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The extensibility of the Diophantine triple
{2, b, c}

Nikola Adžaga, Alan Filipin and Ana Jurasić

Abstract

The aim of this paper is to consider the extensibility of the Diophan-
tine triple {2, b, c}, where 2 < b < c, and to prove that such a set cannot
be extended to an irregular Diophantine quadruple. We succeed in that
for some families of c’s (depending on b). As corollary, for example, we
prove that for b/2−1 prime, all Diophantine quadruples {2, b, c, d} with
2 < b < c < d are regular.

1 INTRODUCTION

A set consisting of m positive integers such that the product of any two of
its distinct elements increased by 1 is a perfect square is called a Diophantine
m-tuple. There is long history of finding such sets. One of the questions of
interest, which various mathematicians try to solve, is how large those sets can
be. Very recently He, Togbé and Ziegler [12] proved the folklore conjecture
that there cannot be 5 elements in Diophantine m-tuple, i.e. m < 5. However,
there is also a stronger version of that conjecture that is still open, which
states that every Diophantine triple can be extended to a quadruple with a
larger element in a unique way (see [7]):

Conjecture 1. If {a, b, c, d} is a Diophantine quadruple of integers and
d > max{a,b,c}, then d = d+ = a+ b+ c+ 2(abc+

√
(ab+ 1)(ac+ 1)(bc+ 1)).
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2010 Mathematics Subject Classification: Primary 11D09; Secondary 11D45, 11B37,

11J86.
Received: 14.10.2020
Accepted: 15.11.2020

5



THE EXTENSIBILITY OF THE DIOPHANTINE TRIPLE {2, b, c} 6

There are a lot of results supporting this conjecture. The history of the
problem, with recent results and up-to-date references can be found on the
webpage [6].

We have the following definitions (see [10]). Let {a, b, c} be a Diophantine
triple such that

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2, (1)

where r, s, t ∈ N.

Definition 1. A Diophantine triple {a, b, c} is called regular if

(c− b− a)2 = 4(ab+ 1). (2)

Equation (2) is obviously symmetric under permutations of a, b, c. From
(2), by (1), we get

c = c± = a+ b± 2r,

ac± + 1 = (a± r)2, bc± + 1 = (b± r)2.

Definition 2. A Diophantine quadruple {a, b, c, d} is called regular if

(d+ c− a− b)2 = 4(ab+ 1)(cd+ 1) (3)

or, equivalently, if

d = d± = a+ b+ c+ 2(abc± rst). (4)

By (1) and (4), we have

ad± + 1 = (at± rs)2, bd± + 1 = (bs± rt)2, cd± + 1 = (cr ± st)2. (5)

Equation (3) is symmetric under permutations of a, b, c, d. An irregular Dio-
phantine quadruple is one that is not regular. It is known from [2] that every
Diophantine pair {a, b} can be extended to a regular Diophantine quadruple:

{a, b, a+ b± 2r, 4r(a± r)(b± r)}.

During the second conference on Diophantine m-tuples and related prob-
lems, that took place at Purdue University Northwest, we mentioned the fol-
lowing result [1, Theorem 4]. If {2, b, c, d} is a regular Diophantine quadruple,
then the Diophantine triple {b, c, d} is also a D(n)-set for two distinct n’s with
n 6= 1 (which means that bc + n, bd + n and cd + n are perfect squares). We
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have realized that this result would be even more elegant if we could drop the
word “regular”. On the other hand, in [11], Conjecture 1 was proven when
a = 1, so it makes sense to see if the method they used can prove this conjec-
ture for different values of a before attempting to generalize it, because that
would probably be very difficult.

