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Abstract

A matchingM of a graphG is maximal if it is not a proper subset of
any other matching in G. Maximal matchings are much less known and
researched than their maximum and perfect counterparts. In partic-
ular, almost nothing is known about their enumerative properties. In
this paper we present the recurrences and generating functions for the
sequences enumerating maximal matchings in two classes of chemically
interesting linear polymers: polyspiro chains and benzenoid chains. We
also analyze the asymptotic behavior of those sequences and determine
the extremal cases.

Keywords: maximal matching; benzenoid chain; polyspiro chain

1 Introduction

A matching in a graph is a collection of its edges such that no two edges
in this collection have a vertex in common. Matchings in graphs serve as
successful models of many phenomena in engineering, natural and social sci-
ences. A strong initial impetus to their study came from the chemistry of
benzenoid compounds after it was observed that the stability of benzenoid
compounds is related to the existence and the number of perfect matchings
in the corresponding graphs. That observation gave rise to a number of enu-
merative results that were accumulated over the course of several decades;
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Office of the Vice President for Research at the University of South Carolina and also
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we refer the reader to monograph [3] for a survey. Further motivation came
from the statistical mechanics via the Kasteleyn’s solution of the dimer prob-
lem [13, 14] and its applications to evaluations of partition functions for a
given value of temperature. In both cases, the matchings under considera-
tion are perfect, i.e., their edges are collectively incident to all vertices of G.
It is clear that perfect matchings are as large as possible and that no other
matching in G can be “larger” than a perfect one. It turns out that in all
other applications we are also interested mostly in large matchings.

Basically, there are two ways to quantify the largeness of a matching.
One way, by using the number of edges, gives rise to the idea of maximum
matchings. Maximum matchings are well researched and well understood;
there is a well developed structural theory and enumerative results are abun-
dant. The classical monograph by Lóvasz and Plummer [16] is an excellent
reference for all aspects of the theory.

An alternative way is to say that a matching is large if no other matching
contains it as a proper subset; this gives rise to the concept of maximal
matchings. Every maximum matching is also maximal, but the opposite is
usually not true. Unlike their maximum counterparts, maximal matchings
can have different cardinalities (unless the graph is equimatchable; see [10])
and the recurrences used for their enumeration are essentially non-local.
As a consequence, maximal matchings are much less understood then the
maximum ones. There is nothing analogous to the structural theory of
maximum matchings and the enumerative results are scarce and scattered
through the literature [7, 15, 18].

In spite of their obscurity, maximal matchings are natural models for
several problems connected with adsorption of dimers on a structured sub-
strate and block-allocation of a sequential resource. One can find them also
in the context of polymerization of organic molecules, as witnessed by an
early paper of Flory [9]. A probabilistic approach to the same problem can
be found in [11]. We refer the reader to papers [1, 4, 6, 7] for some struc-
tural and enumerative results on those models. In this paper our goal is
to further the line of research of reference [7] by considering graphs with
more complicated connectivity patterns and richer structure of basic units.
We provide enumerative and extremal results on maximal matchings in two
classes of linear polymers of chemical interest: the polyspiro chains and
benzenoid chains. We extablish the recurrences and generating functions for
the enumerating sequences of maximal matchings in three classes of uniform
polyspiro chains and use the obtained results to determine the asymptotic
behavior and to find the extremal chains. Further, we also enumerate max-
imal matchings in three classes of benzenoid chains and show that one of
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them is extremal with respect to the number of maximal matchings. Our
results show that maximal matchings behave in a radically different way
that the perfect matchings; chains rich in maximal matchings are poor in
perfect matchings and vice versa. We end by comparing our results with
enumerative results for other type of structures in similar polymers and by
discussing some possible directions of future research.

2 Preliminaries

Our terminology and notations are mostly standard and taken from [16, 19].
All graphs G considered in this paper will be finite and simple, with vertex
set V (G) and edge set E(G). For a subset of vertices S of V (G), we make
use of the notation G−S (or G− v if S = {v}) to denote the subgraph of G
obtained by deleting the vertices of S and all edges incident to them. For a
graph G and subset of edges X of G, we use the notation G \X (or G \ e if
X = {e}) to denote the subgraph of G obtained by deleting the endpoints
of the edges in X as well as all incident edges to these endpoints.

