averaging
over the whole CPTu profile. However, if it is assumed that the water flows around the
fine-grained soil lenses, the conductivity distribution can be defined only for the sandy
material, where the median is similar (3× 10−5 m/s), but the variation is significantly
decreased. Taking this into consideration, the piping calculations were conducted for two
piping design cases (PDCs)—first (PDC1), where the subsoil is modelled as a homogeneous
soil layer with highly variable hydraulic conductivity estimated from CPTu data for every
material in the subsoil, and the second (PDC2), where the hydraulic conductivity of the
layer was estimated only from the CPTu data for sand. Parameters chosen for piping
analyses are shown in Table 2.

The hydraulic anisotropy ratio, defined as the ratio of the vertical to horizontal con-
ductivity, can vary over a wide range of values [60]. As the levee materials are usually com-
pacted dry of optimum [61], and soils dry of optimum have lower hydraulic anisotropy [62],
the used anisotropy ratio values are reduced mean values from the literature [60]. The rela-
tive density (Dr) has been obtained via correlation with an SPT test.

The distribution of the hydraulic conductivity was defined through the median in-
stead of the mean value since the parameter values vary over a few orders of magnitude,
so the median was more intuitive and simpler to obtain as it is the geometric mean of the
available data.
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Table 2. Parameters and their statistics used for piping analyses.

Material
kx [m/s]

Dr [%] ky/kx [−]
Median [m/s] CoV [−]

Foundation soil

PDC1

80 0.5
1 × 10−5 32.5

PDC2
3 × 10−5 5.0

Distribution log-normal constant constant

4. The Probabilistic Analyses Background

The methodology for the development of fragility curves for levee stability implies
that the proper stress state, as well the proper water pressure state, is established.

To obtain the appropriate stress state for the slope stability analyses, the methodology
suggests conduction of the load deformation total stress analyses. Since soil plastification
is not relevant to this study, the linear-elastic constitutive model was used, and this re-
quired input of soil stiffness and unit weights, as well Poisson’s ratio, whose variation
was not considered, even though it may have had some effect on the results [63]. Further,
for the design situations, which include water level up to the top of levee crown, numerical
analyses were carried out, including commonly used boundary conditions of properly
defined hydraulic heads on the riverside and landside. However, if the water level is
higher—that is, if surge overflow is considered—the stress analyses should be supple-
mented with the additional boundary shear stress along the crown and landside slope.
Given that this aspect goes beyond standard analyses, a cautious evaluation of these shear
stresses is required. The boundaries of both analyses were defined far from the levee region,
enough to not affect the results. The constraints of load deformation analyses consisted of
fixing movement of lateral soil elements of the model in the horizontal direction, and the
bottom elements in two perpendicular directions. Seepage analyses require only hydraulic
boundary conditions, which in this case consist of constant or varying hydraulic head
values applied on lateral boundaries and on the top boundary of the model, up to the
required height. During surge overflow, the water velocity increases down the slope until a
terminal velocity is reached at equilibrium between water momentum and slope frictional
resistance, after which the flow becomes steady and the velocity can be calculated by the
following equation:

v0 =

[√
sin θ

n

]3/5

·q2/5
0 [m/s] (3)

where v0 (m/s) is the steady flow velocity, θ (◦) is the landside slope angle, n (−) is
Manning’s coefficient, and q0

(
m2/s

)
is the steady discharge [32]. For supercritical flow

which develops on the landside slope, Figure 5, Hewlett et al. [64] proposed a value of
Manning’s coefficient of n = 0.02, relevant for slopes of 1:3.
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The discharge over the levee crown can be calculated using the equation for flow
over a broad-crown weir, which gives slightly conservative results due to not taking into
consideration frictional losses [66]:

q =

(
2
3

)3/2
·√g·h3/2

1

[
m2/s

]
(4)

where g
(
m/s2) is the gravitational acceleration and h1 (m) is the upstream head (eleva-

tion over the levee crown). If steady flow is assumed, the discharge is constant along the
slope. Therefore, the height of water is perpendicular to the slope in the steady, uniform flow
area for unit length of the levee and can be calculated from Equations (3) and (4) as:

h =
q
v0

[m] (5)

Finally, when steady, uniform flow is reached, the shear stress from surge overflow is
equal to:

τ0 = γw·h· sin θ [kPa] (6)

where γw
(
kN/m3) is the unit weight of water. Equation (6) conservatively overestimates

results since the resulting pressure is a little bit higher than the pressure in area above the
steady flow [34]. Such calculated shear stress is applied along the crown and landside
slope, as shown in Figure 6 for the case study numerical model.

