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Constrained form-finding results in a nonlinear system of equations unless a linear form-finding method (force 
density method) is iteratively applied until the given constraints are satisfied. Because the goal of this paper 
is to contribute to the further development of this method, a brief overview of the method and its existing 
improvements is provided. Further improvement can be potentially expected by reducing the number of iteration 
steps in solving systems of linear equations in each application of the force density method. To explore this, 
a comparison of iterative linear solvers is conducted. The Iterated Ritz method, as a new promising solver 
(currently under development), was chosen for comparison with typically used conjugate gradients. Form-finding 
of several truss structures in both tension and compression was performed to compare the number of iteration 
steps necessary to obtain the solution. The presented form-finding examples indicated a significant reduction in 
the number of solver iteration steps, showing the potential of the Iterated Ritz method for use as a solver in 
linear procedures for constrained form-finding.
1. Introduction

In recent years there has been a strong interest in investigating the 
possibilities of designing structural systems that would enable a more 
efficient use of resources. This is because their increased consumption 
affects not only the environment, but also the construction industry. 
Owing to the principle of gaining strength through geometry and not 
through materials, shape-dependent structures (such as cable nets, grid-
shells, shells and membranes) are a source of inspiration for various 
research studies aiming to provide more sustainable design and build-
ing solutions [1, 2, 3]. Advanced computational tools are needed to 
support such studies, because the shape of a form-active structure is 
not known in advance. Further, it needs to satisfy both the restrictions 
imposed by static equilibrium and boundary conditions, and the addi-
tional architectural and fabrication constraints. To find such a shape, 
we have to seek a compromise between the geometry and the forces 
by using a numerical process known as constrained form-finding. In 
the past, form-finding was not possible without using physical models 
(Fig. 1), because they enable an intuitive design process through inter-
active shape exploration. If the same experience wants to be created 
in a form-finding tool, real-time interventions on the geometry of the 
structure inside the computer-aided design tool are necessary. To de-
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velop such an interactive tool, the execution time of the implemented 
algorithm needs to be minimal.

The equations of the numerical model in a form-finding problem 
are based on large displacements; they are highly nonlinear, and in 
most methods do not depend on deformations, but only on the equi-
librium conditions of the nodes. The number of potential algorithms to 
be used is quite vast [4, 5, 6]; however, despite numerous studies in 
the literature on form-finding methods in the last 50 years, comparison 
studies remain rare. Owing to the different nomenclature, mathematical 
structures, and notations used, it is difficult to obtain a straightforward 
comparison. Also, the specific implementation of each method deter-
mines its success in practical usage [7]. Therefore, only a few studies 
have compared the actual performance of such methods. An important 
contribution to the comparison of form-finding methods is given in [6, 
8], where a generic form-finding method was developed to avoid at 
least some of the aforesaid problems. For minimal-length nets, 10 differ-
ent methods were compared, and the result showed that the geometric 
methods seemed to be superior to the stiffness and the dynamic meth-
ods.

The basis of the category of geometric methods is the force den-
sity method (FDM), which was developed in the 1970s for form-finding 
of prestressed cable structures [9, 10]. The advantages of the FDM are 
https://doi.org/10.1016/j.heliyon.2021.e07011
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Fig. 1. Physical model of tensile structure.

its fast preliminary shape generation and easy exploration of various 
feasible solutions. The force density method emerged from a formal ma-
nipulation of mathematical expressions, as a ratio of force and length 
in an element. The resulting system of linear equations is easier to 
solve than the original nonlinear system. Therefore, a number of im-
provements, extensions, and modifications to this method have been 
proposed, e.g. [11, 12, 13]. However, as the geometry of structure gets 
more complicated, it becomes harder to choose the distribution of force 
densities in order to meet not only structural requirements but also to 
design a functional structure that is at the same time architecturally 
pleasing. Such constrained form-finding demands an extension to the 
nonlinear FDM. By using the nonlinear FDM, which was also introduced 
in [9], certain structural requirements can be satisfied: the prescribed 
force values in selected elements, the prescribed lengths of the elements 
in an equilibrium configuration, and the prescribed unstrained lengths 
of the elements. To avoid the nonlinear system of equations, but still 
attain the prescribed constraints in the elements, an iterative applica-
tion of the linear FDM can be used as an alternative. For constrained 
form-finding, when the FDM is iteratively applied, the equation system 
is solved multiple times. Therefore, the standard algorithm needs to be 
accelerated to address the necessary speed requirements.

As tensile membrane structures and cable nets have similar proper-
ties (there are only tensile internal forces and both have fixed supports), 
the FDM was in [14, 15] extended to form-finding of tensile membranes, 
with further development in, among others, [11, 16, 17].

The modified form of the FDM was in [18] applied to cable domes 
and tensegrity structures, which are also related to, but in some im-
portant aspects (hereafter briefly mentioned) different from cable nets. 
Because tensegrity structures consist of tensile cables and compressive 
struts, force densities have positive or negative sign and therefore force 
density matrices can have negative eigenvalues. Also, tensegrities are 
free standing structures and accordingly, systems of force density equa-
tions are homogeneous. As a consequence, the equilibrium and the force 
density matrices must be rank deficient. Application of the FDM as an 
analytical and/or numerical form-finding tool for tensegrity structures 
and cable domes is further studied in [11, 12, 19, 20, 21, 22, 23]. In 
particular, in [19] various shape and symmetry constraints were intro-
duced. In [21] the geometrical constraints, as formulated in [24], were 
incorporated into the authors’ adaptive force density method [20]. Fur-
ther, in [23], where symmetry and element grouping were also treated, 
the new formulation of the method has been introduced in which the 
primary variables are not the nodal coordinates but the Cartesian com-
ponents (projections on coordinate axes) of cable and strut lengths.