A matching M in G is a set of edges of G such that no two edges from
M have a vertex in common. The number of edges in M is called its size. A
matching in G with the largest possible size is called a maximum matching.
If a matching in G is not a subset of a larger matching of G, it is called a
maximal matching. Let Ψ(G) denote the number of maximal matchings of
G.

In this paper we are mainly concerned with counting maximal matchings
in two classes of linear polymers (or facsiagraphs, [12]) with simple connec-
tivity patterns. The first class are 6-uniform cactus chains. Chain cacti are
in chemical literature known as polyspiro chains.

A cactus graph is a connected graph in which no edge lies in more than
one cycle. Consequently, each block of a cactus graph is either an edge or a
cycle. If all blocks of a cactus G are cycles of the same length m, the cactus
is m-uniform.

A hexagonal cactus is a 6-uniform cactus, i.e., a cactus in which every
block is a hexagon. A vertex shared by two or more hexagons is called a
cut-vertex. If each hexagon of a hexagonal cactus G has at most two cut-
vertices, and each cut-vertex is shared by exactly two hexagons, we say that
G is a chain hexagonal cactus. The number of hexagons is called the length
of the chain. An example of a chain hexagonal cactus is shown in Figure 1.

Furthermore, any chain hexagonal cactus of length greater than one has
exactly two hexagons with only one cut-vertex; such hexagons are called
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Figure 1: A chain hexagonal cactus of length 6.

terminal and all other hexagons with two cut-vertices are called internal.
Internal hexagons can be one of three types depending upon the distance

between its cut-vertices: in an ortho-hexagon cut vertices are adjacent, in a
meta-hexagon they are at distance two, and in a para-hexagon cut-vertices
are at distance three. The terminology is borrowed from the theory of
benzenoid hydrocarbons; see [5, 6, 7] for more details. These give rise to
the following three types of hexagonal cactus chains of length n: the unique
chain whose internal hexagons are all para-hexagons is Pn, the unique chain
whose internal hexagons are all meta-hexagons is Mn, and the unique chain
whose internal hexagons are all ortho-hexagons is On.

Pn 1 2 · · · n

Mn 1

2

· · · n

On 1

2

· · · n

Figure 2: The hexagonal cactus chains Pn, Mn, and On.

The other class of unbranched polymers we consider are benzenoid chains.
A benzenoid system is a is a connected, plane graph without cut-vertices in
which all faces, except the unbounded one, are hexagons. Two hexagonal
faces are either disjoint or they share exactly one common edge (adjacent
hexagons). A vertex of a benzenoid system belongs to at most three hexag-
onal faces and the benzenoid system is called catacondensed if it does not
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posses such a vertex. If no hexagon in a catacondensed benzenoid is adjacent
to three other hexagons, we say that the benzenoid is a chain see Figure 3.

The number of hexagons in a benzenoid chain is called its length. In
each benzenoid chain there are exactly two hexagons adjacent to one other
hexagon; those two hexagons are called terminal, while any other hexagons
are called interior. An interior hexagon has two vertices of degree 2. If
these two vertices are not adjacent, then hexagon is called straight. If the
two vertices are adjacent, then the hexagon is called kinky.

Figure 3: A benzenoid chain of length 6.

If all n − 2 interior hexagons of a benzenoid chain with n hexagons are
straight, we call the chain a polyacene and denote it by Ln. If all interior
hexagons are kinky, the chain is called a polyphenacene. Since the number of
perfect matchings in a polyphenacene of length n is equal to the (n+ 2)-nd
Fibonacci number Fn+2, these chains are also known as fibonacenes [3]. We
consider two specific families of polyphenacenes depicted in Figure 4: the
zig-zag polyphenacene, Zn, and helicene, Hn.

