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Abstract: The volume of material required for the construction of new and expansion of existing
beach sites is an important parameter for coastal management. This information may play a crucial
role when deciding which beach sites to develop. This work examines whether artificial neural
networks (ANNs) can predict the spatial variability of nourishment requirements on the Croatian
coast. We use survey data of the nourishment volume requirements and gravel diameter from
2016 to 2020, fetch length, beach area and orientation derived from national maps which vary from
location to location due to a complex coastal configuration on the East Adriatic coast, and wind,
tide, and rainfall data from nearby meteorological/oceanographic stations to train and test ANNs.
The results reported here confirm that an ANN can adequately predict the spatial variability of
observed nourishment volumes (R and MSE for the test set equal 0.87 and 2.24 × 104, respectively).
The contributions of different parameters to the ANN’s predictive ability were examined. Apart from
the most obvious parameters like the beach length and the beach areas, the fetch length proved to be
the most important input contribution to ANN’s predictive ability, followed by the beach orientation.
Fetch length and beach orientation are parameters governing the wind wave height and direction
and hence are proxies for forcing.

Keywords: beach nourishment; machine learning; artificial neural networks (ANN)

1. Introduction

Beaches greatly interest coastal managers because of their touristic value. Coastal man-
agers in Croatia are interested in expanding existing beaches and building new artificial
beaches to accommodate the growing number of tourists. The Mediterranean is projected to
accommodate 350 million tourists yearly by the year 2050 [1]. Most beaches on the Croatian
Adriatic East Coast (CEAC) are naturally gravel pocket beaches formed from gravelly allu-
vial fans, supplied by relict or recent torrential surface flows and also by material derived
from rockfalls, rock debris, and rock weathering [2]. Croatian beaches are relatively small
in comparison to other European beaches, with a mean length of 370 m and a maximal
length of 4200 m. The average portion of material used for nourishment is small and equals
approximately 0.35 m3/m of the beach length per year. The current practice along the
Croatian coast is to maintain and enlarge these beaches using beach nourishment with
gravel taken from nearby rivers and rock quarries. In Croatia, beach nourishment takes
place usually in spring after the material is lost due to winter storms. Material is mostly
transported by trucks, unloaded on the beach, and spread out with dozers. The volume
needed for nourishment is estimated by local authorities based on previous experience
related to erosion on some specific location and visual observation of the beach geometry.
Nourishment is done commonly once per year or every second year.

Prediction of beach nourishment, in terms of type, amount of material needed and
timing, is important for coastal managers, policy makers, other stakeholders as well as
for coastal communities who are using these beaches [3]. It could be an important factor
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in deciding which beach sites the coastal managers should develop. There are different
techniques and approaches used for predicting beach changes and beach nourishment
requirements; from simpler techniques such as linear least squares to more sophisticated
models such as stochastic approaches, and finally machine learning techniques [4–7].
Many models include on longshore and cross shore transport for beach change prediction,
as well as equilibrium beach profile expressions [8–11]. Some notable numerical mod-
els (e.g., one-line type) have shown a more favorable practical capability in predicting
shoreline change and in assessing the longevity of beach nourishment projects [12,13].
Simple analytical models are easily explainable, but they often cannot accurately model
complex and nonlinear interactions—which are common in coastal studies.

As more data is becoming available from regular surveys, coastal managers could
use machine learning (ML) models as tools to estimate future beach erosion, inform the
coastal communities, and prepare for beach nourishment works [3]. Data-driven predictive
models can reproduce the observed variability and be physically meaningful, regardless of
the model complexity [14]. ML has a critical role in modeling complex data and fitting
unknown functions.

One of the approaches is artificial neural networks (ANNs), which can successfully
model highly nonlinear functions, because of the large number of free parameters (weights
and biases) [15]. ANNs are often described as a black-box predictor where the commonly
large number of free parameters conceals the significance of individual variables [16]. Cross-
validation is critical to avoid overfitting of the ANNs to the training set [15]. ML models
are often not skillful when extrapolating to cases not observed in the training set [17]
while the ability of the predictive modes to generalize and predict beyond the existing
data is desirable [7]. Results are commonly based on interpolation of the training data.
When input variables for ANNs differ from the parameter space for which the ANN is
trained, predictions can be unphysical and so meaningless [14].