Another “popular” method for form-finding of cable nets, mem-
brane structures and tensegrities is the dynamic relaxation method [25, 
26, 27], which was in [28] extended to constrained form-finding. It 
should be mentioned that form-finding problems can be “translated” 
to minimization problems, and then various optimization algorithms 
can be applied, e.g. [29]. On the other hand, the FDM has been used 
for the simultaneous optimization of the geometry and the topology of 
trusses [30].

In Section 2, an overview of the development of the Iterated FDM 
(IFDM) [31] and the Inexact Iterated FDM (IIFDM) [32] is presented as 
an introduction to the problem of creating a linear procedure for con-
strained form-finding that would answer the need for quick realisation 
2

in future interactive tools. In this paper further improvement, in the 
sense of reducing the number of iteration steps necessary to solve the 
system of linear equations in each iteration of the FDM, is explored. 
Therefore, the new solver named Iterated Ritz method (IRM) [33, 34], 
described in Section 3, is incorporated into the IFDM and IIFDM proce-
dures. In Section 4, through various examples of spatial truss structures 
in tension and compression, its performance is compared with that of 
conjugate gradients (standard solver).

2. Iterated FDM – prior work

The starting point for form-finding of spatial truss structures in ten-
sion or compression are the nonlinear equilibrium equations of free 
nodes. The equilibrium equation of node 𝑖 in direction 𝑥 is

∑
{𝑖,𝑗}∈𝑖

𝑆𝑖,𝑗

𝑥𝑗 − 𝑥𝑖

𝓁𝑖,𝑗
+ 𝑓𝑖,𝑥 = 0, (1)

where 𝑖 denotes the set of elements connected to node 𝑖, 𝑆𝑖,𝑗 the force 
value in element {𝑖, 𝑗}, 𝓁𝑖,𝑗 is the length of that element and 𝑓𝑖,𝑥 is the 
𝑥-component of the external load acting on node 𝑖. Similar expressions 
can be written for the 𝑦 and 𝑧 coordinates. The force density coefficient 
is defined as a ratio of force and length:

𝑞𝑖,𝑗 =
𝑆𝑖,𝑗

𝓁𝑖,𝑗
. (2)

As mentioned in the Introduction, this ratio can be used to linearise 
nonlinear equilibrium equations:

∑
{𝑖,𝑗}∈𝑖

𝑞𝑖,𝑗 (𝑥𝑗 − 𝑥𝑖) + 𝑓𝑖,𝑥 = 0. (3)

The unknowns are the coordinates of the free nodes (components of 
vectors 𝐱, 𝐲 and 𝐳). These systems have the same system matrix 𝐀; 
however, they vary in vectors on the right–hand side (𝐱f , 𝐲f and 𝐳f ), the 
components of which are the coordinates of fixed nodes, as it can be 
seen in Algorithm 1. As indicated in [35] and [36], for the constrained 
form-finding the linear FDM can be preserved and force constraints can 
be partially or completely fulfilled by applying the procedure iteratively 
and by changing the force density values in each iteration step. Force 
densities are recalculated using the force or the length values from the 
previous iteration step:

𝑞
(𝑘)
𝑖,𝑗

= 𝑞
(𝑘−1)
𝑖,𝑗

𝑆𝑖,𝑗

𝑆
(𝑘−1)
𝑖,𝑗

or 𝑞
(𝑘)
𝑖,𝑗

=
𝑆𝑖,𝑗

𝓁(𝑘−1)
𝑖,𝑗

, (4)

where 𝑞(𝑘)
𝑖,𝑗

is the force density in the current 𝑘–th step, �̄�𝑖,𝑗 is the tar-

get force value and 𝑆(𝑘−1)
𝑖,𝑗

, 𝑙(𝑘−1)
𝑖,𝑗

are, respectively, the force and length 
values obtained in the previous step. The iteration continues until the 
difference between the obtained and the target force value is smaller 
than the desired tolerance 𝜏𝑆 :

𝑒
(𝑘)
𝑆

= max |�̄�𝑖,𝑗 −𝑆
(𝑘)
𝑖,𝑗

| < 𝜏𝑆. (5)

In [37] the same procedure was used to obtain the network with uni-
form distribution of forces (minimal net), i.e. �̄�𝑖,𝑗 = �̄�.

In [31], the described procedure was extended to attain the pre-
scribed lengths of the elements. The target element length 𝓁𝑖,𝑗 can be 
attained in the same way as for the forces, by recalculating the coeffi-
cients in each step using one of the following two expressions:

𝑞
(𝑘)
𝑖,𝑗

= 𝑞
(𝑘−1)
𝑖,𝑗

𝓁(𝑘−1)
𝑖,𝑗

𝓁𝑖,𝑗
or 𝑞

(𝑘)
𝑖,𝑗

=
𝑆
(𝑘−1)
𝑖,𝑗

𝓁𝑖,𝑗
. (6)

Again, the iteration is terminated when further conditions are satisfied:

𝑒
(𝑘) = max |𝓁𝑖,𝑗 − 𝓁(𝑘)| < 𝜏𝓁 and/or 𝑒

(𝑘) = max |�̄�𝑖,𝑗 − 𝑆
(𝑘)| < 𝜏𝑆,
𝓁 𝑖,𝑗 𝑆 𝑖,𝑗
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where 𝜏𝓁 is the prescribed length tolerance and 𝜏𝑆 is the prescribed 
force tolerance. It is evident that the length constraint (6) and the force 
constraint (4) can not be assigned to the same element.