With the full stress state properly defined, for all water levels including the surge over-
flow, stability analyses aim to find the critical slip surface out of the number of generated
slip surfaces. To generate several slip surfaces, as well as to evaluate their safety margins,
this study adopted a “Grid and Radius” method incorporated into the commercial software
GeoStudio [67]. With this method, a grid of slip centres and a grid of slip tangents are
created, and these define the number of analysed slip surfaces. However, a larger number
of defined slip surfaces yields much longer calculation times, and conducting a single
deterministic analysis prior to the probabilistic analyses is recommended. This analysis
was conducted with a large grid covering a large area for potential slip surface centres,
and a relatively large tangent grid to also cover a large range of possible surface depths.
After the critical surface was found, the grid size and number of centre points and tangents
were reduced around the critical surface point and tangent, to make smaller, denser grids
and possibly find more critical surfaces around the original critical surface, while also
minimizing the run time of the probabilistic calculations. This does not guarantee that the
critical surface—defined in this case as the surface with maximum probability of failure—
will be the same one as the deterministic critical surface, but it is a reasonable starting
assumption that it will at least be close to the deterministic surface.
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For the probabilistic slope stability analyses, four random variables were assigned,
and these include cohesion and angle of internal friction for both levee body material as
well the crown road base and berm material. The variability of the soil can generally be
modelled by a random field described by the CoV and scale of fluctuation [20]. As opposed
to the creation of random fields, the method used in this study sampled a random variable
for each material only once and then applied it to all the slices found in the corresponding
material. This kind of simulation usually gives conservative results. Within this study,
the number of Monte Carlo trials was sufficient to obtain a relatively constant value pf for
each water level, which has been estimated at 15,000.

In regard to piping mechanism, for each hydraulic head difference, 25,000 Monte
Carlo simulations were performed using an excel spreadsheet and its built-in random
number generator function.

As the aquifer thickness is required for the Sellmeijer rule, two runs were carried out
with minimum thickness from soil investigations to values after which further increasing
of thickness no longer affected results. Therefore, aquifer thickness in numerical analyses
ranged from 5 to 50 m.

5. Results and Discussion
5.1. Fragility Curves for Levee Slope Stability

To serve as a benchmark for the full probability analyses results, results of semi-
probabilistic analyses adopted in Eurocode 7 are shown in Table 3. The analysed numerical
model included idealized subsoil layering with mean values of both hydraulic and strength
parameters, determined from the laboratory and transformation model data. Based on
the Eurocode 7 design approach 3 (DA3), the design strength parameters were obtained
from characteristic values by applying a prescribed PSFs. Several design situations were
analysed by following relevant norms and guidelines for geotechnical design [16,68–70],
with stability evaluation for both riverside and landslide slopes in drained and undrained
conditions. The slope stability was assessed by the means of the LEM utilizing the pore
pressure distributions from seepage analyses.

Deterministically obtained factors of safety are higher than unity ones, with a safety
margin from 10 to 60%, indicating the stable levee slopes for all relevant design situations.
However, these analyses neglect the variability of strength parameters as the ones govern-
ing the obtained safety values. Therefore, full probabilistic analyses were conducted to
develop fragility curves for the levee’s landside slope stability.

