Generalizations of Hardy Type Inequalities by Abel-Gontscharoff's Interpolating Polynomial

Krulić Himmelreich, Kristina; Pečarić, Josip; Pokaz, Dora; Praljak, Marjan

Source / Izvornik: **Mathematics, 2021, 9(15)**

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

<https://doi.org/10.3390/math9151724>

Permanent link / Trajna poveznica: <https://urn.nsk.hr/urn:nbn:hr:237:179292>

Rights / Prava: [In copyright](http://rightsstatements.org/vocab/InC/1.0/) / [Zaštićeno autorskim pravom.](http://rightsstatements.org/vocab/InC/1.0/)

Download date / Datum preuzimanja: **2025-01-07**

Repository / Repozitorij:

[Repository of the Faculty of Civil Engineering,](https://repozitorij.grad.unizg.hr) [University of Zagreb](https://repozitorij.grad.unizg.hr)

Article **Generalizations of Hardy Type Inequalities by Abel–Gontscharoff's Interpolating Polynomial**

Kristina Kruli´c Himmelreich ¹ , Josip Peˇcari´c ² , Dora Pokaz 3,* and Marjan Praljak ⁴

- ¹ Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb, Croatia; kkrulic@ttf.hr
- ² Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog, 10000 Zagreb, Croatia; pecaric@element.hr
- ³ Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10000 Zagreb, Croatia
- ⁴ Faculty of Food Technology and Biotechnology, University of Zagreb, 6 Pierottijeva Street in Zagreb, 10000 Zagreb, Croatia; marjan.praljak@pbf.unizg.hr
- ***** Correspondence: dora@grad.hr or dora.pokaz@grad.unizg.hr

Abstract: In this paper, we extend Hardy's type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy's inequality are given with some applications.

Keywords: inequalities; Hardy type inequalities; Abel–Gontscharoff interpolating polynomial; Green function; Chebyshev functional; Grüss type inequalities; Ostrowski type inequalities; convex function; kernel; upper bounds

1. Introduction and Preliminaries

Let $(\Sigma_1, \Omega_1, \mu_1)$ and $(\Sigma_2, \Omega_2, \mu_2)$ be measure spaces with positive σ -finite measures. For a measurable function $f: \Omega_2 \to \mathbb{R}$, let A_k denote the linear operator

$$
A_k f(x) := \frac{1}{K(x)} \int_{\Omega_2} k(x, t) f(t) d\mu_2(t), \tag{1}
$$

where $k : \Omega_1 \times \Omega_2 \rightarrow \mathbb{R}$ is measurable and non-negative kernel with

$$
0 < K(x) := \int\limits_{\Omega_2} k(x, t) d\mu_2(t), \quad x \in \Omega_1. \tag{2}
$$

The following result was given in $[1]$ (see also $[2]$), where u is a positive function on Ω_1 .

Theorem 1. Let *u* be a weight function, $k(x, y) \ge 0$. Assume that $\frac{k(x,y)}{K(x)}u(x)$ is locally integrable *on* Ω_1 *for each fixed* $y \in \Omega_2$ *. Define v by*

$$
v(y) := \int_{\Omega_1} \frac{k(x, y)}{K(x)} u(x) d\mu_1(x) < \infty.
$$
 (3)

If ϕ *is a convex function on the interval I* $\subseteq \mathbb{R}$ *, then the inequality*

$$
\int_{\Omega_1} \phi(A_k f(x)) u(x) d\mu_1(x) \leq \int_{\Omega_2} \phi(f(y)) v(y) d\mu_2(y) \tag{4}
$$

holds for all measurable functions $f : \Omega_2 \to \mathbb{R}$, such that $Im f \subseteq I$, where A_k is defined by [\(1\)](#page-1-0) and [\(2\)](#page-1-1)*.*

Citation: Krulić Himmelreich, K.; Pečarić, J.; Pokaz, D.; Praljak, M. Generalizations of Hardy Type Inequalities by Abel–Gontscharoff's Interpolating Polynomial. *Mathematics* **2021**, *9*, 1724. [https://](https://doi.org/10.3390/math9151724) doi.org/10.3390/math9151724

Academic Editor: Valery Karachik

Received: 9 June 2021 Accepted: 19 July 2021 Published: 22 July 2021 Corrected: 27 March 2023

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/[/](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) 4.0/).

Inequality [\(4\)](#page-1-2) is generalization of Hardy's inequality. G. H. Hardy [\[3\]](#page-13-2) stated and proved that the inequality

$$
\int_{0}^{\infty} \left(\frac{1}{x} \int_{0}^{x} f(t) dt\right)^{p} dx \le \left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) dx, p > 1,
$$
\n(5)

holds for all f non-negative functions such that $f \in L^p(\mathbb{R}_+)$ and $\mathbb{R}_+ = (0,\infty)$. The constant $\left(\frac{p}{p-1}\right)^p$ is sharp. More details about Hardy's inequality can be found in [\[4,](#page-13-3)[5\]](#page-13-4).

Inequality [\(5\)](#page-2-0) can be interpreted as the Hardy operator $H : Hf(x) := \frac{1}{x} \int_{0}^{x}$ $\mathbf 0$ *f*(*t*) *dt*,

maps L^p into L^p with the operator norm $p' = \frac{p}{p-1}$.

In this paper, we consider the difference of both sides of the generalized Hardy's inequality

$$
\int_{\Omega_2} \phi(f(y))v(y)d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x)d\mu_1(x)
$$

and obtain new inequalities that hold for *n*-convex functions.

Now, we recall *n*−convex functions. There are two parallel notations. First, is given by E. Hopf in 1926 and second by T. Popoviciu in 1934. E. Hopf defined that the function *f* is *n*−convex if difference [*x*0, ..., *xn*+1, *f*] is nonnegative. The ordinary convex function is 1-convex. For more details see [\[6\]](#page-13-5). In the second definition $f : [\alpha, \beta] \to \mathbb{R}$ is *n*-convex $n \geq 0$, if its *n*-th order divided differences $[x_0, ..., x_n]$ *f* are nonnegative for all choices of $(n + 1)$ distinct points $x_i \in [\alpha, \beta]$. By second definition 0-convex function is nonnegative, 1-convex function is non-decreasing and 2-convex function is convex in the usual sense. If an *n*-convex function is *n* times differentiable, then $\phi^{(n)} \geq 0$. (see [\[7\]](#page-13-6)).