For the derivation of the unstrained length constraint, a relation 
among the force value, the strained and the unstrained length value 
of the element is required [9]. Assuming the linear Hooke’s law of 
elasticity, which describes the material relationship between force and 
element elongation, the relation between strained and unstrained length 
can be defined as:

𝓁𝑖,𝑗 =
𝐴𝑖,𝑗𝐸𝑖,𝑗 +𝑆𝑖,𝑗

𝐴𝑖,𝑗𝐸𝑖,𝑗

𝓁0;𝑖,𝑗 , (8)

where 𝐸𝑖,𝑗 is the modulus of elasticity and 𝐴𝑖,𝑗 is the cross–sectional 
area of the element {𝑖, 𝑗}. By using such element length definition in 
the force density expression from (6), we obtain

𝑞
(𝑘)
𝑖,𝑗

=
𝐴𝑖,𝑗𝐸𝑖,𝑗𝑆

(𝑘−1)
𝑖,𝑗

(𝐴𝑖,𝑗𝐸𝑖,𝑗 +𝑆
(𝑘−1)
𝑖,𝑗

)𝓁0;𝑖,𝑗
. (9)

The force density coefficient defined in such a manner can then be used 
to impose the unstrained length constraint in addition to the force and 
length constrains from the initial set–up of the algorithm. 𝐴𝑖,𝑗𝐸𝑖,𝑗 need 
not be real stiffness; it is a parameter that can be used to control the 
change in distance between nodes. By increasing its value we are striv-
ing towards 𝓁0;𝑖,𝑗 = 𝓁𝑖,𝑗 and the unstrained length constraint becomes 
the length constraint.

The proposed framework shows some advantages: it does not need 
an initial estimation of the solution, unlike other iterative procedures it 
gives an equilibrated configuration in each iteration step, and it obtains 
specified lengths of elements without introducing Lagrange multipliers. 
The last advantage is a valuable argument in favour of iteratively using 
the linear FDM, because length constraints are usually introduced into 
the calculations by using Lagrange multipliers (a nonlinear system is 
obtained) and the Newton–Krylov methods [38] show slow convergence 
in case of more complicated examples. The convergence problem can be 
explained by the fact that this is a saddle point problem [31].

However, the proposed procedure also sometimes requires time–
consuming calculations, rendering it inappropriate for the intended 
interactive work. Hence, in [32] a method was proposed to reduce the 
number of iteration steps necessary to solve the equation system in an 
attempt to accelerate the procedure. To do so, in every iteration step 
of the IFDM (outer loop) the accuracy for system solving (inner loop) 
is optimised. If the computed force values or the element lengths in 
some iteration of the IFDM are not near the required ones, it is reason-
able to solve the system only approximately, and with less accuracy the 
further away they are. Therefore, the tolerance for system solving is op-
timised to change gradually from initial tolerance towards the specified 
tight tolerance 𝜏eq providing the final solution in equilibrium. The idea, 
and the name of the method, was borrowed from the inexact Newton 
methods introduced in [39]. A simple pseudocode for such an extended 
procedure, with input data and a sequence of instructions, is given in 
Algorithm 1.

The tolerance to achieve in system solving 𝜏eq depends on the tol-
erances for the target values of the forces (𝜏𝑆 ) and element lengths 
(𝜏𝓁) ((5) and (7), respectively). It is known from linear algebra that 
a system of linear equations should be solved at least with the toler-
ance 𝜏eq = min (𝜏𝑆∕𝛼 , 𝜏𝓁∕𝛼), where 𝛼 is an estimate of ||𝐀−1||. If system 
wants to be solved in the 𝑘–th step of the outer loop using the tolerance 
that will mirror the difference between the calculated values of forces 
or lengths and the required ones, tolerance 𝜏(𝑘) should depend on error 
𝑒(𝑘). To determine the rule for calculating the tolerance in each step, the 
ratio of the tolerances for the inner and outer loops in the current step 
𝑘 needs to be equalized to their ratio in the final step. Since the error 
(in this case, the force error) is not known before the system is solved, 
the error value from the previous step, 𝑒(𝑘−1), is used:
𝑆

3

Algorithm 1 Inexact Iterated FDM algorithm.