For a = 2, by (1), we have

b = 2k(k + 1), r = 2k + 1, (6)

for k ∈ N. Hence, b = 4(1 + ... + k), where k ∈ N. We can notice that b is
always even. We take that b > 4000 because otherwise the triple {2, b, c}, with
2 < b < c, cannot be extended to an irregular quadruple by [3, Lemma 3.4].
We will use the condition b > 4000 through the paper. Since 12 +22 +...+k2 =
1
6 (2k+1)k(k+1), it is interesting to observe that br

12 = Pk, where Pk is a square
pyramidal number for k ∈ N. The problem of extending a Diophantine pair
{2, b} to a Diophantine triple {2, b, c} can be reduced to solving the Pellian
equation

2t2 − bs2 = 2− b, (7)

and then taking c = s2−1
2 . We will describe the set of solutions of the equation

(7), by following the arguments of Nagell [14] and Dujella [5]. Equation (7) is
equivalent to the Pellian equation

t2 − b

2
s2 = 1− b

2
. (8)

Such an equation has infinitely many solutions divided into classes∗ of solu-
tions. Among all elements of one class, we choose t0 + s0

√
b/2, where s0 has

the lowest nonnegative value among all elements t+ s
√
b/2 of the same class.

Such a solution is called a fundamental solution of the equation (8). Notice
also that |t0| has the lowest possible value in the class. By the arguments of [14,
Theorem 108 a], equation (8) has finitely many fundamental solutions. Hence,
it has finitely many classes of solutions. There are at most 2ω(1−b/2) classes of
solutions with gcd(t, s) = 1, where ω(1− b/2) denotes the number of distinct
prime factors of 1− b/2. Although we will focus on the situation when there
is only one class of solutions, with fundamental solutions (t0, s0) = (±1, 1), let
us mention here that this is not always the case. If k is of the form k = g2−2,
then (8) becomes t2 − (g4 − 3g2 + 2)s2 = −g4 + 3g2 − 1 and this equation has
fundamental solution (g3− g2− 2g+ 1, g− 1), which differs from (±1, 1) when
g 6= 2.

∗Two solutions t + s
√

b/2 and t′ + s′
√

b/2 of the equation (8) belong to the same class
if and only if tt′ ≡ (b/2)ss′ (mod (1− b/2)) and ts′ ≡ t′s (mod (1− b/2)).
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All elements of one class of solutions of the equation (8) can be obtained
from a fundamental solution by multiplication with a power of the minimal
solution in positive integers for the associated Pellian equation t2 − b

2s
2 = 1.

Therefore, all positive solutions (t, s) to equation (7) which belong to the same
class are given with (see [5, Lemma 1])

t
√

2 + s
√
b = (t0

√
2 + s0

√
b)(r +

√
2b)ν , (9)

where (t0, s0) is a fundamental solution to the equation (7) and ν ≥ 0. Since
we have fundamental solutions (t0, s0) = (±1, 1), then if those are only fun-
damental solutions (for example if b/2− 1 is a prime, but this is not the only
case), all positive solutions to the equation (7) are given with

(t, s) = (t±ν , s
±
ν ),

obtained by the recurrent relations for two different signs ±1:

t0 = ±1, t1 = b± r, tν+2 = 2rtν+1 − tν , (10)

s0 = 1, s1 = r ± 2, sν+2 = 2rsν+1 − sν , (11)

for ν ≥ 0. Since for ν = 0 we obtain c = 0, we have to consider the sequence
c = c±ν , with 2c±ν + 1 = (s±ν )2, bc±ν + 1 = (t±ν )2, for ν ≥ 1. By [4, Theorem 1.4.
(4)], we need to consider only 1 ≤ ν ≤ 3 i.e.

c±1 = 2 + b± 2r,

c±2 = 8b(2 + b± 2r) + 4(2 + b± r) = 4r(r ± 2)(b± r),
c±3 = 64b2(2 + b± 2r) + 16b(6 + 3b± 4r) + 3(6 + 3b± 2r).