An important role in the paper will be played by Abel–Gontscharoff interpolation, which was first studied by Whittaker [\[8\]](#page-13-7), and later by Gontscharoff [\[9\]](#page-13-8) and Davis [\[10\]](#page-13-9). The Abel–Gontscharoff interpolation for two points and the remainder in the integral form is given in the following theorem (for more details see [\[11\]](#page-13-10)).

Theorem 2. *Let* $n, m \in \mathbb{N}$, $n \ge 2$, $0 \le m \le n - 1$ *and* $\phi \in C^n([\alpha, \beta])$. *Then*

$$
\phi(u) = Q_{n-1}(\alpha, \beta, \phi, u) + R(\phi, u),
$$

where Qn−¹ *is the Abel–Gontscharoff interpolating polynomial for two-points of degree n* − 1*, i.e.,*

$$
Q_{n-1}(\alpha, \beta, \phi, u) = \sum_{s=0}^{m} \frac{(u - \alpha)^s}{s!} \phi^{(s)}(\alpha)
$$

+
$$
\sum_{r=0}^{n-m-2} \left[\sum_{s=0}^{r} \frac{(u - \alpha)^{m+1+s} (\alpha - \beta)^{r-s}}{(m+1+s)!(r-s)!} \right] \phi^{(m+1+r)}(\beta)
$$

and the remainder is given by

$$
R(\phi, u) = \int_{\alpha}^{\beta} G_{mn}(u, t) \phi^{(n)}(t) dt,
$$

where Gmn(*u*, *t*) *is Green's function defined by*

$$
G_{mn}(u,t) = \frac{1}{(n-1)!} \begin{cases} \sum_{s=0}^{m} {n-1 \choose s} (u-\alpha)^s (\alpha-t)^{n-s-1}, & \alpha \le t \le u; \\ -\sum_{s=m+1}^{n-1} {n-1 \choose s} (u-\alpha)^s (\alpha-t)^{n-s-1}, & u \le t \le \beta. \end{cases}
$$
(6)

Remark 1. *For* $\alpha \leq t$, $u \leq \beta$ *the following inequalities hold*

$$
(-1)^{n-m-1} \frac{\partial^s G_{mn}(u,t)}{\partial u^s} \ge 0, \quad 0 \le s \le m,
$$

$$
(-1)^{n-s} \frac{\partial^s G_{mn}(u,t)}{\partial u^s} \ge 0, \quad m+1 \le s \le n-1.
$$

2. Generalizations of Hardy's Inequality

Our first result is an identity related to generalized Hardy's inequality. We apply interpolation by the Abel–Gontscharoff polynomial and get the following result.

Theorem 3. *Let* $(\Sigma_1, \Omega_1, \mu_1)$ *and* $(\Sigma_2, \Omega_2, \mu_2)$ *be measure spaces with positive σ-finite measures. Let* $u : \Omega_1 \to \mathbb{R}$, *be a weight function and v is defined by* ([3](#page-1-3)). Let $A_k f(x)$, $K(x)$ *be defined by [\(1\)](#page-1-0)* and [\(2\)](#page-1-1) respectively, for a measurable function $f: \Omega_2 \to [\alpha, \beta]$ and let $n, m \in \mathbb{N}$, $n \ge 2$, $0 \leq m \leq n-1$, $\phi \in C^n([\alpha, \beta])$ and G_{mn} be defined by [\(6\)](#page-2-1). Then

$$
\int_{\Omega_2} \phi(f(y))v(y)d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x)d\mu_1(x) \tag{7}
$$
\n
$$
= \sum_{s=1}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y)d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x)d\mu_1(x) \right)
$$
\n
$$
+ \sum_{r=0}^{n-m-2} \sum_{s=0}^r \frac{(-1)^{r-s}(\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y)d\mu_2(y) \right)
$$
\n
$$
- \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x)d\mu_1(x) \right)
$$
\n
$$
\phi + \int_{\alpha}^{\beta} \left(\int_{\Omega_2} G_{mn}(f(y), t)v(y)d\mu_2(y) - \int_{\Omega_1} G_{mn}(A_k f(x), t)u(x)d\mu_1(x) \right) \phi^{(n)}(t)dt.
$$
\n(7)

Proof. Using Theorem [2](#page-2-2) we can represent every function $\phi \in C^n([\alpha, \beta])$ in the form

$$
\phi(u) = \sum_{s=0}^{m} \frac{(u-\alpha)^s}{s!} \phi^{(s)}(\alpha)
$$
\n
$$
+ \sum_{r=0}^{n-m-2} \left[\sum_{s=0}^{r} \frac{(u-\alpha)^{m+1+s}(-1)^{r-s}(\beta-\alpha)^{r-s}}{(m+1+s)!(r-s)!} \right] \phi^{(m+1+r)}(\beta)
$$
\n
$$
+ \int_{\alpha}^{\beta} G_{mn}(u,t) \phi^{(n)}(t) dt.
$$
\n(8)

By an easy calculation, applying (8) in \int Ω_2 $\varphi(f(y))v(y)d\mu_2(y) - \int$ Ω_1 ϕ (*A*_{*k*} $f(x)$) $u(x)d\mu_1(x)$, we get

$$
\int_{\Omega_2} \phi(f(y))v(y)d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x)d\mu_1(x)
$$
\n
$$
= \sum_{s=0}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y)d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x)d\mu_1(x) \right)
$$

$$
+ \sum_{r=0}^{n-m-2} \sum_{s=0}^{r} \frac{(-1)^{r-s} (\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y) d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x) d\mu_1(x) \right) + \int_{\alpha}^{\beta} \left(\int_{\Omega} G_{mn}(f(y), t) v(y) d\mu_2(y) - \int_{\Omega_1} G_{mn}(A_k f(x), t) u(x) d\mu_1(x) \right) \phi^{(n)}(t) dt.
$$