Require: net topology, supports, 𝐪(0) , �̄�, �̄�, �̄�𝟎 , 𝜏𝑆 , 𝜏𝓁 , 𝜏eq , 𝑛max

Ensure: [ 𝐱(𝑘) 𝐲(𝑘) 𝐳(𝑘) ] { nodal coordinates }

1: 𝑘 ← 0

2: form 𝐀(0) and [ 𝐱(0)f 𝐲(0)f 𝐳(0)f ] with 𝐪(0)
3: solve 𝐀(0) [ 𝐱(0) 𝐲(0) 𝐳(0) ] = [ 𝐱(0)f 𝐲(0)f 𝐳(0)f ] with tolerance 𝜏eq
4: calculate 𝓵(0) , 𝓵(0)

𝟎 and 𝐒(0)
5: calculate 𝑒(0)

𝑆
, 𝑒(0)𝓁 and 𝑒(0)𝓁0

6: 𝛾𝑆 ← 𝜏eq(1 −
√
𝜏𝑆 )∕𝜏2𝑆

7: 𝛾𝓁 ← 𝜏eq(1 −
√
𝜏𝓁 )∕𝜏2𝓁

8: while
((
𝑒
(𝑘)
𝑆

> 𝜏𝑆
)
∨
(
𝑒
(𝑘)
𝓁 > 𝜏𝓁

)
∨
(
𝑒
(𝑘)
𝓁0

> 𝜏𝓁
))

∧
(
𝑘 ≤ 𝑛max

)
do

9: 𝑘 ← 𝑘 + 1

10: 𝑞
(𝑘)
𝑖,𝑗

← 𝑞
(𝑘−1)
𝑖,𝑗

�̄�𝑖,𝑗∕𝑆
(𝑘−1)
𝑖,𝑗

for (𝑖, 𝑗) ∶ �̄�𝑖,𝑗 ∈ �̄�
11: 𝑞

(𝑘)
𝑖,𝑗

← 𝑞
(𝑘−1)
𝑖,𝑗

𝓁(𝑘−1)
𝑖,𝑗

∕𝓁𝑖,𝑗 for (𝑖, 𝑗) ∶ 𝓁𝑖,𝑗 ∈ �̄�

12: 𝑞
(𝑘)
𝑖,𝑗

← 𝐴𝑖,𝑗𝐸𝑖,𝑗𝑆
(𝑘−1)
𝑖,𝑗

∕(𝐴𝑖,𝑗𝐸𝑖,𝑗 + 𝑆
(𝑘−1)
𝑖,𝑗

)𝓁0;𝑖,𝑗 for (𝑖, 𝑗) ∶ 𝓁0;𝑖,𝑗 ∈ �̄�𝟎

13: form 𝐀(𝑘) and [ 𝐱(𝑘)f 𝐲(𝑘)f 𝐳(𝑘)f ] with 𝐪(𝑘)
14: 𝜏

(𝑘)
𝑆

← min
{
𝛾𝑆

(
𝑒
(𝑘−1)
𝑆

)2
, 𝜂 (𝑒(𝑘−1)

𝑆

)3∕(𝑒(𝑘−2)
𝑆

)2}
15: 𝜏

(𝑘)
𝓁 ← min

{
𝛾𝓁

(
𝑒
(𝑘−1)
𝓁

)2
, 𝜂 (𝑒(𝑘−1)𝓁

)3∕(𝑒(𝑘−2)𝓁

)2}
16: 𝜏

(𝑘)
𝓁0

← min
{
𝛾𝓁

(
𝑒
(𝑘−1)
𝓁0

)2
, 𝜂 (𝑒(𝑘−1)𝓁0

)3∕(𝑒(𝑘−2)𝓁0

)2}
17: 𝜏 (𝑘) ← min

{
𝜏 (𝑘) , max

{
𝜏
(𝑘)
𝑆
, 𝜏 (𝑘)𝓁 , 𝜏 (𝑘)𝓁0

, 𝜏eq
}}

18: solve 𝐀(𝑘) [ 𝐱 𝐲 𝐳] = [ 𝐱(𝑘)f 𝐲(𝑘)f 𝐳(𝑘)f ] with tolerance 𝜏 (𝑘)
19: calculate 𝓵(𝑘) , 𝓵(𝑘)

𝟎 and 𝐒(𝑘)
20: calculate 𝑒(𝑘)

𝑆
, 𝑒(𝑘)𝓁 and 𝑒(𝑘)𝓁0

21: end while

𝜏
(𝑘)
𝑆

𝑒
(𝑘−1)
𝑆

=
𝜏eq

𝜏𝑆
. (10)

The relationship between the outer and the inner loop from (10) is 
further adjusted in [32] and the first expression in the tolerance op-
timisation rule (11) is obtained. The second expression is added to take 
into account the reduction rate of error 𝑒(𝑘)

𝑆
by considering the value 

ratio in two consecutive steps (similar to that in [40]), where 𝜂 is the 
constant that provides the additional control.

𝜏(𝑘)
𝑒𝑆

= min
⎧⎪⎨⎪⎩
𝜏eq (1 −

√
𝜏𝑆 )

𝜏2
𝑆

(
𝑒
(𝑘−1)
𝑆

)2
, 𝜂

(
𝑒
(𝑘−1)
𝑆

)3

(
𝑒
(𝑘−2)
𝑆

)2

⎫⎪⎬⎪⎭
. (11)

Like those for elements with force constraints, tolerance optimisation 
rules can be defined for elements with length and unstrained length 
constraints (see Algorithm 1). Among the three obtained tolerances, the 
smallest tolerance (the largest value) is then taken as the tolerance for 
solving the equation system. The tolerance in the 𝑘–th step should not 
be smaller than 𝜏eq in the final step, and since the convergence of the 
outer loop can be nonuniform, it is necessary to verify that the tolerance 
obtained in the ongoing step is equal to or smaller than the tolerance 
obtained in the previous one. Therefore, an additional constraint is in-
troduced:

𝜏(𝑘) = min (𝜏(𝑘−1), max (𝜏(𝑘)
𝑆

, 𝜏
(𝑘)
𝓁 , 𝜏

(𝑘)
𝓁0

𝜏eq). (12)

The new procedure inherits the beneficial features of the original 
scheme; however, it should be noted that because the equation system is 
solved only approximately in nearly all steps, the obtained dispositions 
of nodes are not in equilibrium until the last steps are reached. The nu-
merical examples presented in [32] and [41] have shown the beneficial 
effect of tolerance optimisation on a number of iteration steps needed 
to solve the system of equations.