3 Chain hexagonal cacti

3.1 Generating functions

In this section, we obtain ordinary generating functions for the number of
maximal matchings in the hexagonal chain cacti Pn, Mn, and On. To do
this, we first find recursions for the number of maximal matchings using
auxiliary graphs (initial conditions are obtained by direct counting). These
recursions can be verified via casework. By introducing generating func-
tions for the number of maximal matchings in each auxiliary graph, the
recursions can be transformed into a solvable system of equations in terms
of unknown generating functions. Finally, we solve this system of equations
for the desired generating function. We omit the details of most of these
computations.
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Ln 1 2 · · · n

Zn 1
2

· · · n

Hn 1 2

...

n

Figure 4: The polyacene, zig-zag polyphenacene, and helicene chains.

Pn 1 2 · · · n P 1
n 1 2 · · · n

P 2
n 1 2 · · · n P 3

n 1 2 · · · n

Figure 5: Auxiliary graphs for Pn.

Lemma 3.1. Let pn be the number of maximal matchings in Pn and pin be
the number of maximal matchings in the auxiliary graph P i

n in Figure 5.
Then

(i) pn = 2p1n−1 + pn−1,

(ii) p1n = p2n + p3n−1,

(iii) p2n = p3n−1 + 2p1n−1,

(iv) p3n = pn + 2p3n−1,

with the initial conditions p0 = 1, p10 = 2, p20 = 1, and p30 = 3.

Lemma 3.2. Let mn be the number of maximal matchings in Mn and mi
n
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Mn 1
2

· · · n M1
n 1

2
· · · n

M2
n 1

2
· · · n M3

n 1
2

· · · n

Figure 6: Auxiliary graphs for Mn.

be the number of maximal matchings in the auxiliary graph M i
n in Figure 6.

Then

(i) mn = 2m1
n−1 +mn−1,

(ii) m1
n = m2

n +m3
n−1,

(iii) m2
n = m3

n−1 +m1
n−1 +m2

n−1 +mn−1,

(iv) m3
n = 2m3

n−1 +m1
n−1 +m2

n−1 +mn−1 +m2
n,

with the initial conditions m0 = 1, m1
0 = 2, m2

0 = 1, and m3
0 = 3.

On 1

2

· · · n O1
n 1

2

· · · n

O2
n 1

2

· · · n O3
n 1

2

· · · n

Figure 7: Auxiliary graphs for On.

Lemma 3.3. Let on be the number of maximal matchings in On and oin be
the number of maximal matchings in the auxiliary graph Oi

n in Figure 7.
Then
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(i) on = 2o1n−1 + on−1,

(ii) o1n = o2n + o3n−1,

(iii) o2n = o3n−1 + o2n−1 + on−1 + 2o3n−2,

(iv) o3n = on + o3n−1 + o2n,

with the initial conditions o0 = 1, o10 = 2, o20 = 1, o21 = 7, and o30 = 3.

Theorem 3.4. Let P (x), M(x), and O(x) be the ordinary generating func-
tions for the sequences pn, mn, and on, respectively. Then

(i)

P (x) =
1 + 4x2

1− 5x+ 4x2 − 4x3
,

(ii)

M(x) =
1− x− 2x2

1− 6x+ 3x2 − 2x3
,

(iii)

O(x) =
1 + x+ x2

1− 4x− 4x2 − x3
.

Since P (x), M(x), and O(x) are rational functions, we can conclude that
the numbers pn, mn, and on each satisfy a third order linear recurrence
with constant coefficients. The initial conditions can be verified by direct
computations.

Corollary 3.5.

(i) pn = 5pn−1 − 4pn−2 + 4pn−3

with initial conditions p0 = 1, p1 = 5, p2 = 25,

(ii) mn = 6mn−1 − 3mn−2 + 2mn−3

with initial conditions m0 = 1, m1 = 5, m2 = 25,

(iii) on = 4on−1 + 4on−2 + on−3

with initial conditions o0 = 1, o1 = 5, o2 = 25.
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None of the obtained sequences appear in The On-Line Encyclopedia of
Integer Sequences [17].

Now we can apply a version of Darboux’s theorem to deduce the asymp-
totic behavior of the sequences pn, mn, and on. We refer the reader to any of
standard books on generating functions, such as [2, 20] for more information
on these techniques.