Since

$$
\int_{\Omega_2} v(y) d\mu_2(y) - \int_{\Omega_1} u(x) d\mu_1(x)
$$
\n=
$$
\int_{\Omega_2} \left(\int_{\Omega_1} \frac{k(x, y)}{K(x)} u(x) d\mu_1(x) \right) d\mu_2(y) - \int_{\Omega_1} u(x) d\mu_1(x)
$$
\n=
$$
\int_{\Omega_1} \frac{u(x)}{K(x)} \left(\int_{\Omega_2} k(x, y) d\mu_2(y) \right) d\mu_1(x) - \int_{\Omega_1} u(x) d\mu_1(x)
$$
\n=
$$
\int_{\Omega_1} u(x) d\mu_1(x) - \int_{\Omega_1} u(x) d\mu_1(x) = 0
$$

the summand for $s = 0$ in the first sum on the right hand side is equal to zero, so [\(7\)](#page-3-1) follows. \square

We continue with the following result.

Theorem 4. *Let all the assumptions of Theorem [3](#page-3-2) hold, let φ be n-convex on* [*α*, *β*] *and*

$$
\int_{\Omega_1} G_{mn}(A_k f(x),t)u(x)d\mu_1(x) \leq \int_{\Omega_2} G_{mn}(f(y),t)v(y)d\mu_2(y), \quad t \in [\alpha, \beta].
$$
 (9)

Then

$$
\int_{\Omega_2} \phi(f(y))v(y)d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x)d\mu_1(x) \tag{10}
$$
\n
$$
\geq \sum_{s=1}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y)d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x)d\mu_1(x) \right)
$$
\n
$$
+ \sum_{r=0}^{n-m-2} \sum_{s=0}^r \frac{(-1)^{r-s}(\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y)d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x)d\mu_1(x) \right).
$$
\n(10)

If the reverse inequality in ([9](#page-4-0)) *holds, then the reverse inequality in* ([10](#page-4-1)) *holds.*

Proof. We assumed that $\phi \in C^n([\alpha, \beta])$ is *n*-convex, so $\phi^{(n)} \geq 0$ on $[\alpha, \beta]$. We apply Theorem [3](#page-3-2) and [\(10\)](#page-4-1). \Box

Remark 2. *Notice that for* $n = 2$ *and* $0 \le m \le 1$ *the function* $G_{mn}(\cdot,t)$, $t \in [\alpha,\beta]$ *is convex on* [*α*, *β*]*. Therefore the assumption [\(9\)](#page-4-0) is satisfied and then the inequality [\(10\)](#page-4-1) holds. For an arbitrary* $n \geq 3$ *and* $0 \leq m \leq 1$, we use Remark [1,](#page-3-3) *i.e.*, we consider the following inequality:

$$
(-1)^{n-2}\frac{\partial^2 G_{mn}(u,t)}{\partial u^2}\geq 0.
$$

Ww conclude that the convexity of $G_{mn}(\cdot,t)$ *depends of a parity of* $n.$ *If* n *is even, then* $\frac{\partial^2 G_{mn}(u,t)}{\partial u^2}$ $\frac{\partial^m u}{\partial u^2}^{(u,t)} \geq 0$ *i.e.,* $G_{mn}(\cdot, t)$ *is convex and assumption* [\(9\)](#page-4-0) *is satisfied. Also, the inequality* [\(10\)](#page-4-1) *holds. For odd n we get the reverse inequality. For all other choices, the following generalization holds.*

Theorem 5. *Suppose that all assumptions of Theorem [1](#page-1-4) hold. Additionally, let* $n, m \in \mathbb{N}$ *,* $n \geq 3$ *,* $2 \leq m \leq n-1$ and $\phi \in C^n([\alpha, \beta])$ be n-convex.

- *(i) If* $n m$ *is odd, then the inequality [\(10\)](#page-4-1) holds.*
- *(ii) If* $n m$ *is even, then the reverse inequality in [\(10\)](#page-4-1) holds.*

Proof.

(i) By Remark [1,](#page-3-3) the following inequality holds

$$
(-1)^{n-m-1}\frac{\partial^2 G_{mn}(u,t)}{\partial u^2}\geq 0, \quad \alpha\leq u,t\leq \beta.
$$

In case $n - m$ is odd $(n - m - 1)$ is even), we have

$$
\frac{\partial^2 G_{mn}(u,t)}{\partial u^2}\geq 0,
$$

i.e., $G_{mn}(\cdot, t)$, $t \in [\alpha, \beta]$, is convex on $[\alpha, \beta]$. Then by Theorem [1](#page-1-4) we have

$$
\int_{\Omega_1} u(x)G_{mn}(A_k f(x),t)d\mu_1(x) \leq \int_{\Omega_2} v(y)G_{mn}(f(y),t)d\mu_2(y),
$$

i.e., the assumption (9) is satisfied. By applying Theorem [4](#page-4-2) we get (10) .

(ii) Similarly, if $n - m$ is even, then $G_{mn}(\cdot, t)$, $t \in [\alpha, \beta]$ is concave on $[\alpha, \beta]$, so the reversed inequality in [\(9\)](#page-4-0) holds and, hence, in [\(10\)](#page-4-1) as well.

$$
\qquad \qquad \Box
$$

Theorem 6. *Suppose that all assumptions of Theorem [1](#page-1-4) hold and let* $n, m \in \mathbb{N}$, $n \geq 2$, $0 \leq m \leq n-1$, $\phi \in C^n([\alpha, \beta])$ be n-convex and $F : [\alpha, \beta] \to \mathbb{R}$ be defined by

$$
F(t) = \sum_{s=2}^{m} \frac{\phi^{(s)}(\alpha)}{s!} (t - \alpha)^s
$$

+
$$
\sum_{r=0}^{n-m-2} \sum_{s=0}^{r} \frac{(-1)^{r-s} (\beta - \alpha)^{r-s}}{(m+1+s)!(r-s)!} \phi^{(m+1+r)}(\beta) (t - \alpha)^{m+1+s}.
$$
 (11)

- *(i)* If (10) holds and F is convex, then the inequality (4) holds.
- *(ii) If the reverse of [\(10\)](#page-4-1) holds and F is concave, then the reverse inequality [\(4\)](#page-1-2) holds.*

Proof.