A number of studies have found ANNs to be applicable for modeling shoreline
position, shore profile, and shore volume change [18–22]. Most studies utilize data collected
at one or a few beach sites in a small region [7]. This is approach is often not appropriate
when generalizing the model to several hundred kilometers of coastline and searching for
suitable new beach locations. Tsekouras et al. and Rigos et al. trained ANNs to predict
shoreline features and erosion through time (event-based) as a function of bathymetry
and storm characteristics [19,20]. Profile evolution prediction with ANN on a beach (from
dunes to mean sea level) has also been successfully conducted [18].

Only a few studies have focused on using machine learning techniques to predict
beach change on a longer coastline and the spatial variability of beach stability. To our
knowledge, no one has so far used ANNs to predict the spatial variability of beach nourish-
ment requirements along a coast. However, other methods have been used. Wilson et al.,
based upon [23], used a Bayesian network to predict beach volume change probabilities in a
specific coastal region (Fire Island, NY, USA) based on storm event. The Bayesian network
is a probabilistic machine learning model where percentages are given for each occur-
rence/category (erosion, accretion, etc.), as opposed to ANNs which give a specific value in
the output layer. The model’s hindcast accuracy was assessed at 65.0–81.9%, depending on
the observed event. They have shown that including wave runup in addition to the wave
impact duration in hours resulted in higher model skill. However, this study examined
one specific region (50 km long barrier), which raises uncertainties when the unmodified
model would be applied elsewhere. The study by Yates et al. has shed more light on key
factors influencing decadal-scale shoreline stability of European coasts by using a Bayesian
network [22]. They used a large data set with over 17,000 observations, but the Croatian
coast was not included. The Bayesian network models require data to be divided into
classes. For example, Yates et al. used the following classes; geomorphology (four classes):
rocky cliffs and platforms, erodible cliffs, beaches, and wetlands; geology (two classes):
hard and soft sediments (depending on the erosion potential); significant wave height,
tide range and sea level rise (four classes): based upon quantiles. The shoreline evolution
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data were classified as eroding, stable, or accreting. It was shown that geomorphology was
the most important parameter in the model and significantly raised the skill of the model.
Accuracy was best for stable coasts (90% correct prediction) followed by accreting (68%)
and eroding (47%). Erosion was correctly predicted less than half the time, which indicates
that more variables are needed for an accurate prediction (shoreline orientation, long-
shore transport, etc.). Although this model gives a broad overview of the shore trends in
Europe with acceptable accuracy, it does not provide specific values for beach nourishment
requirements, which interests coastal management.

While the results of these models provide valuable information for coastal managers,
there is still a need to predict beach nourishment volumes for operational beach manage-
ment, for which ANNs are more suitable and are therefore chosen for this study.

The aim of this paper is to apply an ANN approach that can predict the spatial
variability of gravel nourishment requirements on the Croatian coast. ANNs can model
highly non-linear phenomena and are therefore suitable for beach nourishment predictions.
We aim to provide a tool for predicting nourishment requirements and development of
new beaches based on an extensive database of beaches and nourishment data in Croatia.
The tool here will focus on beach nourishment requirements in a spatial sense and does not
consider nourishment requirements through time as function of changing environmental
parameters. In this study, we use a survey of beach nourishment volumes, map data,
and statistical data from nearby meteorological/oceanographic stations to train ANNs and
show that, for the present dataset, ANNs can accurately predict the spatial variability of
beach nourishment requirements at the country level.