Theorem 3.6 (Darboux). Let f(x) =
∑∞

n=0
anx

n denote the ordinary gen-
erating function of a sequence an. If f(x) can be written as

f(x) =
(

1− x

w

)α

g(x),

where w is the smallest modulus singularity of f and g is analytic at w, then

an ∼ g(w)

Γ(−α)
w−nn−α−1.

Here Γ(x) denotes the gamma function.

Corollary 3.7.

(i) pn ∼ 1.37804 · 4.28428n,

(ii) mn ∼ 0.81408 · 5.52233n,

(iii) on ∼ 1.05177 · 4.86454n.

The characteristic equations of the three recurrences can be solved ex-
actly, but the resulting formulas tend to be too cumbersome to be of any
use. The equation for meta-chains, however, allows a compact formula for
the smallest (and the only) positive root: it is equal to 1

2
(1 + 3

√
3− 3

√
9).

The obtained asymptotics suggest that meta-chains could be the rich-
est and para-chains the poorest in maximal matchings among all polyspiro
chains of the same length. In the next subsection we prove that this is,
indeed, the case.

3.2 Extremal structures

Theorem 3.8. Let Gn be a hexagonal cactus of length n. Then

Ψ(Pn) ≤ Ψ(Gn) ≤ Ψ(Mn).
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Let Gm be an arbitrary hexagonal cactus of length m. Observe that we
can always draw Gm as in Figure 8, where hm is a terminal hexagon and
the hexagon adjacent to the left of hm−1 may attach at any of the vertices
b, a, k, j, or i. Let us assume the hexagons of Gm are labeled h1, . . . , hm
according to their ordering in Figure 8 where (h1 is the other terminal
hexagon).

hm−1 hm· · ·

a b

c

d e

f

j i h g

k

Figure 8: A terminal hexagon, hm, and its adjacent hexagon, hm−1, in the
hexagonal chain cactus Gm.

In what follows, for 1 ≤ ℓ, p ≤ m let Hℓ be the subgraph of Gm induced
by the vertices of the hexagons h1, . . . , hℓ and let Hℓ,p denote the subgraph
of Gm induced by the vertices of the two hexagons hℓ and hp. We will need
the following lemmas. The proof of the first lemma is immediate.

Lemma 3.9. If H is a subgraph of the graph G, then Ψ(H) ≤ Ψ(G).

Lemma 3.10. Any maximal matching in Gm must contain exactly one of
the edges cb, cd, ch, or ci, or the maximal matching must contain all the
edges ab, de, ji, and hg.

Proof. Take a maximal matching M in Gm. For sake of contradiction, sup-
pose that M does not contain any of the edges cb, cd, ch, or ci and that M
does not contain all of the edges ab, de, ji, and hg. Then at least one of the
edges ab, de, ji, and hg is missing, say ab. Since ab is not in M , then we
can add the edge bc to M , which is a contradiction to the fact that M is a
maximal matching. The lemma follows.

Lemma 3.11. For the subgraph Hm−1 of Gm, at least one of the following
holds:

(i) 2 ·Ψ(Hm−1 − {b, c}) ≥ Ψ(Hm−1 − c)
(ii) 2 ·Ψ(Hm−1 − {c, i}) ≥ Ψ(Hm−1 − c)

Proof. The proof depends on where the hexagon hm−2 attaches to hm−1.
By symmetry, suppose that hm−2 attaches at either i, j, or k (the case a, b, k
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is similar). Consider a maximal matching of Hm−1 − c. If such a matching
contains the edge ab, then the remaining edges give a maximal matching of
Hm−1 −{a, b, c}. If a maximal matching does not contain the edge ab, then
the matching must also be maximal in the graph Hm−1 − {b, c}. Thus by
Lemma 3.9 we have

Ψ(Hm−1 − {c}) = Ψ(Hm−1 − {a, b, c}) + Ψ(Hm−1 − {b, c})
≤ 2 ·Ψ(Hm−1 − {b, c}).

Proof (of Theorem 3.8). Take a hexagonal cactus C of length n− 1. Let us
set m = n − 1 and suppose that C is drawn as in Figure 8 with vertices
labeled as such, so that we may refer to this picture to aid this proof. We
consider three cases of extending C by an nth hexagon hn.

hn−2 hn−1 hn· · ·

a b

c

d e

f

j i h g

k

Figure 9: The hexagonal cactus CP.