(i) Let (10) holds. If *F* is convex, then by Theorem [1](#page-1-4) we have

$$
\int_{\Omega_2} v(y) F(f(y)) d\mu_2(y) - \int_{\Omega_1} u(x) F(A_k f(x)) d\mu_1(x) \ge 0
$$

which, changing the order of summation, can be written in form

$$
\sum_{s=1}^{m} \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y) d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x) d\mu_1(x) \right) +
$$
\n
$$
\sum_{r=0}^{n-m-2} \sum_{s=0}^{r} \frac{(-1)^{r-s} (\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y) d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x) d\mu_1(x) \right)
$$
\n
$$
= 0.
$$

We conclude that the right-hand side of (10) is nonnegative and the inequality [\(4\)](#page-1-2) follows.

(ii) Similar to (i) case.

 \Box

Remark 3. *Note that the function* $t \mapsto (t - \alpha)^p$ *is convex on* $[\alpha, \beta]$ *for each p* = 2, ..., *n* − 1, *i.e.*,

$$
\int_{\Omega_2} v(y)(f(y)-\alpha)^p d\mu_2(y) - \int_{\Omega_1} u(x)(A_k f(x)-\alpha)^p d\mu_1(x) \ge 0,
$$

for each $p = 2, ..., n - 1$.

- (i) If [\(10\)](#page-4-1) holds, $\phi^{(s)}(\alpha) \ge 0$ for $s = 0, ..., m$ and $(-1)^{r-s}\phi^{(m+1+r)}(\beta) \ge 0$ for $s = 0, ..., r$ and $r = 0, \ldots, n - m - 2$ *then the right hand side of [\(10\)](#page-4-1) is non-negative, i.e., the inequality [\(4\)](#page-1-2) holds.*
- (ii) If the reverse of [\(10\)](#page-4-1) holds, $\phi^{(s)}(\alpha) \leq 0$ for $s = 0, ..., m$ and $(-1)^{r-s}\phi^{(m+1+s)}(\beta) \leq 0$ for $s = 0, \ldots, r$ *and* $r = 0, \ldots, n - m - 2$, then the right hand side of [\(10\)](#page-4-1) is negative, i.e., the *reverse inequality in [\(4\)](#page-1-2) holds.*

3. Upper Bound for Generalized Hardy's Inequality

The following estimations for Hardy's difference is given in the previous section, under special conditions in Theorem [6](#page-5-0) and Remark [3.](#page-6-0)

$$
\int_{\Omega_2} \phi(f(y))v(y)d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x)d\mu_1(x)
$$
\n
$$
\geq \sum_{s=1}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y)d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x)d\mu_1(x) \right)
$$
\n
$$
+ \sum_{r=0}^{n-m-2} \sum_{s=0}^r \frac{(-1)^{r-s}(\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y)d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x)d\mu_1(x) \right)
$$
\n
$$
\geq 0
$$

In this section, we present upper bounds for obtained generalization. We recall recent results related to the Chebyshev functional. For two Lebesgue integrable functions $g, h : [a, b] \rightarrow \mathbb{R}$ we consider the Chebyshev functional.

$$
T(g,h) = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} g(t)h(t)dt - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} g(t)dt \cdot \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(t)dt.
$$

With $\lVert \cdot \rVert_p$, $1 \leq p \leq \infty$, we denote the usual Lebesgue norms on space $L_p[a,b]$. In [\[12\]](#page-13-11) authors proved the following theorems.

Theorem 7. *Let* $g : [\alpha, \beta] \to \mathbb{R}$ *be a Lebesque integrable function and* $h : [\alpha, \beta] \to \mathbb{R}$ *be an absolutely continuous function with* $(· − a)(b − ⋅)[h']^2 ∈ L[α, β]$ *. Then we have the inequality*

$$
T(g,h)| \leq \frac{1}{\sqrt{2}} [T(g,g)]^{\frac{1}{2}} \frac{1}{\sqrt{\beta-\alpha}} \left(\int_{\alpha}^{\beta} (x-\alpha)(\beta-x) [h'(x)]^2 dx \right)^{\frac{1}{2}}.
$$
 (12)

The constant $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ *in* ([12](#page-7-0)) *is the best possible.*

Theorem 8. *Assume that* $h : [\alpha, \beta] \to \mathbb{R}$ *is monotonic nondecreasing on* $[\alpha, \beta]$ *and* $g : [\alpha, \beta] \to \mathbb{R}$ *is absolutely continuous with* $g' \in L_{\infty}[\alpha, \beta]$. Then we have the inequality

$$
|T(g,h)| \le \frac{1}{2(\beta - \alpha)}||g'||_{\infty} \int_{\alpha}^{\beta} (x - \alpha)(\beta - x) dh(x).
$$
 (13)

The constant $\frac{1}{2}$ *in* ([13](#page-7-1)) *is the best possible.*

Under assumptions of Theorem [3](#page-3-2) we define the function $\mathcal{L} : [\alpha, \beta] \to \mathbb{R}$ by

$$
\mathcal{L}(t) = \int_{\Omega_2} v(y) G_{mn}(f(y), t) d\mu_2(y) - \int_{\Omega_1} u(x) G_{mn}(A_k f(x), t) d\mu_1(x).
$$
 (14)

The Chebyshev functional is defined by

$$
T(\mathcal{L}, \mathcal{L}) = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}^2(t) dt - \left(\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) dt \right)^2.
$$