2. Materials and Methods
2.1. Data Set

To establish a database, data was collected from three sources—local authorities,
maps and meteorological/oceanographic stations (Table 1). A survey of beach nourish-
ment volumes was conducted with local authorities along the coast. The received data
is evenly spread out throughout the Croatian coast. Beaches that are not nourished are
not included in the survey. The surveyed data contains the beach name, county name,
region name, yearly beach nourishment by volume, yearly expenses for beach nourishment
in Croatian kuna, and gravel diameter. The local authorities were asked to report any other
factors that could affect beach nourishment volumes such as governmental incentives.
However, we will assume that the surveyed beach nourishment volumes are exclusively
used to counteract beach erosion. Data extracted from the maps are fetch lengths (calculated
using a Python script), beach location coordinates, beach length, beach area, beach orien-
tation, and beach slope. The fetch lengths are defined for the SE, SW and NE directions
corresponding to the most dominant wind directions at the Croatian coast. The slope
was calculated from the MSL to the 2 m depth. Tide range and wind statistical data were
taken from tables in the national navigation handbook for the eastern Adriatic coast [24].
Yearly mean precipitation data were obtained from the Croatian Meteorological society.

Eighty nine counties, which manage 1400 beaches from existing 1904 Croatian beaches
(73.5%) have responded to the survey. This included natural and artificial beaches. From these,
255 beaches were nourished in the last five years (2016–2020), which is 18.2% of all beaches.
They reported annual beach volumes in that period. Once the outliers were removed (e.g.,
sandy beaches), the sample reduced to 228 beaches, for which all data from Table 1 were
available. For every beach, the data were summed from 2016–2020 (a 5-year nourishment
volume requirement) to represent beach nourishment needs at each beach, because temporal
variability is not the focus of this paper. Yearly beach expenses in the Croatian national
currency will not be considered in this paper.
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Table 1. Data that was collected for every beach. Data inputted into the ANN are shown with numbers (1–15), the ANN
target value with T, and additional data which were not used in the ANN are shown with lowercase letters (a–d).

Number Data Source Group

1 Longitude map data

Basic
2 Latitude map data
3 Beach length map data
4 Beach area map data
5 Beach orientation (azimuth) map data
6 Gravel diameter survey Gravel
7 Beach slope map data Slope
8 Fetch length in NE direction map data

Fetch9 Fetch length in SE direction map data
10 Fetch length in SW direction map data
11 Mean yearly number of days when the wind is stronger than 6 Bf statistical data from a nearby meteorological station

Wind12 Mean yearly number of days when the wind is stronger than 8 Bf statistical data from a nearby meteorological station
13 Mean tide range statistical data from a nearby oceanographic station

Tide14 Mean extreme tide range statistical data from a nearby oceanographic station
15 Yearly mean rainfall statistical data from a nearby meteorological station Rainfall
T Yearly beach nourishment survey Target
a Name survey
b County survey
c Region survey
d Yearly expenses for nourishment survey

2.2. Artificial Neural Network Model

A two-layer feed-forward network was used for data-fitting. An ANN comprises
input, hidden, and output nodes arranged in layers. The input layer serves to feed the
input data to the network. Each input is connected to several neurons, which altogether
make up the hidden layer. Information propagates from the input nodes forward to nodes
in the hidden layer:

hj = f

(
aj +

n

∑
i=1

wixi

)
(1)

where xi are input variables, hj are hidden layer neuron responses, wi are weights, aj are
biases, and f is the activation function. A range of neurons (5, 7, 10, 12, 15, and 20 neurons)
was used in the hidden layer was to examine the model sensitivity to the hidden layer width.
The sigmoid activation function was used in the hidden layer. The sigmoid activation
function is defined as:

f (x) =
1

1 + e−x (2)