We observe the extensibility of the triple {2, b, c±ν }, where 1 ≤ ν ≤ 3. Since
bc−1 + 1 = (b− r)2 < b2, it follows that c−1 < b. In all other cases b < c±ν . Our
main result in this paper is the following theorem:

Theorem 1. The triple {2, b, c±ν }, for ν ∈ N, cannot be extended to an irreg-
ular Diophantine quadruple {2, b, c±ν , d}, where d > c±ν .

Theorem 1 allows us to derive the following statement from the previous
observations.

Corollary 1. If b2−1 is a prime, then every Diophantine quadruple {2, b, c, d},
with 2 < b < c < d, is regular.

In order to prove Theorem 1, we use methods described in [11] by He,
Pintér, Togbé and Yang. In Section 2 we transform the problem of extend-
ing a Diophantine triple {2, b, c} to a Diophantine quadruple {2, b, c, d} into
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solving a system of simultaneous Pellian equations, which furthermore trans-
forms to finding intersections of binary recurrent sequences. In the next two
sections we finish our proofs using the standard methods, i.e. linear forms in
three, respectively two, logarithms of algebraic numbers and Baker-Davenport
reduction method.

2 The system of simultaneous Pellian equations

When trying to extend a Diophantine triple {2, b, c} to a quadruple
{2, b, c, d} we have to find d, x, y, z ∈ N such that

2d+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2. (12)

Elimination of d from (12) leads to the system of simultaneous Pellian equa-
tions

2z2 − cx2 = 2− c, (13)

bz2 − cy2 = b− c, (14)

2y2 − bx2 = 2− b. (15)

Each of equations (13), (14) and (15) has finitely many fundamental solutions
(z0, x0), (z1, y1) and (y2, x2), respectively. From these solutions, all solutions
(z, x), (z, y) and (y, x) of (13), (14) and (15), respectively, are, by [5, Lemma
1], given with

z
√

2 + x
√
c = (z0

√
2 + x0

√
c)(s+

√
2c)m, (16)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)n, (17)

y
√

2 + x
√
b = (y2

√
2 + x2

√
b)(r +

√
2b)l, (18)

for integers m,n, l ≥ 0. In any solution (x, y, z) of the system (13) - (15),
we have z = vm = wn, for some non-negative integers m and n, where the
sequences (vm)m≥0 and (wn)n≥0 are obtained using (16) and (17) and given
by

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,
w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn.

Hence, we are solving the equation

vm = wn (19)

in m,n ≥ 0. By [4, Theorem 2.1., Lemma 2.3.], it is enough to observe the
cases:
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• if v2m = w2n, then z0 = z1 = ±1 and x0 = y1 = 1,

• if v2m+1 = w2n+1, then z0 = ±t, z1 = ±s, x0 = y1 = r and z0z1 > 0.

In any solution (x, y, z) of the system (13) - (15), we also have y = Wn = ql,
for some non-negative integers n and l, where the sequences (Wn)n≥0 and
(ql)l≥0 are obtained using (17) and (18) and given by

W0 = y1, W1 = ty1 + bz1, Wn+2 = 2tWn+1 −Wn, (20)

q0 = y2, q1 = ry2 + bx2, ql+2 = 2rql+1 − ql. (21)

We finally have x = Vm = pl, for some non-negative integers m and l, where
the sequences (Vm)m≥0 and (pl)l≥0 are obtained using (16) and (18) and given
by

V0 = x0, V1 = sx0 + 2z0, Vm+2 = 2sVm+1 − Vm, (22)

p0 = x2, p1 = rx2 + 2y2, pl+2 = 2rpl+1 − pl. (23)

From (20) and (21), by induction, we get

W2n ≡ y1 (mod b), W2n+1 ≡ ty1(mod b),

q2l ≡ y2 (mod b), q2l+1 ≡ ry2 (mod b).

By [7, Lemma 1],

1 ≤ |y2| ≤
√

(r − 1)(b− 2)

4
<
b

2
.

Therefore, there hold:

• If W2n = q2l, then 1 ≡ y2 (mod b) so y2 = 1.