Case 1. The hexagon hn attaches in the para position to the vertex
f and let us denote the resulting graph by CP , see Figure 9. To compute
Ψ(CP ) we make use of Lemma 3.10. Consider maximal matchings in CP

containing the edge bc. The remaining edges of the matching must be a
maximal matching of Hn−2 − {b, c} and a maximal matching of Hn−1,n − c.
By direct counting, we find that Ψ(Hn−1,n− c) = 11 and hence, the number
of maximal matchings containing the edge bc is 11 · Ψ(Hn−2 − {b, c}). We
count the maximal matchings containing the edges ci, cd, or ch as well as
the maximal matchings containing all the edges ab, de, ji, and hg similarly,
to obtain

Ψ(CP ) =11(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 20 ·Ψ(Hn−2 − c)

+ 5 ·Ψ(Hn−2 − {a, b, c, i, j}).
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hn−2 hn−1

hn

· · ·

a b

c

d e

f

j i h g

k

Figure 10: The hexagonal cactus CM.

Case 2. The hexagon hn attaches in the meta position to the vertex
e and let us denote the resulting graph by CM , see Figure 10. Counting
similarly to Case 1 above we obtain

Ψ(CM) =17(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 22 ·Ψ(Hn−2 − c)

+ 3 ·Ψ(Hn−2 − {a, b, c, i, j}).

hn−2 hn−1

hn

· · ·

a b

c

d e

f

j i h g

k

Figure 11: The hexagonal cactus CO.

Case 3. The hexagon hn attaches in the ortho position to the vertex d

and let us denote the resulting graph by CO, see Figure 11. Counting as in
Cases 1 and 2,

Ψ(CO) =15(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 18 ·Ψ(Hn−2 − c)

+ 3 ·Ψ(Hn−2 − {a, b, c, i, j}).
Now Ψ(CM) ≥ Ψ(CO) follows immediately by comparing terms. By

Lemma 3.9, we have Ψ(Hn−2−c) ≥ Ψ(Hn−2−{a, b, c, i, j}) and by comparing
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the remaining terms we see that Ψ(CM) ≥ Ψ(CP ). The preceding shows
that attaching a hexagon in the meta position yields the most maximal
matchings, implying

Ψ(Gn) ≤ Ψ(Mn)

as desired.
To get the remaining inequality of our theorem, we need only show that

Ψ(CO) ≥ Ψ(CP ). Now we must have either (i) or (ii) of Lemma 3.11, say
(i) holds. Then 4 · Ψ(Hn−2 − {b, c}) ≥ 2 · Ψ(Hn−2 − c) and by Lemma 3.9
we have Ψ(Hn−2 − {c, i}) ≥ Ψ(Hn−2 − {a, b, c, i, j}), showing that

Ψ(CO) ≥ 11Ψ(Hn−2 − {b, c}) + 13Ψ(Hn−2 − {c, i}) + 20 ·Ψ(Hn−2 − c)

+ 5 ·Ψ(Hn−2 − {a, b, c, i, j}). (1)

Now by comparing the terms of Ψ(CP ) with the inequality (1), it follows
that Ψ(CO) ≥ Ψ(CP ), which completes the proof.

It is instructive to compare the above results with the corresponding re-
sults for all matchings and for independent sets from reference [5] (Theorems
3.23 and 4.14, respectively). It can be seen that with respect to the richest
chains, the number of maximal matchings behaves more like the number of
independent sets than the number of all matchings. A possible explanation
might be the fact that maximal matchings in any graph G are in a bijective
correspondence with nice independent sets in G. (A set of vertices S is nice
if G− S has a perfect matching.)

4 Benzenoid chains

4.1 Generating functions

Now we turn our attention to benzenoid chains. Here the connectivity in-
creases to two, and one can expect that this will result in longer recurrences,
as indicated in [7]. This is, indeed, the case.