Figure 7 shows the fragility curves for the levee’s landside slope stability, through the
relation of the hydraulic head on the river side vs. probability of failure. As the case study
levee crown also acts as a road base, the crown material, constructed up to 0.5 m above the
100-return period high water, consisted of coarser material mixed with fines. Therefore,
the hydraulic conductivity of this layer is higher than levee body material conductivity,
so when the water goes over the 100-year water level, the free water surface shifts towards
the landside slope yielding a more unfavourable situation. The presented fragility curves
were developed for steady seepage and include stability evaluation for levee material
conductivity of 10−8 m/s and for increased conductivity of 10−6 m/s, while the crown
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material conductivity was kept constant for each SDC. The curves with higher pf, marked in
blue, refer to the levee constructed with the more permeable crown layer (SDC1), while the
curves with lower pf, marked in red, refer to the crown constructed of same permeability
material as the levee body (SDC2). For the 100-year water level event, at 139.21 m a.s.l.,
there was an abrupt increase in pf for the case with the more permeable layer on top,
while the curve smoothly increased for the case of homogeneous levee. While the curves of
SDC1 show an approximate linear trend, the SDC2 fragility curves show a bilinear trend,
with the intersection at head value of around 143 m a.s.l. The point of slope change indicates
the sudden shift from deeper (> 2 m) to shallower (< 0.7 m) slip surfaces, which do not
exist for SDC1 as there is a slow transition from deeper to shallower surfaces. The increase
in the levee body conductivity by two orders of magnitude (1× 10−6) at first had a slight
positive effect for SDC1 because of the smaller difference in conductivities, but afterwards
the negative effect was evident for both design cases.

Table 3. Deterministic safety factors for the case study levee, exposed to various design situations.

Design Situation Safety Factor

Low water
Riverside

Static Drained 1.4
Seismic

(475-year RP) Undrained 1.1

Landside
Static Drained 1.4

Seismic
(475-year RP) Undrained 1.1

High water
Riverside

Static Drained 1.6
Seismic

(475-year RP) Undrained 1.6

Landside
Static Drained 1.3

Seismic
(475-year RP) Undrained 1.1

Rapid
drawdown Drained 1.2
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Further, considering that high-water events are usually of limited duration, prevent-
ing the development of a steady seepage, the fragility curves were further evaluated with
consideration of transient seepage for a high-water event duration of 5 days. Failure proba-
bilities for transient situations, up to the crown height, are shown in Figure 8. Even though
the discrepancy in curves representing different levee conductivities is very low for 5-
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day high water duration, it should be noted that the time required to numerically reach
steady seepage with hydraulic conductivity 1× 10−8 m/s is higher than 500 days, while for
1× 10−6 m/s levee conductivity it is less than 50 days.
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The fragility curves for the varied statistics of strength parameters are given for vari-
ous CoV values obtained by reducing the standard deviation. For both friction angle and
cohesion, the CoVs are halved. Figure 9 shows that, by lowering the friction angle’s stan-
dard deviations, the stability increased up to a certain hydraulic head value (marked with
a point on the curves), after which the stability was reduced when compared to the original
case with nonreduced variability. Such behaviour is expected since less variability means
less probability of obtaining lower strength values, but also less probability of obtaining
higher strength values which increase stability. Thus, for lower head values, when the
slope is deterministically stable, less variability is favourable, while for higher head val-
ues, when the slope is deterministically unstable (or in equilibrium), less variability is
unfavourable. It should be noted that for higher variability the distribution was truncated
for a range of realistically possible values, while for lower variability the range was limited
by the distribution itself and is lower than the truncated range for higher variability. For co-
hesion, the curves are practically unchanged, thus no point is marked on the corresponding
curves in Figure 9.

Figure 10 shows the relation between reliability indices and probabilities of failure,
for both calculated indices and their theoretical values for normally distributed safety
factors. The figure shows results of the analysis with reduced friction angle variability,
but all other calculations yielded similar curves. The reliability indices of critical slips were
calculated as:

β =
µ− 1
σ

(7)

The numerically obtained curve shows very good concurrence with the theoretical
value up to β = 2.7, which indicates that the safety factor follows a normal distribution.
For lower pfs (higher β), the numerically obtained curve deviates from the theoretical
one, which might indicate that for lower probabilities of failure the safety factor no longer
follows a normal distribution.
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5.2. Fragility Curves for Internal Erosion (Piping)

The piping analyses included hydraulic conductivity as a random variable, where-
as simulations were conducted for two piping design cases (PDC1 and PDC2), depend-
ing on the procedure used to obtain the hydraulic conductivity distributions and statistics.