Finally, the hidden layer was fully connected with the output layer consisting of 1 node,
which corresponds to the 5-year gravel nourishment volume target data. Bayesian regu-
larization backpropagation was implemented as the training procedure [25]. This back-
propagation technique improves the neural network’s ability to generalize the knowledge
obtained from the training data. When determining the biases and weights for the global
minimum of the difference between observations and ANN predictions, local minima
may be encountered. Local minima halt the optimization process, while their presence
depend on the initial values assigned to biases and weights. Most studies prefer to train
ANNs using different random seeds to generate initial weights and then analyze the best
ANN, as a solution to the local minima problem [26,27]. This approach was used in this
paper, and 10,000 ANNs with different random seeds were created for each group set
tested. Preprocessing steps were applied to the input and target data to make the ANN
more efficient A common approach to normalize inputs and targets to fall in the range
[−1, 1] was applied as when sigmoid activation functions were used in the ANNs. This
normalization helped to avoid very small gradients, and thus very long training times.
A sensitivity test was performed using different number of nodes in the hidden layer as
ANNs can be overtrained on the training set if a large number of nodes in the hidden layer.
This can lead to bad performance for the test sets [26].
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The complete data is divided into several groups of data (basic, gravel, etc., in Table 1).
Different ANNs were trained and tested to quantify the importance of each group of
data within the complete data set. First ANN comprised the basic group consisting of
the beach length, area, azimuth (beach orientation), longitude and latitude (Table 1, 1–5).
This basic data can be extracted from the maps. In this study, data was collected from local
authorities and supplemented by data derived from the Google Earth maps. This group is
called the ‘Basic’. This was followed by combining Basic ANN with each group of data
(Table 1 8–15), to evaluate the importance of each of parameter groups. A ‘Combined’
ANN was constructed using groups, which improved prediction of the basis ANN. Finally,
an ‘All’ group using all 15 groups of data was constructed. In addition, a ‘Check’ data set
that includes the target values with all the group sets in the input is also tested, to verify
the ANNs solving technique. To compare the performance of each ANN in this paper,
the mean squared error was used:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2, (3)

where n corresponds to the number of sample data points, Yi corresponds to the observa-
tions, and Ŷi corresponds to the network outputs. Performance statistics for the training
set and combined set is reported alongside the test set performance. Additionally, correla-
tion coefficients are reported for the test models. From the total number of observations,
70% or 160 beaches were used to train the ANN weights and biases, and the remaining
30% or 68 beaches were used for testing. The data was split into training and test sets
randomly. The testing data was not seen by the machine learning algorithm in the training
stage, while the training data was not used to measure the accuracy of the ANN. Only the
test data set (30% of total observations) was used to test the success of the model.

3. Results and Discussion
3.1. Beach Nourishment Data

Figure 1a shows a box plot of the surveyed 5-year gravel nourishment volumes along
the Croatian coast, with 20 outliers marked with crosses. Here, outliers are defined when
they are 1.5 interquartile ranges (IQRs) above the 75th quantile as the data is not normally
distributed. Outliers account for the top 8.7% of the dataset. These outliers were not
included into ANN. As shown in Figure 1a, the data is too sparse in the region above
1150 m3 to train a reliable ANN. The distribution is extremely right-skewed, as expected
when 0 m3 acts as a natural boundary for the dataset because beach nourishment volume
cannot have a negative value. Nourishment volumes are always positive values. A log
transformation function is commonly applied to highly skewed distribution types. After the
log transformation, the 5-year nourishment volume distribution takes a shape similar to a
normal distribution, but still negatively skewed (Figure 1b).
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Figure 1. Distribution of 5-year gravel nourishment volumes that have been reported by counties in the survey: (a) box plot
with specified outliers; (b) log transformed 5-year nourishment volumes correspond to a normal distribution.

3.2. Artifical Neural Network Model Results

An ANN trained and tested using all 15 input data variables (All network) presented
in Table 1 shows good prediction ability for beach nourishment volumes (Figure 2a–c).
Mean squared errors are 9.63 × 103, 1.96 × 104, and 1.26 × 104, for the training set, test set,
and overall set, respectively. The corresponding RMSE are 98.13 m3, 140 m3, and 112.25 m3,
for the training set, test set, and overall set, respectively. When normalized with the beach
nourishment data range, values of 8.53%, 12.17%, and 9.76% are obtained for the training
set, test set, and overall set, respectively. These NRMSEs are acceptable because they are
at about 10% of the beach nourishment range. Correlation coefficients between the target
(observed) and output (predicted) data for the training, test, and overall (training and test)
show a strong positive relationship. Correlation coefficients are 0.94, 0.84, and 0.91 for the
training set, test set, and overall set, respectively. However, the ANN underestimates the
observed values as the beach nourishment volume (target value) increases, which is shown
by the regression slope being below 1. The error histogram for the overall set is normally
distributed (Figure 2d). This means that there are no inherent biases when the regression
equation is applied. The standard deviation of the error histogram equals 76.9 m3. For an
average beach area of 6834.01 (Table 2) this is equal to about 0.01 m in height. There is a 95%
probability that the target value will be within the range of output ± 153.8 m3. This could
serve to the network user as a model uncertainty indication.