Using the same techniques outlined in subsection 3.1, we obtain ordinary
generating functions for the number of maximal matchings in the benzenoid
chains Ln, Zn, and Hn.

Lemma 4.1. Let ℓn be the number of maximal matchings in Ln and ℓin be
the number of maximal matchings in the auxiliary graph Li

n in Figure 12.
Then
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Ln 1 2 · · · n L1
n 1 2 · · · n

L2
n 1 2 · · · n L3

n 1 2 · · · n

Figure 12: Auxiliary graphs for Ln.

(i) ℓn = ℓ1n−1 + ℓn−1 + 2ℓ2n−2,

(ii) ℓ1n = 2ℓ1n−1 + ℓn−1 + 2ℓ3n−1,

(iii) ℓ2n = ℓ3n + ℓ1n−1 + ℓ3n−1,

(iv) ℓ3n = ℓ1n−1 + ℓn−1 + ℓ3n−1 + ℓ2n−2 + ℓ1n−2 + ℓ3n−2,

with the initial conditions ℓ0 = 1, ℓ1 = 5, ℓ10 = 2, ℓ20 = 3, ℓ30 = 2, and ℓ31 = 7.

Zn 1
2

· · · n Z1
n 1

2
· · · n

Z2
n 1

2
· · · n Z3

n 1
2

· · · n

Z4
n 1

2
· · · n Z5

n 1
2

· · · n

Figure 13: Auxiliary graphs for Zn.

Lemma 4.2. Let zn be the number of maximal matchings in Zn and zin be
the number of maximal matchings in the auxiliary graph Zi

n in Figure 13.
Then

(i) zn = z1n−1 + z2n−1 + z3n−2,

14



(ii) z1n = 2z2n−1 + z4n−2 + z5n−1 + z3n−2 + z2n−2,

(iii) z2n = zn + z5n−1 + zn−1,

(iv) z3n = 2z2n−1 + z3n−1 + z1n−1 + z5n−1,

(v) z4n = zn + z5n−1 + zn−1 + z2n−1 + z3n−1,

(vi) z5n = z5n−1 + z4n−2 + z2n−1 + z3n−2 + zn−1,

with the initial conditions z0 = 1, z1 = 5, z10 = 2, z11 = 9, z20 = 2, z30 = 3,
z40 = 4, z50 = 2, and z51 = 7.

Hn 1 2
...

n

H1
n 1 2

...
n

H2
n 1 2

...
n

H3
n 1 2

...
n

H4
n 1 2

...
n

H5
n 1 2

...
n

Figure 14: Auxiliary graphs for Hn.

Lemma 4.3. Let zn be the number of maximal matchings in Zn and zin be
the number of maximal matchings in the auxiliary graph Zi

n in Figure 13.
Then

(i) hn = hn−1 + h1n−1 + h2n−2 + h3n−2,

(ii) h1n = 2h4n−1 + h5n−1 + h3n−2 + 2h4n−2 + h5n−2,

15



(iii) h2n = h3n−1 + 2h4n−1 + 2h4n−2 + 2h3n−2 + h5n−2,

(iv) h3n = h5n + hn,

(v) h4n = hn + h2n−1,

(vi) h5n = h2n−1 + h4n−1 + h1n−1,

with the initial conditions h0 = 1, h1 = 5, h10 = 2, h11 = 9, h20 = 3, h21 = 11,
h30 = 3, h40 = 2, and h50 = 2.

Theorem 4.4. Let L(x), Z(x), and H(x) be the ordinary generating func-
tions for the sequences ℓn, zn, and hn, respectively. Then

(i)

L(x) =
1 + x− x3

1− 4x− x4 − x5
,

(ii)

Z(x) =
1 + 2x+ 4x2 + 4x3 + 6x4 + 4x5 + x6

1− 3x− x2 − 6x3 − 7x4 − 7x5 − 5x6 − x7
,

(iii)

H(x) =
1 + 4x+ 8x2 + 8x3 + 7x4 + 4x5 + 2x6

1− x− 7x2 − 12x3 − 6x4 − 7x5 − 4x6 − 2x7
.