3. Iterated Ritz method

If the tolerance for solving a system of linear equations is optimised, 
further iteration and (consequently) time reduction can only be ex-
pected from the solver itself. The original versions of the IFDM and 
IIFDM use conjugate gradient method to solve the systems of linear 
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equations in each step of the outer loop. The potential new solver, for it 
to be integrated into the existing research, has to be an iterative solver 
with a symmetric positive definite (SPD) matrix. Therefore, the IRM – 
the solver proposed by the project [42], is considered to be incorpo-
rated into the IFDM and IIFDM procedures. The solver is a promising 
alternative to the standard or the preconditioned conjugate gradient 
method.

It was shown in [43] that, if 𝐀𝐱 = 𝐛 is a real linear system with an 
SPD matrix of order 𝑛, the solution can be sought through successive 
minimisation of the corresponding energy functional or the quadratic 
form

𝑓 (𝐱) = 1
2
𝐱T𝐀𝐱 − 𝐱T𝐛 (13)

inside a small subspace formed at each iteration. An iterative procedure 
is usually defined as

𝐱(𝑘+1) = 𝐱(𝑘) + 𝐩(𝑘), (14)

where, according to [33, 34], the solution increment 𝐩(𝑘) is a linear com-
bination of a suitably generated set of linearly independent coordinate 
vectors 𝚽(𝑘) = [ 𝝓(𝑘)

1 𝝓
(𝑘)
2 … 𝝓(𝑘)

𝑚
] spanning a subspace in the current 

step:

𝐩(𝑘) = 𝚽(𝑘)𝐚(𝑘), (15)

where 𝐚(𝑘) is a vector of (unknown) coefficients. A local minimum is 
sought within the subspace, thereby decreasing the total energy of the 
system, which eventually converges to the required minimum.

The energy decrement can also be expressed as a quadratic function:

Δ𝑓 (𝐚(𝑘)) = 1
2
(
𝐚(𝑘)

)T �̄�(𝑘) 𝐚(𝑘) −
(
𝐚(𝑘)

)T �̄�(𝑘), (16)

where �̄�(𝑘) =
(
𝚽(𝑘))T𝐀 𝚽(𝑘) is the SPD generalised (Ritz) matrix and 

�̄�(𝑘) =
(
𝚽(𝑘))T 𝐫(𝑘) is the generalised residual vector, with a common 

definition of the residual 𝐫(𝑘) = 𝐛 − 𝐀𝐱(𝑘). When (16) is minimised, the 
following system of equations is obtained:

�̄�(𝑘)𝐚(𝑘) = �̄�(𝑘). (17)

By solving this, using any direct method, we obtain the solution neces-
sary to determine the solution increment in (15) and then the approx-
imate solution in (14) can be updated. The subspace dimension 𝑚 is 
much smaller than the number of unknowns, to have an iteration step 
that is the fastest possible. The main problem is, therefore, how to gen-
erate a small and efficient subspace in a short time, so that the energy 
depletion per step is the largest possible and the number of steps is 
vastly reduced. A simple pseudocode is given in Algorithm 2 to sum-
marise the IRM procedure.

The solver showed good initial results in [33, 34] for extremely large 
systems (107 unknowns) with sparse matrices and therefore its perfor-
mance in case of systems with fewer unknowns but solved in a large 
number of iteration steps is worth investigating hereafter.

4. Use of IRM in Iterated FDM and Inexact Iterated FDM

As explained in the earlier chapter, to try to reduce the number of 
iteration steps, instead of the conjugate gradient method, the IRM can 
be used.

To compare the number of steps necessary to solve the systems of 
equations using different methods, we performed form–finding of sev-
eral spatial truss structures in tension and compression. First, the cable 
nets are analysed, with an idea to use characteristic examples of the 
following groups: the minimal net with fixed edges, the net with edge 
cables containing the force and the length constraints and the high–
point net with a loop containing all three types of constraints. At the 
end, the form-finding of a stadium roof is presented as an example of a 
gridshell.
4

Algorithm 2 IRM algorithm.

Require: 𝐀, 𝐛, 𝐱(0) , 𝜀, 𝑛m𝑎𝑥 { usually 𝐱(0) ← 𝟎 }

Ensure: 𝐱(𝑘+1) { close to 𝐱 }

1: 𝑘 ← 0
2: 𝐫(0) ← 𝐛 −𝐀 𝐱(0)
3: 𝑞 ←

(
𝐫(0)

)T 𝐫(0) ∕ ((𝐫(0))T𝐀 𝐫(0)
)

4: 𝐩(0) ← 𝑞 𝐫(0)

5: while
(‖𝐫(𝑘)‖2 > 𝜀‖𝐫(0)‖2) ∧

(
𝑖 ≤ 𝑛max

)
do

6: 𝐱(𝑘+1) ← 𝐱(𝑘) + 𝐩(𝑘)

7: 𝐫(𝑘+1) ← 𝐛 −𝐀 𝐱(𝑘+1)
8: generate 𝚽(𝑘) = [ 𝝓(𝑘)

1 𝝓
(𝑘)
2 … 𝝓(𝑘)

𝑚
]

9: �̄�(𝑘) ←
(
𝚽(𝑘))T 𝐀 𝚽(𝑘)

10: �̄�(𝑘) ←
(
𝚽(𝑘))T 𝐫(𝑘+1)

11: solve �̄�(𝑘)𝐚(𝑘) = �̄�(𝑘)

12: 𝐩(𝑘+1) ← 𝚽(𝑘) 𝐚(𝑘)

13: 𝑘 ← 𝑘 + 1
14: end while

Fig. 2. Net with “rigid” supports.