Additionally, to investigate the influence of aquifer thickness on the results, piping cal-
culations included the deterministic variations of the thickness, starting from a 5 m value
identified by the investigation works, to the value after which further increase does not
affect the results (i.e., 50 m for the given analyses). Furthermore, the effective grain size
d70 was varied between the minimum and maximum values (150− 430 µm) which were
used for the development of the Sellmeijer’s model [46]. To assess the validity of the results
obtained by Sellmeijer’s equation, the levee and the subsoil geometry and parameters
should fall within certain limitations for which the procedure is developed. Following the
suggestion to apply the Sellmeijer’s procedure only if the thickness of the aquifer is less
than the seepage length [31], the maximum aquifer thickness of 35 m should actually be
considered for the case study example. The curves in Figures 11 and 12 show the probabil-
ity of failure for the water rising to the top of the crown for PDC1 and PDC2, respectively;
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however, for the specified seepage length, the actual hydraulic head for which the formula
still applies is around 1 m below the crown.
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The “real value” fragility curves for the analysed section are somewhere between the
two extreme curves (dashed lines), which vary from pf of only few percent up to the pf of
50% for PDC1 and 75% for PDC2. This clearly demonstrates that quantities and quality
of in situ and laboratory investigations, required to estimate the key parameters—i.e.,
aquifer thickness, d70, and hydraulic conductivity are of paramount importance. Otherwise,
the pf for the backward erosion piping failure mechanism cannot be reliably estimated
using the Sellmeijer 2-force rule. However, development of the shown curves provides a
valuable insight into the effect that certain parameters have on the pf. By analysing the
mean curves for both design cases, as show in Figure 13, it can be expected that for smaller
variations of the hydraulic conductivity, the probability of failure decreases in the lower
range of hydraulic heads, but afterwards it drastically increases instead. The reason for
this is the change in mean value which, even though is very subtle, significantly affects
the results and seems to have much more impact on the pf than the actual variability of
the parameter.
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Overall, by utilizing USACE [28] classification and considering the 100-year flood
event (139.21 m a.s.l.), the case study levee fits into the “hazardous” performance regarding
piping mechanisms if the mean fragility curves are considered. Regarding the slope
stability, for the worst-case scenario of steady seepage, the case study levee fits into the
“poor” performance category. If the fragility curves for transient seepage of 5-day duration
of the high-water event are analysed, then the probabilities of failure for slope stability
indicate the levee have “below average” performances. With a lower variable friction angle,
the situation significantly changes in favour of both SDCs, where the levee performance
would be classified as “above average”, while for the less variable cohesion the situation
remains almost unchanged.

5.3. Discussion on Calculation Assumptions and Recommendations for Future Work

Several assumptions are considered for the sake of calculation simplification and/or
because of lack of data. These assumptions, as well their effect on the calculation results,
are discussed.

Considering that the levee will be constructed of material of an undefined borrow
site, there are no soil investigations to compute its scale of fluctuation, which is therefore
assumed as infinite, meaning that all points in the soil region have the same properties.
This yields conservative reliability calculations of levee stability. Additionally, the hydraulic
conductivity is assumed as constant, and only the effects of its mean value, without inherent
variability, are investigated. To consider the variability of hydraulic conductivity, with ex-
tremely high range of CoV values as reported by Baecher and Christian [26], a random
field seepage analysis should be implemented if Monte Carlo procedure is utilized.

Further, water table on the landside of the levee was fixed at the levee landside
toe level and this raised the free water surface inside the levee body during the high-
water event. Such a realistic assumption results in higher probabilities of failure. Further,
this study considered water to affect slope stability only in terms of pore pressures which
lower the shear strength of the material. However, rising and lowering water levels induce
cumulative internal erosional effects, eventually leading to levee material degradation.
Since this effect is more pronounced with an increasing number of flooding events, numeri-
cal models which consider the internal erosion propagation caused by water flow through
soil [4,13,15,42–44] and its effects on mechanical and hydraulic properties [14] should be
implemented in future probabilistic studies of levee stability.

Slope stability analyses were conducted with rising water levels until certain failure
was reached. Van der Meer et al. [71] note that levees can endure an overflow of 1L/s
(litre per second) if grass-cover is installed atop the crown and landside slope. However,
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it is unlikely that the landside slope with a clay and grass-cover will fail at discharges of
less than 30 L/s [71]. If the latter is considered as representative for the case-study levee,
and by utilizing Equation (4), such discharge occurs at a water height of around 7 cm above
the crown, which means the slope would actually fail before reaching the hydraulic heads
used for slope stability calculation during the overflow.