Figure 2. Cont.
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Figure 2. Correlation and scatter plot for the target (observed) and output (predicted using ANN) data: (a) training set;
(b) test set; (c) overall (training and test set); (d) error histogram for the overall data set (training and test set) in (c).

Table 2. Expected beach characteristic based upon means for observed values for each characteristic.

Number Data Min Mean Max Dimension

1 Beach length 12 370 2000 meters

2 Beach area 32 6834.01 104,020 square
meters

3 Beach orientation (azimuth) 0 192.69 359 degrees
4 Gravel diameter 1 14.82 32 millimeters
5 Fetch length in NE direction 0.54 1033.98 19,259 meters
6 Fetch length in SE direction 0.85 4663.27 108,701 meters
7 Fetch length in SW direction 0.79 11,422.14 137,514 meters
8 Mean yearly number of days when the wind is stronger than 6 Bf 12.90 48.84 123.90 days
9 Mean yearly number of days when the wind is stronger than 8 Bf 0.6 9.10 33.30 days

10 Mean tide range 0.23 0.30 0.48 meters
11 Mean extreme tide range 0.29 0.42 0.67 meters

As shown in Figure 2a,b, the data spread is higher for the test set in comparison to the
training set as to expect. This is reflected in a higher mean squared error for the test set than
the training set. Still, the correlation coefficient shows a strong relationship between the
output and target values. This shows ANN’s good ability to generalize the model to unseen
data. The ANN underperforms in predicting values near 0 m3 as it sometimes predicts
negative values, which is unreasonable. The ANNs with different hidden layer sizes (5, 7,
10, 12, 15, and 20 neurons) revealed no significant variation in network performance on
the test set (not shown in this paper). For the rest of the modelling, only networks with
15 neurons in the hidden layer were trained.

The ANN does not overpredict or underpredict certain geographic regions (Figure 3).
Overprediction and underprediction of the ANN are evenly spread throughout the Croa-
tian coast. This shows that the ANN is not sensitive to region specifics like geology,
geomorphology and meteorology. However, the error values for prediction of nourishment
values in the Croatia’s southern part (below 43.5◦ N) tend to be smaller than the rest.
The mean absolute error for Croatia’s southern part equals 49.41 m3, and 88.23 m3 for the
rest of Croatia’s coast. The mean absolute error for the whole coast equals 81.96 m3. As a
result, the ANN should not massively overpredict or underpredict the gravel nourishment
volumes of a certain region for an unseen test case.
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Figure 3. Mapped errors (target and output value differences) with underprediction and overprediction presented in orange
and blue respectively; the bubble size indicates error size.

3.3. Evaluation of Input Variable Groups Contribution to ANN Prediction Skill

In the present study, we compared ANN’s predictive ability for different input groups
as shown in Table 1—column 4 and described in Section 2. Only the test set performance
metric (mean squared error according to Equation (3) was considered when comparing
ANNs (Figure 3). This way the network’s generalization skill to unseen data is considered.

Firstly, the check network is considered. The check network is normally expected
to have perfect performance scores as it includes the target itself. This serves to test the
network solving technique. As shown in Figure 4, the check network does indeed have a
perfect performance score with virtually no error and perfect correlation.

Figure 4. Performance statistics for tested ANNs on the test data sets according to equation 3—bar chart of mean squared
errors (lower is better) on the left y-axis; stem chart of correlation coefficients (higher is better) on the right y-axis; variables
included in each group can be found in Table 1; Combined group comprises Basic + Gravel + Fetch + Wind + Tide; training
set, test set, and overall (training and test set) performance statistics are presented in Table A1, Appendix A.