Theorem 9. *Suppose that all the assumptions of Theorem [3](#page-3-2) hold. Also, let* $(\cdot - \alpha)(\beta - \cdot)(\phi^{(n+1)})^2$ $\mathcal{L}_{\text{eq}}[\alpha, \beta]$ and $\mathcal L$ be defined as in [\(14\)](#page-7-2). Then the following identity holds:

$$
\int_{\Omega_2} \phi(f(y))v(y) d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x) d\mu_1(x) \qquad (15)
$$
\n
$$
= \sum_{s=1}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y) d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x) d\mu_1(x) \right)
$$
\n
$$
+ \sum_{r=0}^{n-m-2} \sum_{s=0}^r \frac{(-1)^{r-s} (\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y) d\mu_2(y) \right)
$$
\n
$$
- \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x) d\mu_1(x) \right)
$$
\n
$$
+ \frac{\phi^{(n-1)}(\beta) - \phi^{(n-1)}(\alpha)}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) dt + R(\alpha, \beta; \phi), \qquad (15)
$$
\n(15)

where the remainder R(*α*, *β*; *φ*) *satisfies the estimation*

$$
|R(\alpha,\beta;\phi)| \leq \sqrt{\frac{\beta-\alpha}{2}} [T(\mathcal{L},\mathcal{L})]^{\frac{1}{2}} \bigg| \int_{\alpha}^{\beta} (t-\alpha)(\beta-t) \bigg[\phi^{(n+1)}(t)\bigg]^2 dt \bigg|^{\frac{1}{2}}.
$$

Proof. Applying Theorem [7](#page-7-3) for $g \to \mathcal{L}$ and $h \to \phi^{(n)}$ we get

$$
\left| \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) \phi^{(n)}(t) dt - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) dt \cdot \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi^{(n)}(t) dt \right|
$$

$$
\leq \frac{1}{\sqrt{2}} [T(\mathcal{L}, \mathcal{L})]^{\frac{1}{2}} \frac{1}{\sqrt{\beta - \alpha}} \left| \int_{\alpha}^{\beta} (t - \alpha) (\beta - t) \left[\phi^{(n+1)}(t) \right]^2 dt \right|^{\frac{1}{2}}.
$$

Therefore, we have

$$
\int_{\alpha}^{\beta} \mathcal{L}(t) \phi^{(n)}(t) dt = \frac{\phi^{(n-1)}(\beta) - \phi^{(n-1)}(\alpha)}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) dt + R(\alpha, \beta; \phi),
$$

where the remainder $R(\alpha, \beta; \phi)$ satisfies the estimation. Now from the identity [\(7\)](#page-3-1) we obtain (15) . \Box

The following Grüss type inequality also holds.

Theorem 10. *Suppose that all the assumptions of Theorem [3](#page-3-2) hold. Let* $\phi^{(n+1)} \geq 0$ *on* [α , β] *and* \mathcal{L} *be defined as in [\(14\)](#page-7-2). Then the identity [\(15\)](#page-7-4) holds and the remainder R*(*φ*; *a*, *b*) *satisfies the bound*

$$
|R(\alpha,\beta;\phi)| \leq \|\mathcal{L}'\|_{\infty} \left\{ \frac{\phi^{(n-1)}(\beta) + \phi^{(n-1)}(\alpha)}{2} - \frac{\phi^{(n-2)}(\beta) - \phi^{(n-2)}(\alpha)}{\beta - \alpha} \right\}.
$$
 (16)

Proof. By applying Theorem [8](#page-7-5) for $g \to \mathcal{L}$ and $h \to \phi^{(n)}$ we obtain

$$
\left| \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) \phi^{(n)}(t) dt - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \mathcal{L}(t) dt \cdot \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi^{(n)}(t) dt \right|
$$
 (17)

$$
\leq \frac{1}{2(\beta - \alpha)} \left\| \mathcal{L}' \right\|_{\infty} \int_{\alpha}^{\beta} (t - \alpha) (\beta - t) \phi^{(n+1)}(t) dt.
$$

,

Since

$$
\int_{\alpha}^{\beta} (t - \alpha)(\beta - t)\phi^{(n+1)}(t)dt = \int_{\alpha}^{\beta} [2t - (\alpha + \beta)]\phi^{(n)}(t)dt
$$

= $(\beta - \alpha)\left[\phi^{(n-1)}(\beta) + \phi^{(n-1)}(\alpha)\right] - 2\left(\phi^{(n-2)}(\beta) - \phi^{(n-2)}(\alpha)\right)$

using the identities [\(7\)](#page-3-1) and [\(17\)](#page-8-0) we deduce [\(16\)](#page-8-1). \Box

We continue with the following result that is an upper bound for generalized Hardy's inequality.

Theorem 11. *Suppose that all the assumptions of Theorem [3](#page-3-2) hold. Let* (*p*, *q*) *be a pair of conjugate exponents, that is* $1 \leq p$, $q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. *Then*

 $\overline{1}$

$$
\left| \int_{\Omega_2} \phi(f(y))v(y) d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x) d\mu_1(x) \right|
$$
\n
$$
- \sum_{s=1}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y) d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x) d\mu_1(x) \right)
$$
\n
$$
- \sum_{r=0}^{n-m-2} \sum_{s=0}^r \frac{(-1)^{r-s} (\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y) d\mu_2(y) \right|
$$
\n
$$
- \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x) d\mu_1(x) \right) \left| \sum_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x) d\mu_1(x) \right|
$$
\n
$$
\leq \left\| \phi^{(n)} \right\|_p \left(\int_{\alpha}^{\beta} \left| \int_{\Omega_2} v(y) G_{mn}(f(y), t) d\mu_2(y) - \int_{\Omega_1} u(x) G_{mn}(A_k f(x), t) d\mu_1(x) \right|_0^{\beta} dt \right)^{\frac{1}{q}}.
$$
\n(18)

The constant on the right-hand side of [\(18\)](#page-9-0) is sharp for $1 < p \leq \infty$ *and the best possible for* $p = 1$.