This probabilistic study calculates levee slope stability by utilizing finite element
and limit equilibrium analyses, coupled with Monte Carlo simulations to determine the
probability of failure. For each slip surface, a fixed number of calculations was used
(in this case 15,000) with randomly sampled soil parameters according to the assigned
distributions, providing the pf of each slip surface. The slip surface with the highest pf was
then pinpointed as the critical slip surface. However, such a procedure might underestimate
the probability of failure of the levee slope, as it considers only specific slip surfaces one
by one, without considering the possibility of a different slip surface occurring for each
different set of soil parameters. Running the multiple deterministic analysis with variations
of soil parameter values will lead to different critical slip surfaces. A combination of shear
strength parameters may generate deeper surfaces, while others may generate shallow
ones. Thus, imposing a slip surface onto a set of parameters, instead of determining the slip
surface based on the parameters, will yield a lower pf. Combining the various deterministic
critical slip surfaces from one Monte Carlo simulation would be a collection of the most
critical slip surfaces for each set of random variables realizations and would result in the
probability of failure of the levee, instead of a specific slip surface. The quantitative effect
of this change in probability calculation procedure could be investigated in future studies.

6. Conclusions

To provide the probabilistic evaluation of stability and piping as a failure mechanism
which lead to the larger levee breaches, this study proposes a methodology for the develop-
ment of fragility curves which give an insight into the probability of failure for identified
mechanisms with respect to the riverside water level, including the overflow surge. As the
variability of soil parameters, resulting from inherent soil variability, measurement error
and transformation uncertainty govern the shape of fragility curves, the necessity for
proper selection of each parameter statistic is stresses out. The methodology for devel-
opment of stability fragility curves is based on the fusion of different types of numerical
analyses including the total stress load deformation analysis to obtain a reliable levee stress
state and seepage analysis to obtain distribution of pore water pressures. The results of
these two analyses feed into the probabilistic LEM analysis. Considering how computa-
tionally expensive Monte Carlo simulations are, the presented methodology minimises
this disadvantage by combining the numerical analyses with LEM, which has the effect of
decreasing the critical failure surface determination time. The necessity of separate stress
analysis is additionally emphasized when overflow surge is considered, where equivalent
shear stress, caused by water flow, should be applied. For the probabilistic evaluation
of piping mechanism, the closed-form analytical Sellmeijer 2-force rule is the one being
dominantly used in many state-of-the-art levee risk assessment methodologies.

The methodology was applied to a case study location of River Drava levee, a site
which has shown a continuous trend of increased water levels in recent years. From the
resulting fragility curves, it can be noted that the permeable crest layer affects stability
substantially in cases where the water rises enough to start flowing through it. However,
this effect becomes less notable as the ratio of the crown to body conductivities approaches
1. Moreover, if the duration of the high-water event is small enough so that it cannot achieve
steady seepage through the levee, the effect also becomes less notable. Considering the soil
variability, smaller variability offers increased stability up to a certain point, after which it
has unfavourable effects. For the SDC1, this point was found at the crown height, but for
SDC2 it was found only at hydraulic heads more than 2 m above the crown.

Regarding piping, even though values for parameters which were not available
have been assumed based on correlations and recommendations, meaningful conclusions
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can still be obtained from the constructed curves. It has been shown how much the
results can vary with changes to the investigated parameters—i.e., hydraulic conductivity
statistics, effective grain size d70 and aquifer thickness, which emphasizes the importance of
gathering relevant data for analyses. Additionally, the reduced variability of the hydraulic
conductivity shows a favourable effect until a certain head height which depends on
(not exclusively) d70 and aquifer thickness. After that point, the pf increases. Since the
mean value also changed together with the CoV, the effect shown in Figure 13 cannot be
completely attributed to the change in variability, but by knowing the amount of change in
each statistic their relative contribution is implied.

Since the proposed methodology includes several assumptions for the sake of calcula-
tion simplification and/or because of lack of data, this paper discusses them. However,
with the lack of reliable data, conservative assumptions were usually made (e.g., higher soil
parameter variability, longer flood duration, higher water levels, etc.). When each assump-
tion introduces a small conservative effect, the effects stack and the probability of failure
could be overestimated. With more data regarding variability of the levee and foundation
soil’s parameters, water levels and their durations, more reliable probabilistic analyses can
be conducted.
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