• If W2n = q2l+1, then 1 ≡ ry2 (mod b) so r ≡ r2y2 (mod b). By (1),
y2 ≡ r (mod b). Since, for b > 4000, |y2| < b

2 and r < b
2 , we get y2 = r.

In this case, from (15), we get x2
2 = 5, which is not possible.

• If W2n+1 = q2l, then rt ≡ y2 (mod b). From (10), we conclude that
t = t±ν ≡ ±1 or ± r (mod b), so y2 ≡ ±1 or ± r (mod b). As in the
previous case, we obtain a contradiction for y2 ≡ ±r (mod b). From
y2 ≡ ±1 (mod b), we conclude y2 = ±1.

• If W2n+1 = q2l+1, then rt ≡ ry2 (mod b). Since gcd(b, r) = 1, it holds
t ≡ y2 (mod b). Hence, y2 ≡ ±1 or± r (mod b), again. As previous, we
have y2 = ±1.
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Therefore, fundamental solutions of the equation (15) are (y2, x2) = (±1, 1).
From the above, we obtain that the following two possibilities are the only

types of fundamental solutions that can lead to extensions of the triple {2, b, c}
to a quadruple {2, b, c, d}:

Lemma 1. For the equation x = pl = Vm, where pl and Vm are defined by
(22) and (23), the following two possibilities exist:

a) if l ≡ m ≡ 0 (mod 2), then z0 = ±1, x0 = y2 = 1 and x2 = 1,

b) if m ≡ 1 (mod 2), then z0 = ±t, x0 = r, y2 = ±1 and x2 = 1.

3 Linear form in three logarithms

Using techniques from [11], firstly we transform the equation pl = Vm into an
equality for a linear forms in three logarithms of algebraic numbers. Let

α = r +
√

2b (24)

be the solution of Pell equation t2− b
2s

2 = 1, associated to the Pellian equation
(8). Similarly, let

β = s+
√

2c (25)

be the solution of Pell equation t2− c
2r

2 = 1, associated to the Pellian equation
t2 − c

2r
2 = 1− c

2 obtained from (1). Let

γ =

√
c(y2

√
2 + x2

√
b)√

b(z0

√
2 + x0

√
c)
. (26)

We follow the strategy used in [11] and define

Λ = l logα−m log β + log γ. (27)

As in [11, Lemma 3], it can be proven that

0 < Λ < β−2m, (28)

for m ≥ 1, which easily leads to 0 < Λ < 1
8c . From (28), we have

log Λ < −2m log β. (29)

For the possibilies from Lemma 1, we denote

λ =

 0, for a),
1, for b) with z0 = t,
−1, for b) with z0 = −t.

(30)
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In this section we show an upper bound on |(l− λ) logα−m log β| and we
also show that ∆ = l − λ− νm 6= 0. Then we use those results to get a lower
bound on index m.

Lemma 2. If x = pl = Vm, where pl and Vm are defined by (22) and (23),
then

|(l − λ) logα−m log β| = |Λ− λ logα− log γ| < 2
√

2√
b
. (31)

Proof. We show this for each possible case in (30) separately.

a) If λ = 0, then

γ =

√
c(
√

2 +
√
b)√

b(
√
c±
√

2)
=

(
1 +

√
2√
b

)(
1 +

√
2

√
c−
√

2

)
> 1.

Hence,

0 < log γ ≤ log

(
1 +

√
2√
b

)
+ log

(
1 +

√
2

√
c−
√

2

)
<

√
2√
b

+

√
2

√
c−
√

2
<

2
√

2√
b
,

which implies (31).

b) If λ = 1 and z0 = t, then γ =
√
c(
√
b±
√

2)√
b(t
√

2+r
√
c)

. In this case

αλγ − 1 = αγ − 1 =
±
√

2c(r +
√

2b)−
√

2b
t+
√
bc√

b(t
√

2 + r
√
c)

.