Since L(x), Z(x), and H(x) are rational functions, we can examine their
denominators to obtain linear recurrences for the sequences ℓn, zn, and hn.
The initial conditions can be verified by direct computations.

Corollary 4.5.

(i) ℓn = 4ℓn−1 + ℓn−4 + ℓn−5

with initial conditions ℓ0 = 1, ℓ1 = 5, ℓ2 = 20, ℓ3 = 79, and ℓ4 = 317,

(ii) zn = 3zn−1 + zn−2 + 6zn−3 + 7zn−4 + 7zn−5 + 5zn−6 + zn−7

with initial conditions z0 = 1, z1 = 5, z2 = 20, z3 = 75, z4 = 288, z5 = 1105,
and z6 = 4234,

(iii) hn = hn−1 + 7hn−2 + 12hn−3 + 6hn−4 + 7hn−5 + 4hn−6 + 2hn−7
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with initial conditions h0 = 1, h1 = 5, h2 = 20, h3 = 75, h4 = 288,
h5 = 1094, and h6 = 4171.

Again we can use Darboux’s Theorem to deduce the asymptotics of the
sequences ℓn, zn, and hn. The smallest modulus singularity of L(x) is ap-
proximately x = 0.248804. Hence, the asymptotic behavior of ℓn is given by
ℓn ∼ 4.01923n+1 for large n. Similarly, we deduce that zn ∼ 3.83256n+1 and
hn ∼ 3.81063n+1 for large n.

4.2 Extremal structure

In this subsection, we prove the linear polyacene has most maximal match-
ings among all benzenoid chains of the same length.

Theorem 4.6. Let Gn be a benzenoid chain of length n. Then

Ψ(Gn) ≤ Ψ(Ln).

Let Gm be an arbitrary benzenoid chain of length m. Observe that we
can always draw Gm as in Figure 15, where hm is a terminal hexagon and
the hexagon adjacent to the left of hm−1 may attach at any of the edges f, g,
or h. Let us assume the hexagons of Gm are labeled h1, . . . , hm according
to their ordering in Figure 15 where (h1 is the other terminal hexagon).

hm−1 hm· · ·

a b

c

def

g

h x

y

z

Figure 15: A terminal hexagon, hm, and its adjacent hexagon, hm−1, in the
benzenoid chain Gm.

In what follows, let us adopt all of the same notation introduced in
section 3.2. We also make use of Lemma 3.9 introduced previously, since
this holds for arbitrary graphs.

Lemma 4.7. Any maximal matching of Gm must contain at least one of
the edges a, b, c, d or e. Moreover, any maximal matching of Gm contains
exactly one of these edges, or contains exactly one of the following pairs of
edges: a and e, a and d, b and e, or b and d.
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Proof. Take a maximal matching M . For sake of contradiction, suppose M
contains none of the edges a, b, c, d or e. Then we could add the edge c to
M , which is a contradiction to M being a maximal matching. Hence at least
one of the edges a, b, c, d or e. The remaining part of the lemma follows by
considering which pairs of edges can belong to the same matching.

Proof. (of theorem 4.6). Take a benzenoid chain B of length n − 1. Let us
set m = n − 1 and suppose that B is drawn as in Figure 15 with edges
labeled as such, so that we may refer to this picture to aid this proof. We
consider two cases of extending B by an nth hexagon hn.

hn−2 hn−1 hn· · ·

a b

c

def

g

h x

y

z

Figure 16: The benzenoid chain BL.

Case 1. The hexagon hn attaches in the linear position to the edge y and
let us denote the resulting graph by BL, see Figure 16. To compute Ψ(BL)
we make use of Lemma 4.7 and count matchings based on which of the
edges a, b, c, d, e are saturated. Of the possibilities in Lemma 4.7, consider
the maximal matchings of BL containing only the edge a. Such a matching
must also contain the edges f and z, else this matching would contain one
of the other edges d or e. The remaining edges of the matching must be a
maximal matching of Hn−2 \ {a, f} and a maximal matching of Hn−1,n \ z.
By directly counting, we find that Ψ(Hn−1,n \z) = 4 and hence, the number
of maximal matchings containing only the edge a is 4 ·Ψ(Hn−2 \{a, f}). We
count the remaining cases from Lemma 4.7 similarly. We note that aHn−1\c
is used to count maximal matchings containing the edges b or d, since these
edges do not belong to the subgraph Hn−2. For example, the number of
maximal matchings containing only the edge b is 3 ·Ψ(Hn−2 \ {c, f}). Thus