4.1. Cable nets

In form-finding of cable nets, free nodes are acted upon only by the 
prestressing forces in connected elements, i.e. 𝑓𝑖,𝑥 in the equation (3) is 
equal to zero.

In the first example all cables have fixed supports and their height 
is determined by the expression:

𝑧 = 𝑎

2
ln

cos (𝑥∕𝑎)
cos (𝑦∕𝑎)

. (18)

The network covers a ground area [0, 𝑎]2 with 46 cables interesting in 
529 nodes (Fig. 2). Therefore, 529 equations for each of the three coor-
dinate directions need to be solved in every step of the outer loop. The 
minimal net is sought, with unit force values in all cables.

The second net consists from 78 inner cables and four boundary 
cables. The three corner points lie in the horizontal plane and the fourth 
one is elevated (Fig. 3). In the inner cable elements forces are specified, 
while for the boundary elements lengths are assigned. New coordinates 
are determined for 837 free nodes.

The third example has nine anchor points. Boundary cables connect 
eight supports that lie in the horizontal plane while the “ridge” and 
“valley” cables connect those supports with a high anchor (Fig. 4). For 
the elements of the boundary cables lengths are specified. The same is 
done for the elements of the “ridge” and “valley” cables, while in other 
cables the force values are specified.

The forth net is a high point net with an internal loop (Fig. 5). The 
net is spread over a square ground-plan area with four corner supports 
and one inner high point support. In this case, form-finding procedure 
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Table 1. Net characteristics.

Free 
nodes

Elements Force 
constr.

Length 
constr.

Unstrained 
length constr.

𝜏𝑆 𝜏𝓁 𝜏eq

Net 1 529 1 104 1 104 − − 10−4 − 5 ⋅ 10−7

Net 2 837 1 680 1 600 80 − 10−4 10−4 5 ⋅ 10−7

Net 3 832 1 720 1 520 200 − 10−4 10−3 5 ⋅ 10−7

Net 4.1 208 422 − 52 370 − 10−3 5 ⋅ 10−6

Net 4.2 208 422 322 52 48 10−4 10−4 5 ⋅ 10−7
Fig. 3. Net with edge cables.

Fig. 4. Net over octagon.

with the force constraints on the inner cables and the length constraints 
for the elements of the edge cables as well as the loop, shows sliding of 
the cables. To prevent cable sliding, the unstrained length constraints 
are used.

Besides preventing sliding, the goal is to keep the distribution of 
the prestressing force quite uniform. The force distribution and net 
deformation resulting from the two different design approaches were 
compared in [41]. In the first design approach (Net 4.1), the unstrained 
length constraints were assigned to all internal elements in order to ob-
tain an equidistant net. In the second design approach (Net 4.2), the 
unstrained lengths were assigned locally, while for the rest of the ele-
ments of the inner cables, the force constraints were assigned to control 
the force distribution.

The main characteristics of the cable nets, the constraints and the 
prescribed tolerances are given in Table 1. The constant in tolerance 
optimisation is 𝜂 = 0.02 and for the nets 4.1 and 4.2 the value of 𝐸𝑖,𝑗𝐴𝑖,𝑗

is defined as 100 for all cables.
The numbers of steps necessary to find the equilibrium shape of pre-

sented cable net structures using the Iterated FDM are given in Table 2, 
and Table 3 depicts the analogous numbers for the Inexact Iterated 
FDM. The number of steps in the outer loops is the number of the solved 
systems equations, or in other words, the number of the net configura-
tions calculated by the algorithm when approaching the solution that 
satisfies the set requirements with the prescribed tolerances. This num-
ber does not depend on the solver used because the net configuration 
and the resulting system of equations are interdependent. The force den-
5

Fig. 5. Net with internal loop.

Table 2. Comparison of the conjugate gradient method and the IRM according 
to the number of steps in the outer and the inner loops of the Iterated FDM for 
form-finding of cable nets.

Iterated FDM
CG IRM (2) IRM (3) IRM (4) IRM (5) IRM (6)

Net 1 Outer 395 395 395 395 395 395
Inner 11 815 11 803 4 993 3 599 3 062 2 804

Net 2 Outer 872 885 898 863 846 852
Inner 45 626 46 259 12 631 8 147 6 799 6 161

Net 3 Outer 299 300 304 296 295 297
Inner 24 844 24 852 6 204 3 741 2 926 2 490

Net 4.1 Outer 3 424 3 408 3 405 3 467 3 483 3 417
Inner 46 533 46 007 19 546 15 268 12 959 11 654

Net 4.2 Outer 305 304 306 302 305 305
Inner 17 239 17 233 5 656 3 443 2 835 2 508

Table 3. Comparison of the conjugate gradient method and the IRM according 
to the number of steps in the outer and the inner loops of the Inexact Iterated 
FDM for form-finding of cable nets.