Since b > 4000, we have

|αγ − 1| <
√

2c(r +
√

2b) + 0.01√
b(t
√

2 + r
√
c)

and since
√

2c(r +
√

2b)−
√

2(t
√

2 + r
√
c) = 2

√
bc− 2t < 0,

it follows that

|αγ − 1| < 1.42√
b
.

Furthermore,

| log(αλ)| = | log(1 + (αλ− 1))| < 1.42√
b
,

so (31) holds.
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c) If λ = −1 and z0 = −t, then γ =
√
c(
√
b±
√

2)√
b(−t
√

2+r
√
c)

. In this case

αλγ − 1 = α−1γ − 1

=

√
2(t
√
bc− bc) + 2

√
b(r +

√
2b)±

√
2c(t
√

2 + r
√
c)√

b(r +
√

2b)(c− 2)
.

By (1), t >
√
bc, so we have

|α−1γ − 1| < 1√
2b(r +

√
2b)(c− 2)

+
2

c− 2
+

√
2c(t
√

2 + r
√
c)√

b(r +
√

2b)(c− 2)
.

Since b > 4000, from

√
2c(t
√

2 + r
√
c)

(r +
√

2b)(c− 2)
−
√

2 =
2
√

2(r +
√

2b) + 2
√
c

t+
√
bc

(r +
√

2b)(c− 2)

<
2
√

2 + 0.01

c− 2
< 0.01,

we get

|α−1γ − 1| < 1√
2b(r +

√
2b)(c− 2)

+
2

c− 2
+

1.42√
b
<

1.46√
b
.

Finally,

| log(α−1λ)| = | log(1 + (α−1λ− 1))| < 1.46√
b
,

so (31) holds.

As in [11, Lemma 5], we prove that the index l is not a multiple of index m
increased by λ, but here the situation is not completely analogue. We have to
consider each possible value of ν separately and apply mathematical induction
over m. To do that, we will need the following elementary lemma.

Lemma 3. If (qm)m≥0 is a second order linear recurrence relation with kernel
(A,B), i. e.

qm+2 = Aqm+1 +Bqm,

then (q2m+1)m≥0 is also a second order linear recurrence relation with kernel
(A2 + 2B,−B2), i. e.

q2m+1 = (A2 + 2B)q2m−1 −B2q2m−3.
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Proof. From the initial recurrence relation, we get

q2m+1 = A(Aq2m−1 +Bq2m−2) +Bq2m−1

= A2q2m−1 +B(q2m−1 −Bq2m−3) +Bq2m−1

= (A2 + 2B)q2m−1 −B2q2m−3.

Lemma 4. Let pl = Vm, for some positive integers m and l, where pl and

Vm are defined by (22) and (23). If the Diophantine quadruple {2, b, c, x
2−1
2 },

where c = c±ν for ν ∈ {1, 2, 3} and x = pl = Vm, is not regular, then

∆ = l − λ− νm 6= 0.

Proof. Let us define

αν = (r +
√

2b)ν = Tν + Uν
√

2b, (32)

with

T0 = 1, T1 = r, Tν+2 = 2rTν+1 − Tν , (33)

U0 = 0, U1 = 1, Uν+2 = 2rUν+1 − Uν , (34)

for ν ≥ 0. Notice that the sequences (Tν)ν≥0 and (Uν)ν≥0 are positive and
increasing. From (33) and (34), by induction, we get

Tmν+2ν = 2TνTmν+ν − Tmν

and
Umν+2ν = 2TνUmν+ν − Umν .

Hence, from (23),
pmν+2ν = 2Tνpmν+ν − pmν .