Further, the ANN trained only with the input of basic group variables showed low
prediction skill (Figure 4). The basic group consisted of beach length, area, azimuth,
longitude and latitude. The correlation coefficient and mean square error for the test set
were equal to 0.47 and 5.96 × 104, respectively. Thus, using only easily extracted map data,
the network has low prediction ability.
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When ANN’s input comprised the basic and one other variable group, the best results
were obtained by adding the fetch variable group (Figure 4). The correlation coefficient and
mean square error for the test set were equal to 0.77 and 2.85 × 104, respectively. Hence,
including the basic map information together with fetch data gives a good prediction of
gravel volume requirements. Gravel, wind, and tide group variables when added to the
basic group variables moderately improved network prediction ability and will be consid-
ered further in the Combined group set (Figure 4). Rainfall contributed to some extent,
but the network’s mean square error was high at 5.24 × 104 on the test set. The rainfall
was taken into account as many Croatian beaches are affected by torrential surface flows.
However, rainfall has a limited effect on beach nourishment volume prediction. Therefore,
rainfall was not considered further.

Interestingly, it was observed from the comparative analysis that the inclusion of
beach slope did not add value to ANN prediction ability (Figure 4). The performance
metrics with and without the inclusion of the beach slope remained the same. There might
be various reasons for this lack of significance. These will be discussed further in Section 4.

A combined group variable was formed to train an ANN to match the performance of
the ANN with the All group variable (includes all 15 variables and presented in Section 3.2).
The input for the combined group variable comprised the basic, gravel, fetch, wind,
tide group variables. The correlation coefficient and mean square error for the test set were
equal to 0.83 and 2.23 × 104, respectively.

The mean square error is 13.8% higher than for the All group variable, and the
correlation coefficient decreases by 1%. When beach location coordinates were left out
from the Combined group variable, no clear decrease in ANN prediction ability is evident.
Knowledge already contributed by other included variable groups included might make the
beach coordinates irrelevant. For example, latitude would be important only if a northern
region has a pattern of bigger or smaller gravel nourishment volume requirements in
comparison to the south. In that case, the ANN would include the location knowledge into
the nourishment volume prediction with beach coordinates. To sum up, the Combined
group variable without beach coordinates (Combined—Coord) is declared the best ANN
because of its decreased number of required input variables without losing prediction
ability of beach nourishment volumes.

3.4. Sensitivity Analysis of the ANN to Beach Orientation, Fetch, and Wind Variables

To analyze the sensitivity of the ANN, we changed the values of one variable at time,
while keeping the other variables constant. For latter we used mean observed values in
Croatia (Table 2). Additionally, when one fetch length is varied to examine the ANN’s
response, the other two are fixed to zero. Also, when the mean yearly number of days with
wind stronger than 6 Bf is varied, the mean yearly number of days with wind stronger
than 8 Bf was fixed at 5 times smaller than the one used for duration of wind above 6 Bf.
This sensitivity analysis was conducted on the Combined model without coordinates
(Combined—Coord) (Figure 4), which showed performance similar to the All ANN.

Figure 5 reveals an extremely nonlinear response of the ANN to the reconstructed test
cases. Predictions that extend far beyond the value range considered in the training dataset
can lead to unphysical results. Therefore, with a black dashed box, we have designated
the region where the data should be reliable. For instance, the 5-year gravel nourishment
volumes decrease if the fetch length in the SE direction increases above 8 km (Figure 5b).
However, this might not be a reliable prediction because there is only one data point
beyond the designated region. Thus, the black boxes are regions where the ANN calculates
an interpolation of the training data.
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Figure 5. Sensitivity analysis presented with a heat map of the best-performing ANN (combined group variables without the
beach coordinates) and scatter plot of available data (black crosses): (a) fetch length in the SW direction—beach orientation;
(b) fetch length in the SE direction—beach orientation; (c) fetch length in the NE direction—beach orientation; (d) Mean
yearly number of days when the wind is stronger than 6 Bf—beach orientation; the dashed black box designates the area
where predictions are considered reliable because the ANN calculates an interpolation of the training data.

It should be noted that the ANN can also carry out calculations even for unrealistic
inputs. For example, if we assume a beach orientation in the SW direction (225 degrees),
the NE fetch length should physically be close to zero (black crosses in Figure 5c). However,
any other fetch length can be inputted into the network and ANN will always produce
an output as one can see in Figure 5c. However, this could be unphysical. In contrary the
reliable regions for SW and SE fetch lengths are much larger. And in the case of mean
yearly number of days when the wind is stronger than 6 Bf, the whole domain is considered
reliable because the training data spans the entire area (Figure 5d).