Inexact Iterated FDM
CG IRM (2) IRM (3) IRM (4) IRM (5) IRM (6)

Net 1 Outer 395 394 394 393 395 396
Inner 5 601 5 602 2 958 2 567 2 474 2 439

Net 2 Outer 918 897 878 845 866 862
Inner 20 455 18 682 7 304 5 524 5 284 5 059

Net 3 Outer 267 272 282 286 306 308
Inner 7 180 7 278 2 672 2 249 1 935 1 822

Net 4.1 Outer 3 413 3 407 3 457 3 475 3 482 3 398
Inner 20 024 20 161 12 414 10 149 8 739 8 143

Net 4.2 Outer 301 301 293 309 311 311
Inner 5 821 5 773 2 233 1 887 1 788 1 739

sity coefficients for the system in a certain step are calculated according 
to the expression (4) and/or (6), by using the nodal coordinates from 
the configuration in the previous step. Because the input on initial force 
density distribution is the same no matter the solver, the formed systems 
of equations are very similar throughout the computation. The negligi-
ble differences between the numbers for outer loop steps are result of 
the rounding errors characteristic to each solver. Our goal is therefore 
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Fig. 6. New stadium Kantrida in Rijeka: architectural renderings (Courtesy of ZDL Architects (Rijeka, Croatia) and GAUarena (Rome, Italy).)

Fig. 7. Grid A.
set on reducing the number of steps in the inner loops, because this 
number is the sum of steps necessary to solve the three linear systems 
in every form-finding step (the outer loop).

The number 𝑛 in the IRM (𝑛) denotes the number of the coordinate 
vectors used. The used set of coordinate vectors is similar to the one 
used in [34]. The first two coordinate vectors, the 𝝓(𝑖)

0 and the 𝝓(𝑖)
1 , 

are the previous displacement increment 𝐩(𝑖−1) and the current resid-
ual 𝐫(𝑖). The third vector is defined by the expression 𝝓(𝑖)

2 = 𝐋−1𝐔−1𝐫(𝑖) =
𝐋−1𝐔−1𝝓(𝑖)

1 , while from the fourth vector onwards the vectors are de-

fined as 𝝓(𝑖)
𝑘

= 𝐋−1𝐔−1𝐀𝝓(𝑖)
𝑘−1, 𝑘 = 3, 4, …, where 𝐋−1 and 𝐔−1 denote the 

forward and the backward passes of the Gauss–Seidel iteration (i.e. one 
pass of symmetric Gauss–Seidel iteration).

4.2. Gridshells

The iterative application of the FDM is not reserved only for form-
finding of prestressed cable nets. By using the tension–compression 
analogy [44], it can also be used for form-finding of structures that 
primarily consist of compression elements.

Now, the 𝑓𝑖,𝑥 in the equation (3) is not equal to zero, because be-
tween the input parameters there are concentrated forces that act on 
free nodes of a gridshell and the unit weights of elements. The ad-
ditional vertical loads are calculated by summing the half weights of 
the elements connected to the same node. If the target lengths of the 
elements are given, they are used to calculate the weights at the be-
ginning of form-finding. Otherwise, in each iteration the weights are 
recalculated, according to the element lengths from the current net con-
figuration.

The structural optimization process based on the tension–compres-
sion analogy that is applied to the design of the roof for the new stadium 
Kantrida in Rijeka, Croatia is described in [45, 46]. The initial form of 
the gridshell, given by the architect, required excessive dimensions of 
all steel profiles to satisfy ultimate and serviceability limit states. This 
is the repercussion of the irregular roof geometry, the large opening 
in the centre, and the significant roof span. Therefore, an optimisation 
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procedure was needed to find a form of a gridshell with better structural 
efficiency. The three obtained solutions, discussed in [45, 46], are used 
here to test the behaviour of presented solvers during the form-finding 
of gridshells.

The gridshell has a tension reinforced prestressed ring at the bot-
tom, so in the form-finding process the nodes on the bottom ring are 
assumed fixed. The resulting geometry of the structure is a result of 
specified constraints and therefore the possible geometries were sought 
by authors in [45, 46] using diverse constraints. For the first set of kine-
matic constrains, the grid A, the target force in the inner ring was set 
to 2100 kN and in the other elements as 150 kN (Fig. 7). In the grid 
B, the final geometry consists of elements of the same length (6.40 m) 
while for the elements of the inner ring the axial force was set to 2000 
kN (Fig. 8). The equilibrium geometry of the grid A and grid B is about 
the same height (both are quite low). Because of the same (and rela-
tively high) axial force in the inner ring elements of the grid A, the ring 
tends to a circle shape and pulls other elements towards the plan centre, 
what differs considerably from the initial design. At the same time, ac-
cumulation of elements at the corners is avoided which is not the case 
for the grid B, where accumulation results in (certain) small length of 
the inner ring elements (causing aesthetic and production difficulties). 
Hence, both grids were discarded, and another set of constraints was 
defined.

In the grid C, the lengths of all elements were set as kinematic con-
straints. In the final geometry, not all elements might have exclusively 
compression forces since this is sometimes impossible to accomplish. 
As the process of form-finding is based on tension–compression anal-
ogy, these are the tension forces and the occurrence of compression 
forces should be avoided. Therefore, when the force changes from ten-
sion to compression (actually, when the element force tends to zero i.e., 
numerically, when the force value is less than some predefined value), 
the constraint on the length of the corresponding element is removed.