Ψ(BL) = 4 ·Ψ(Hn−2 \ {a, f}) + 3 ·Ψ(Hn−2 \ {c, f}) + 14 ·Ψ(Hn−2 \ c)
+ 4 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 9 ·Ψ(Hn−2 \ {a, e})
+ 7 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e}).
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hn−2 hn−1

hn

· · ·

a b

c

def

g

h x

y

z

Figure 17: The benzenoid chain BK.

Case 2. The hexagon hn attaches in the kinky position to the edge z

and let us denote the resulting graph by BK, see Figure 17. Counting as in
Case 1 above we obtain

Ψ(BK) = 6 ·Ψ(Hn−2 \ {a, f}) + 5 ·Ψ(Hn−2 \ {c, f}) + 12 ·Ψ(Hn−2 \ c)
+ 5 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 8 ·Ψ(Hn−2 \ {a, e})
+ 5 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e}).

Now considering the terms in Ψ(BL), by Lemma 3.9 we have

Ψ(Hn−2 \ {a, c}) ≥ Ψ(Hn−2 \ {a, f}),
Ψ(Hn−2 \ {c}) ≥ Ψ(Hn−2 \ {c, f}), and

Ψ(Hn−2 \ {a, e}) ≥ Ψ(Hn−2 \ {e, h}),

implying that

Ψ(BL) ≥6 ·Ψ(Hn−2 \ {a, f}) + 5 ·Ψ(Hn−2 \ {c, f}) + 12 ·Ψ(Hn−2 \ c)
+ 5 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 8 ·Ψ(Hn−2 \ {a, e})
+ 5 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e})
≥ Ψ(BK).

The above proves that attaching a hexagon linearly gives more maximal
matchings than attaching a hexagon in the kinky position. The inequality
stated in the theorem follows.
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Again, we can see that the number of maximal matchings follows the
same pattern as the number of independent sets, contrary to the number of
all and of perfect matchings. While the last two increase with the number
of kinky hexagons, the number of maximal matchings decreases. Further,
unlike the number of perfect matchings which does not discriminate between
left and right kinks, the number of maximal matchings seems to be sensitive
to the direction of successive turns. It seems that the helicenes have the
smallest number of maximal matchings among all benzenoid chains of the
same length.

5 Further developments

In this last section we list some unresolved problems and indicate some
possible directions of future research. We start by stating a conjecture about
the extremal benzenoid chains.

Conjecture 5.1. Let Bn be a benzenoid chain of length n. Then Ψ(Hn) ≤
Ψ(Bn).

Now we turn to some structural properties. The cardinality of any small-
est maximal matching in G is called the saturation number of G. The satu-
ration number is of interest in the context of random sequential adsorption,
since it gives the information on the worst possible case of clogging the sub-
strate; see [7] for a discussion and [1, 6, 4] for some specific cases. However,
it is not enough to know the size of the worst possible case; it is also imprtant
to know how (un)likely is it to happen. This brings us back to enumera-
tive problems, since the answer to this question depends on the ability to
count maximal matchings of a given size. A neat way to handle information
about maximal matchings of different sizes is to use the maximal matching
polynomial. It was introduced in [7] and some of its basic properties were
established there. There are, however, many open questions about this poly-
nomial. For example, for ordinary (generating) matching polynomials [8, 16]
we know that their coefficients are log-concave. Is this valid also for maximal
matching polynomials? We have computed maximal matching polynomials
explicitly for several families of graphs, and we have enumerated maximal
matchings in several other families. So far, no counterexample has been
found, but the proof still eludes us.

Another interesting thing to do would be to look at the dynamic aspect
of the problem, emulating the approach of Flory [9].
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Finally, it would be interesting to extend our results on other classes
of graphs, such as rotagraphs, branching polymers, composite graphs and
finite portions of various lattices.
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