Figure 5a–c reveals that an increase in the fetch length in any direction increases the
5-year gravel nourishment volumes which is expected (in the reliable region designated
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with the black box). A fetch length increase in the NE direction shows the biggest increase
in 5-year gravel nourishment volumes at 0.09 m3 per meter of fetch length. The increase is
3 times lower for the SE direction at 0.03 m3 per meter of fetch length, and 30 times lower
for the SW direction at 0.003 m3 per meter of fetch length. These results show significant
susceptibility of 5-year gravel nourishment volumes to the wind and waves from the NE
direction. For the most part of Croatia’s coast, the NE wind tends to be a seaward wind.
This is not the case for island beaches and some other, where a NE direction orientation
is likely.

Figure 5d shows that an increase in mean yearly number of days when the wind is
stronger than 6 Bf results in an increase of the 5-year nourishment volumes. This is an
expected behavior, because it is assumed that an increase in windy days will increase the
number of days with waves. When the beach is exposed to NE waves, the ANN tends to
output the highest values of 5-year gravel nourishment volume. Again, pointing to the
NE wind as having the most erosion potential of the 3 considered wind directions (NE,
SE, and SW). On the other hand, the beach orientation toward the NW tends to have the
lowest values. The Figure 5d shows also the ANN ambiguity with beach orientation of 0
and 360 degrees, which are considered as two different orientations.

4. Discussion

This study has shown that the ANN and observation data can be used to adequately
predict the observed spatial variability of gravel nourishment volumes on Croatian beaches.
The significance of the obtained results and in particular the importance of different
variables for the prediction of beach nourishment volumes are discussed in the context of
other studies, as there are no other ANN models to compare the results with.

Tides were found to have a moderate influence on ANN accuracy (Figure 4). This con-
trasts with the findings of Yates and Le Cozannet [22], that tidal range and wave height
had a similar influence on the network prediction ability. This is not surprising, however,
as there is more variation in tidal ranges across the entire European continent than on the
Croatian coast. The eastern Adriatic Sea has a microtidal regime with tidal ranges of less
than 2 m and with very little regional variation.

Waves (indirectly via the fetch length) had a significantly greater influence on the
predictive ability of the ANN. The fetch length turned out to be a more important variable
than the annual mean number of windy days. Another study by Wilson, Adams [3]
reported that wave runup had a bigger influence on network prediction ability than WIH
alone (wave impact hours). We indirectly confirmed this in this paper, as the fetch length
had a more important impact than the yearly mean number of windy days.

The beach slope was expected to be an important factor in beach nourishment mod-
elling, as the beach slope influences the transformation of the nearshore waves, and hence
the driving forces behind beach changes as well as the beach stability. However, this vari-
able was not selected by the ANN. One possible explanation for this is that beach slopes
were extracted from navigational maps that are not detailed enough near the coastline to
provide reliable slope data. On the other hand, beach slope is difficult to integrate into
the ANN model because it is a time-dependent variable. Beach slopes are often stepper
after winter wave storms that greatly reshape beach profiles and often generate onshore
berms. By comparison, the beach slope is flatter after the summer tourist season and a
milder wave climate. Anthropogenic influences like gravel nourishment can also alter the
beach slope in the nearshore. Wilson et al. [3] established an event-based network where
the beach slopes could be updated after every event, but this could not be implemented
into our ANN model.

The gravel diameter was found to be an important variable for the ANN predictions.
This is in agreement with the findings of previous studies that the gravel diameter primarily
dictates the equilibrium beach profile generated by cross-shore sediment processes [8,9].
Also, the beach slope is dependent on the gravel diameter and this may be why the gravel
size information influenced the ANN’s prediction ability more than the beach slope itself.
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However, the developed ANN has some limitations. Section 3.4 highlights how
even unphysical and unrealistic input variables could be fed to the ANN resulting in an
unreliable output. Users should always remember not to use input variables that differ
greatly from the parameter space over which the ANN has been established because the
predictions could be unphysical and unreliable. This was often highlighted in previous
research [7,14]. The ANN is not fitted with a procedure to determine if the input data is
reasonable or even physically sound. This could be handled only with a preprocessing
procedure created for the ANN’s specific use case. This preprocessing procedure can limit
extrapolation of the training dataset and non-physical input combinations.