The resulting geometry was suitable from aesthetic and functional 
aspects (Figs. 9 and 6). The major differences, with the respect to the 
original design, were the shape of the inner ring, which is no longer 
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Fig. 8. Grid B.

Fig. 9. Grid C - final solution.

Table 4. Grid characteristics.

Free nodes Elements Force 
constraints

Length 
constraints

𝜏𝑆 𝜏𝓁 𝜏eq 𝜂

Grid A 420 900 900 10−3 5 ⋅ 10−6 0.005
Grid B 420 900 60 840 10−2 10−2 5 ⋅ 10−6 0.005
Grid C 420 900 900 10−2 10−5 0.01
Table 5. Comparison of the conjugate gradient method and the IRM according 
to the number of steps in the outer and the inner loops of the Iterated FDM for 
form-finding of gridshells.

Iterated FDM
CG IRM (2) IRM (3) IRM (4) IRM (5) IRM (6)

Grid A Outer 1 603 1 603 1 549 1 578 1 544 1 571
Inner 49 082 49 492 14 320 10 574 9 313 8 762

Grid B Outer 1 536 1 528 1 554 1 521 1 524 1 526
Inner 39 490 40 511 12 097 9 196 8 397 7 990

Grid C Outer 7 943 7 942 7 943 7 944 7 945 7 946
Inner 49 667 49 514 20 975 17 170 16 088 15 501

in the plane, and the increase of the equilibrium geometry curvature 
(Fig. 10).

The constraints and the other data for form-finding are given in Ta-
ble 4. The comparisons of the numbers of steps for the IRM used in the 
IFDM an IIFDM algorithm against the conjugate gradients are given in 
Tables 5 and 6, respectively. For the IRM, the same set of coordinate 
vectors was used as in the previous cable net examples.

5. Concluding remarks

The Iterated Ritz method is a new linear solver intended for (ex-
tremely) large systems of equations. Efficiency is not that important for 
smaller systems, because all solvers have sufficiently short execution 
times. However, in the iterative application of the force density method 
linear systems are solved in each iteration step and the time spent in 
solving them again becomes important, particularly if the method is 
used in an interactive form-finding environment.
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Table 6. Comparison of the conjugate gradient method and the IRM according 
to the number of steps in the outer and the inner loops of the Inexact Iterated 
FDM for form-finding of gridshells.

Inexact Iterated FDM
CG IRM (2) IRM (3) IRM (4) IRM (5) IRM (6)

Grid A Outer 1 648 1 659 1 531 1 629 1 639 1 545
Inner 34 963 36 870 13 189 9 868 8 958 7 816

Grid B Outer 1 484 1 588 1 773 1 640 1 556 1 666
Inner 16 108 14 820 7 118 6 005 5 243 5 565

Grid C Outer 7 966 7 968 7 941 7 941 7 945 7 940
Inner 34 991 35 544 16 526 13 876 13 528 13 070

The presented comparison of the solvers, the conjugate gradients 
(standard solver) and the newly implemented Iterated Ritz method, 
allows new insights into possibilities of reducing the number of steps 
necessary to solve the equation systems and consequently, the compu-
tational time for a linear procedure for constrained form-finding.

Through various examples of cable nets and gridshells in Section 4, 
the following observations were made:

• It is possible to reduce the number of solver iteration steps in each 
iteration of a form-finding procedure by using the Iterated Ritz 
method.

• Regarding the number of steps, for two coordinate vectors the It-
erated Ritz method is equivalent to the conjugate gradient method 
and therefore no improvement can be expected.

• Considerable reduction in the number of steps in inner loops ensues 
from the addition of the third coordinate vector.
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Fig. 10. New stadium Kantrida in Rijeka: comparison of the initial and the optimized geometry.
• Although additions of new coordinate vectors result in further re-
ductions, in most cases, after the fourth vector, the reduction is not 
significant.

As additional insides, two bottlenecks are discovered, due to which 
a further reduction in the execution time is not as perceivable. The first 
bottleneck is the generation of coordinate vectors in line 8 in Algo-
rithm 2, and the second one is the matrix—matrix product in line 9. 
Considering all mentioned, the following general conclusions can be 
made:

• One step of the Iterated Ritz method is slower than the one step of 
the conjugate gradient method.

• From the third coordinate vector onwards, the generation of co-
ordinate vectors is rather time-consuming, because the additional 
matrix–vector multiplications overweight the benefits from added 
vectors.

• Due to a significant reduction in solver iteration steps, the authors 
believe that the Iterated Ritz method had partially fulfilled the set 
goals and has a potential to become a solver in the form-finding 
problems if further remarks could be addressed by the future re-
search.

It should be taken into account that the results for solver comparisons 
are obtained by using generic coordinate vectors, applicable to various 
set of problems. As pointed out by the authors in [33, 34], the key to the 
success of the Iterated Ritz method is the choice of subspaces in which, 
in every step, the solution increment is sought. The procedure for deter-
mination of the coordinate vectors, which are tailored to the problem of 
form-finding and the force density method, should be therefore estab-
lished. Also, the possibility of directly forming the matrix �̄�(𝑘) (line 9 of 
Algorithm 2) in some subspaces, without matrix–matrix multiplication 
(similar to [47]) should be investigated.
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