Proof. We apply the Hölder inequality to the identity [\(7\)](#page-3-1) and get

$$
\left| \int_{\Omega_{2}} \phi(f(y))v(y) d\mu_{2}(y) - \int_{\Omega_{1}} \phi(A_{k}f(x))u(x) d\mu_{1}(x) \right|
$$
\n
$$
- \sum_{s=1}^{m} \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_{2}} (f(y) - \alpha)^{s} v(y) d\mu_{2}(y) - \int_{\Omega_{1}} (A_{k}f(x) - \alpha)^{s} u(x) d\mu_{1}(x) \right)
$$
\n
$$
- \sum_{r=0}^{n-m-2} \sum_{s=0}^{r} \frac{(-1)^{r-s} (\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_{2}} (f(y) - \alpha)^{m+1+s} v(y) d\mu_{2}(y) \right)
$$
\n
$$
- \int_{\Omega_{1}} (A_{k}f(x) - \alpha)^{m+1+s} u(x) d\mu_{1}(x) \right)
$$
\n
$$
= \left| \int_{\alpha}^{\beta} \left(\int_{\Omega_{2}} v(y) G_{mn}(f(y), t) d\mu_{2}(y) - \int_{\Omega_{1}} u(x) G_{mn}(A_{k}f(x), t) d\mu_{1}(x) \right) \phi^{(n)}(t) dt \right|
$$
\n
$$
\leq \left\| \phi^{(n)} \right\|_{p} \left(\int_{\alpha}^{\beta} |\mathcal{F}(t)|^{q} dt \right)^{\frac{1}{q}}
$$
\n(11.10)

where $\mathcal{F}(t)$ is defined as in [\(14\)](#page-7-2).

The proof of the sharpness is analog to one in proof of Theorem 11 in [\[13\]](#page-13-12). \Box

We continue with a particular case of Green's function $G_{mn}(u, t)$ defined by [\(6\)](#page-2-1). For $n = 2$, $m = 1$, we have

$$
G_{12}(u,t) = \begin{cases} u-t, & \alpha \leq t \leq u \\ 0, & u \leq t \leq \beta' \end{cases}
$$
 (20)

If we choose $n = 2$ and $m = 1$ in Theorem [11,](#page-8-2) we get the following corollary.

Corollary 1. Let $\phi \in C^2([\alpha, \beta])$ and (p, q) be a pair of conjugate exponents, that is $1 \le p, q \le \infty$, $\frac{1}{p}+\frac{1}{q}=1.$ Then

$$
\left| \int_{\Omega_2} \phi(f(y)) v(y) d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x)) u(x) d\mu_1(x) \right| \tag{21}
$$

$$
\leq \|\phi''\|_p \left(\int_{\alpha}^{\beta} \left| \int_{\Omega_2} v(y) G_{12}(f(y),t) d\mu_2(y) - \int_{\Omega_1} u(x) G_{12}(A_k f(x),t) d\mu_1(x) \right|^q dt \right)^{\frac{1}{q}}.
$$

The constant on the right hand side of [\(21\)](#page-10-0) is sharp for $1 < p \leq \infty$ *and the best possible for* $p = 1$.

Remark 4. *If we additionally suppose that* $φ$ *is convex, then the difference* \int Ω_2 *φ*(*f*(*y*))*v*(*y*)*dµ*2(*y*) − R Ω_1 *φ*(*A^k f*(*x*))*u*(*x*)*dµ*1(*x*) *is non-negative and we have*

$$
0 \leq \int_{\Omega_2} \phi(f(y))v(y)d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x)d\mu_1(x) \tag{22}
$$

$$
\leq \|\phi''\|_{p}\left(\int_{\alpha}^{\beta}\left|\int_{\Omega_{2}} v(y)G_{12}(f(y),t)d\mu_{2}(y)-\int_{\Omega_{1}} u(x)G_{12}(A_{k}f(x),t)d\mu_{1}(x)\right|^{q}dt\right)^{\frac{1}{q}}.
$$

In sequel we consider some particular cases of this result.

Example 1. *Let* $\Omega_1 = \Omega_2 = (0, b)$, $0 < b \le \infty$, replace $d\mu_1(x)$ and $d\mu_2(y)$ by the Lebesque *measures* dx *and* dy *, respectively, and let* $k(x,y) = 0$ *for* $x < y \leq b$ *. Then* A_k *coincides with the Hardy operator H^k defined by*

$$
H_k: H_k f(x) := \frac{1}{K(x)} \int_{0}^{x} f(t)k(x, t) dt,
$$
 (23)

where

$$
K(x) := \int\limits_0^x k(x,t) \, dt < \infty.
$$

If also u(x) is replaced by u(x)/x and v(x) by v(x)/x, then

$$
0 \leq \int_{0}^{b} v(y)\phi(f(y)) \frac{dy}{y} - \int_{0}^{b} u(x)\phi(H_k f(x)) \frac{dx}{x}
$$

$$
\leq ||\phi''||_p \left(\int_{\alpha}^{\beta} \left| \int_{0}^{b} v(y)G_{12}(f(y), t) \frac{dy}{y} - \int_{0}^{b} u(x)G_{12}(H_k f(x), t) \frac{dx}{x} \right|^{q} dt \right)^{\frac{1}{q}}.
$$

Example 2. *By arguing as in Example* [1](#page-10-1) *but* $\Omega_1 = \Omega_2 = (b, \infty)$, $0 \le b < \infty$ *and with kernels such that* $k(x, y) = 0$ *for* $b \le y < x$ *we obtain the following result*

$$
0 \leq \int_{b}^{\infty} \phi(f(y))v(y)\frac{dy}{y} - \int_{b}^{\infty} \phi(H_{\bar{k}}f(x))u(x)\frac{dx}{x}
$$
 (24)

$$
\leq \|\phi''\|_p \left(\int_{\alpha}^{\beta} \left| \int_{b}^{\infty} v(y) G_{12}(f(y),t) \frac{dy}{y} - \int_{b}^{\infty} u(x) G_{12}(H_{\bar{k}}f(x),t) \frac{dx}{x} \right|^q dt \right)^{\frac{1}{q}}.
$$

 τ where the dual Hardy operator $H_{\bar{k}}f$ is defined by

$$
H_{\bar{k}}f(x) := \frac{1}{\bar{K}(x)} \int\limits_{x}^{\infty} k(x, y) f(y) dy,
$$
 (25)

where $\bar{K}(x) = \int_0^\infty$ *x* $k(x, y)dy < \infty$.