This is a disadvantage of the ANN model compared to the Bayesian network models.
Bayesian networks use predefined bins for each category (e.g., beach nourishment volume)
to conduct probabilistic predictions [3,22]. Predefined bins can easily limit the input data
that is out of the trained parameter space or deemed unphysical. The approach handles
probabilities directly in contrast to the ANN, which estimates a specific value. Moreover,
this approach implicitly gives model uncertainties for each output. This uncertainty
information could be valuable to the user when applying the model to unseen test data
sets. This advantage of the Bayesian networks can also be a disadvantage if a specific
value is required and not just the highest probability category bin. For example, Yates and
Le Cozannet [22] used Bayesian networks to predict if a coastline is accreting, stable,
or eroding. They did not include information on the amount of erosion and did not focus
on gravel or sand beaches. The simple yes/no erosion information is probably not sufficient
for operational coastal management on a local level, e.g., beach nourishment volumes.
Thus, despite limitations, the ANN could be useful for forecasting beach replenishment
volumes and thus for operational coastal management.

5. Conclusions

The results of this study show that an ANN can adequately predict the observed
gravel nourishment volume spatial variability on Croatian beaches on unseen data. Tests re-
vealed a strong correlation between the observations and the ANN’s output. The corre-
lation coefficient and mean square error for the test set equal 0.87 and 2.24 × 104, re-
spectively (Combined—coords group variable which includes beach area, beach length,
beach orientation, fetch length, gravel size, mean yearly number of days when the wind is
stronger 6 Bf and 8 Bf, and tide range). Other tested variables like beach slope, location
coordinates, and rainfall had little or no contribution to the ANN’s prediction ability.

The results show that fetch length was found to be the most important input variable,
apart from the basic information derived from maps such as beach length, beach area and
beach orientation for ANN’s prediction ability. The fetch length and beach orientation are
parameters that determine the height and direction of the wind wave and are therefore
proxies for forcing. Fetch length in the NE direction showed the greatest impact on the
gravel nourishment requirements; three times stronger impact than fetch length in the SE
and 30 times stronger than fetch length in the SW direction. Beach orientation also points
to the NE direction as the most impactful to beach nourishment volume requirements.
Since the training set was limited to Croatian coast, further data in other countries is needed
to expand this ANN gravel prediction model.
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Appendix A

Table A1. Performance metrics (correlation coefficient—R, and mean squared error according to equation 3—MSE) for
every tested ANN for the training data, test data and overall data (training + test); the Combined group variable includes
Basic, Gravel, Fetch, Wind, and Tide.

ANN Performance Metric Training Test Training + Test

Basic (B)
R 0.452 0.467 0.454

MSE 5.94 × 104 5.96 × 104 5.94 × 104

B + Gravel
R 0.618 0.678 0.635

MSE 4.39 × 104 4.70 × 104 4.48 × 104

B + Slope R 0.477 0.397 0.450
MSE 5.95 × 104 5.95 × 104 5.95 × 104

B + Fetch
R 0.843 0.775 0.822

MSE 2.23 × 104 2.85 × 104 2.42 × 104

B + Wind
R 0.660 0.667 0.658

MSE 4.23 × 104 4.34 × 104 4.26 × 104

B + Tide
R 0.571 0.680 0.613

MSE 4.58 × 104 4.93 × 104 4.69 × 104

B + Rainfall
R 0.550 0.572 0.544

MSE 5.21 × 104 5.24 × 104 5.22 × 104

Combined
R 0.851 0.827 0.865

MSE 1.69 × 104 2.23 × 104 1.85 × 104

Combined—Coord
R 0.894 0.867 0.885

MSE 1.45 × 104 2.24 × 104 1.62 × 104

All
R 0.938 0.840 0.912

MSE 9.63 × 103 1.96 × 104 1.26 × 104

Check
R 1.000 1.000 1.000

MSE 0.0006 0.0232 0.0068
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