We continue with the following Example.

Example 3. Let $\Omega_1 = \Omega_2 = (0, \infty)$ and $k(x, y) = 1$, $0 \le y \le x$, $k(x, y) = 0$, $y > x$, $d\mu_1(x) =$ *dx,* $d\mu_2(y) = dy$ *and* $u(x) = \frac{1}{x}$ *(so that* $v(y) = \frac{1}{y}$ *) we obtain the following result*

$$
0 \leq \int_{0}^{\infty} \phi(f(y)) \frac{dy}{y} - \int_{0}^{\infty} \phi(A_k f(x)) \frac{dx}{x}
$$

$$
\leq ||\phi''||_p \left(\int_{\alpha}^{\beta} \left| \int_{0}^{\infty} G_{12}(f(y), t) \frac{dy}{y} - \int_{0}^{\infty} G_{12}(A_k f(x), t) \frac{dx}{x} \right|^{q} dt \right)^{\frac{1}{q}}
$$

where A^k is defined by

$$
A_k f(x) = \frac{1}{x} \int_{0}^{x} f(y) dy.
$$

Example 4. *By arguing as in Example* [3](#page-11-0) *but only with* $\phi(x) = x^p$, $\prod_{i=1}^k (p+1-i) \ge 0$ *we obtain the following result*

$$
0 \leq \int_{0}^{\infty} f^{p}(x) \frac{dx}{x} - \int_{0}^{\infty} \left(\frac{1}{x} \int_{0}^{x} f(t) dt \right)^{p} \frac{dx}{x}
$$

$$
\leq ||\phi''||_{p} \left(\int_{\alpha}^{\beta} \left| \int_{0}^{\infty} G_{12}(f(y), t) \frac{dy}{y} - \int_{0}^{\infty} G_{12}(A_{k}f(x)f(x), t) \frac{dx}{x} \right|^{q} dt \right)^{\frac{1}{q}}
$$

We continue with the result that involves Hardy–Hilbert's inequality. If $p > 1$ and f is a non-negative function such that $f \in L^p(\mathbb{R}_+)$, then

$$
\int_{0}^{\infty} \left(\int_{0}^{\infty} \frac{f(x)}{x+y} dx\right)^p dy \le \left(\frac{\pi}{\sin\left(\frac{\pi}{p}\right)}\right)^p \int_{0}^{\infty} f^p(y) dy. \tag{26}
$$

Inequality [\(26\)](#page-11-1) is sometimes called Hilbert's inequality even if Hilbert himself only considered the case $p = 2$.

Example 5. *Let* $\Omega_1 = \Omega_2 = (0, \infty)$, replace $d\mu_1(x)$ and $d\mu_2(y)$ by the Lebesque measures dx and *dy, respectively.* Let $k(x, y) = \frac{(\frac{y}{x})^{-1/p}}{x+y}$ $\frac{f(x)}{f(x+h)}$, $p > 1$ *and* $u(x) = \frac{1}{x}$. Then $K(x) = K = \frac{\pi}{\sin(\pi/p)}$ and $v(y)=\frac{1}{y}$. Let $\phi(u)=u^p$, $\prod_{i=1}^k(p-i+1)\geq 0$, replace $f(y)$ with $f(y)y^{\frac{1}{p}}$ then the following *result follows*

$$
0 \leq \int_{0}^{\infty} f^{p}(y) dy - K^{-p} \int_{0}^{\infty} \left(\int_{0}^{\infty} \frac{f(y)}{x + y} dy \right)^{p} dx
$$

$$
\leq ||\phi''||_{p} \left(\int_{\alpha}^{\beta} \left| \int_{0}^{\infty} G_{12} \left(f(y) y^{\frac{1}{p}} , t \right) \frac{dy}{y} - \int_{0}^{\infty} G_{12} (A_{k} f(x), t) \frac{dx}{x} \right|^{q} dt \right)^{\frac{1}{q}}
$$

where

$$
A_k f(x) = \frac{\sin(\pi/p)}{\pi} \int\limits_0^\infty \frac{f(y)}{x+y} x^{\frac{1}{p}} dy.
$$

We also mention Pólya–Knopp's inequality,

$$
\int_{0}^{\infty} \exp\left(\frac{1}{x} \int_{0}^{x} \ln f(t) dt\right) dx < e \int_{0}^{\infty} f(x) dx,
$$
\n(27)

for positive functions $f \in L^1(\mathbb{R}_+)$. Pólya–Knopp's inequality may be considered as a limiting case of Hardy's inequality since [\(27\)](#page-12-0) can be obtained from [\(5\)](#page-2-0) by rewriting it with the function f replaced with $f^{\frac{1}{p}}$ and then by letting $p \to \infty$.

Example 6. *By applying* ([22](#page-10-2)) *with* $\phi(x) = e^x$, *and f* replaced by $\ln f^p$, $p > 0$ *we obtain that*

$$
0 \leq \int_{\Omega_2} f^p(y)v(y) d\mu_2(y) - \int_{\Omega_1} \left[exp\left(\frac{1}{K(x)} \int_{\Omega_2} k(x, y) \ln f(y) d\mu_2(y)\right) \right]^p u(x) d\mu_1(x) \tag{28}
$$

$$
\leq ||\phi''||_p \left(\int_{\alpha}^{\beta} \left| \int_{\Omega_2} v(y) G_{12}(\ln f^p(y), t) d\mu_2(y) - \int_{\Omega_1} u(x) G_{12}(A_k f(x), t) d\mu_1(x) \right|^q dt \right)^{\frac{1}{q}}
$$

where $k(x, y)$, $K(x)$, $u(x)$ *and* $v(y)$ *are defined as in Theorem* [1](#page-1-4) *and*

$$
A_k f(x) = \frac{p}{K(x)} \int_{\Omega_2} k(x, y) \ln f(y) d\mu_2(y).
$$

At the end, we give interesting application.

Using [\(10\)](#page-4-1), under the assumptions of Theorem [4,](#page-4-2) we define the linear functional $A: C^n([\alpha, \beta]) \to \mathbb{R}$ by

$$
A(\phi) = \int_{\Omega_2} \phi(f(y))v(y) d\mu_2(y) - \int_{\Omega_1} \phi(A_k f(x))u(x) d\mu_1(x)
$$

$$
- \sum_{s=1}^m \frac{\phi^{(s)}(\alpha)}{s!} \left(\int_{\Omega_2} (f(y) - \alpha)^s v(y) d\mu_2(y) - \int_{\Omega_1} (A_k f(x) - \alpha)^s u(x) d\mu_1(x) \right)
$$

$$
- \sum_{r=0}^{n-m-2} \sum_{s=0}^r \frac{(-1)^{r-s} (\beta - \alpha)^{r-s} \phi^{(m+1+r)}(\beta)}{(m+1+s)!(r-s)!} \left(\int_{\Omega_2} (f(y) - \alpha)^{m+1+s} v(y) d\mu_2(y) \right)
$$

$$
- \int_{\Omega_1} (A_k f(x) - \alpha)^{m+1+s} u(x) d\mu_1(x) \right).
$$

If $\phi \in C^n([\alpha, \beta])$ is *n*-convex, then $A(\phi) \ge 0$ by Theorem [4.](#page-4-2) Using the positivity and the linearity of functional *A* we can get corresponding mean-value theorems. We may also obtain new classes of exponentially convex functions and get new means of the Cauchy type applying the same method as given in [\[14–](#page-13-13)[21\]](#page-14-0).

Author Contributions: Conceptualization, M.P.; Data curation, K.K.H.; Formal analysis, K.K.H. and D.P.; Investigation, K.K.H., D.P. and M.P.; Methodology, J.P. and D.P.; Supervision, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Kruli´c, K.; Peˇcari´c, J.; Persson, L.-E. Some new Hardy–type inequalities with general kernels. *Math. Inequal. Appl.* **2009**, *12*, 473–485.
- 2. Kruli´c Himmelreich, K.; Peˇcari´c, J.; Pokaz, D. *Inequalities of Hardy and Jensen*; Element: Zagreb, Croatia, 2013.
- 3. Hardy, G.H. Notes on some points in the integral calculus LX: An inequality between integrals. *Messenger Math.* **1925**, *54*, 150–156.
- 4. Kufner, A.; Maligranda, L.; Persson, L.-E. The prehistory of the Hardy inequality. *Am. Math. Mon.* **2006**, *113*, 715–732. [\[CrossRef\]](http://doi.org/10.1080/00029890.2006.11920356)
- 5. Kufner, A.; Maligranda, L.; Persson, L.-E. *The Hardy Inequality. About Its History and Some Related Results*; Vydavatelsky Servis Publishing House: Pilsen, Czech Republic, 2007.
- 6. Kuczma, M. *An Introduction to the Theory of Functional Equations and Inequalities*; Birkhauser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2009.
- 7. Pečarić, J.E.; Proschan, F.; Tong, Y.L. *Convex Functions, Partial Orderings and Statistical Applications*; Academic Press: San Diego, CA, USA, 1992.
- 8. Whittaker, J.M. *Interpolation Function Theory*; Cambridge University Press: Cambridge, UK, 1935.
- 9. Gontscharoff, V.L. *Theory of Interpolation and Approximation of Functions*; Gostekhizdat: Moscow, Russia, 1954.
- 10. Davis, P.J. *Interpolation and Approximation*; Blaisdell: Boston, MA, USA, 1961.
- 11. Agarwal, R.P.; Wong, P.J.Y. *Error Inequalities in Polynomial Interpolation and Their Applications*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993.
- 12. Cerone, P.; Dragomir, S.S. Some new Ostrowski-type bounds for the Chebyshev functional and applications. *J. Math. Inequal.* **2014**, *8*, 159–170. [\[CrossRef\]](http://dx.doi.org/10.7153/jmi-08-10)
- 13. Bradanovi´c, S.I.; Peˇcari´c, J. Generalizations of Sherman's inequality by Taylor's formula. *J. Inequalities Spec. Funct.* **2017**, *8*, 18–30.
- 14. Agarwal, R.P.; Gala, S.; Ragusa, M.A. A regulatory criterion in weak spaces to Boussinesq equations. *Mathematics* **2020**, *8*, 920 [\[CrossRef\]](http://dx.doi.org/10.3390/math8060920)
- 15. Agarwal, R.P.; Ivelić Bradanović, S.; Pečarić, J. Generalizations of Sherman's inequality by Lidstone's interpolationg polynomial. *J. Inequal. Appl.* **2016**, *6*, 1–18.
- 16. Iqbal, W.; Noor, M.A.; Noor, K.I.; Safdar, F. Generalized Petrovicś inequalities for coordinated exponentially m-convex fuctions. *Int. J. Anal. Appl.* **2021**, *19*, 296–318.
- 17. Jakšetić, J.; Pečarić, J. Exponetial convexity method. *J. Convex Anal.* 2013, 20, 181-197.
- 18. Krulić Himmelreich, K.; Pečarić, J. Some new Hardy–type inequalities with general kernels II. *Math. Inequal. Appl.* 2016, 19, 73–84.
- 19. Krulić Himmelreich, K.; Pečarić, J.; Praljak, M. Generalizations of Hardy type inequalities via new Green functions. submitted.
- 20. Krulić Himmelreich, K.Generalizations of Hardy type inequalities by Taylor's formula. submitted.
- 21. Krulić Himmelreich, K.; Pečarić, J.; Praljak, M. Hardy type inequalities involving Lidstone interpolation polynomials. submitted.