Also, it is easy to show that pν = x2Tν + 2y2Uν . By (9), (10), (33) and (34),
we have

s = s±ν = Tν ± 2Uν , (35)

for ν ∈ {1, 2, 3}. We distinguish three cases, depending on the value of λ in
(30).

a) If λ = 0, then z0 = ±1, x0 = 1, y2 = x2 = 1 so pν = Tν + 2Uν . In (22)
and (23), we have

V0 = 1, V1 = s± 2, Vm+2 = 2sVm+1 − Vm,
p0 = 1, p1 = r + 2, pl+2 = 2rpl+1 − pl,
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for m, l ≥ 1. If we prove that Vm 6= pmν , then l 6= mν so, in this
case, ∆ 6= 0. More precisely, by induction over m we will prove that if
{a, b, c, d} is irregular, then Vm 6= pmν . We distinguish two cases in (35).
Notice that in this part of the proof we consider the case from Lemma
1 a), so x = Vm is not even possible for odd values of m.

a1) Let s = s+
ν = Tν + 2Uν .

Let V1 = s − 2. For m = 1, we have V1 < pν . For m = 2 and
ν = 1, we have x = V2 = p2 = 2s(s − 2) − 1. In that case, we
get a regular quadruple {a, b, c, d}, where c = 2k2 + 6k + 4 and
d = d+ = 4(3 + 20k + 42k2 + 32k3 + 8k4). For ν > 1,

V2 = 2s(s− 2)− 1 > 2Tνpν − p0 = p2ν

is equivalent to

(Tν + 2Uν)(Tν + 2Uν − 2) > Tν(Tν + 2Uν) ⇔ Tν + 2Uν − 2 > Tν

⇔ Uν > 1.

For m = 3 and for ν ≥ 1, we have

V3 = 2sV2 − (s− 2) > 2Tνp2ν − pν = p3ν ,

because this is equivalent with

2s(2s(s− 2)− 1)− Tν − 2Uν + 2 > 2Tν(2Tνs− 1)− Tν − 2Uν

⇔ 2s(2s2 − 4s)− 2(Tν + 2Uν) + 2 > 4T 2
ν s− 2Tν

⇔ 2s(s2 − 2s− T 2
ν )− 2Uν + 1 > 0,

which is true since s2 − 2s− T 2
ν > 1.

If V1 = s+ 2, then V1 > pν and V2 > p2ν for ν ≥ 1.

In both subcases V1 = s−2 and V1 = s+ 2 of the case a1) the step
of induction is the same. We assume pmν+ν < Vm+1 which implies

pmν+2ν = 2Tνpmν+ν − pmν < 2TνVm+1 + (4UνVm+1 − Vm)

= 2(Tν + 2Uν)Vm+1 − Vm
= 2sVm+1 − Vm
= Vm+2.

Hence, we have proven Vm 6= pmν in the case a1).
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a2) Let s = s−ν = Tν − 2Uν .

For ν = 1, we have s = s−1 = r − 2, which is not possible. For
ν ∈ {2, 3}, we have the following situation. For m = 1, we have

pν = Tν + 2Uν > Tν − 2Uν ± 2 = V1,

which is equivalent to Uν > ± 1
2 .

If m = 2, there holds

V2 < p2ν ⇔ 2s2 ± 4s− 1 < 2T 2
ν + 4TνUν − 1

⇔ 2(T 2
ν − 4TνUν + 4U2

ν )± 4(Tν − 2Uν)− 1 <

< 2T 2
ν + 4TνUν − 1

⇔ 2U2
ν ± (Tν − 2Uν) < 3TνUν ,

which is true because Tν > 2Uν .

Before doing step of induction, let us notice that 2Tν − 1 > 2s and
that (pmν)m≥0 is increasing sequence.
Assume now that pmν+ν > Vm+1. Then,

pmν+2ν = 2Tνpmν+ν − pmν
= (2Tν − 1)pmν+ν + pmν+ν − pmν
> 2sVm+1

> 2sVm+1 − Vm
= Vm+2.

Therefore, Vm 6= pmν in the case a2).

b) If λ = 1, then z0 = t, x0 = r, x2 = 1, y2 = ±1 so pν = Tν ± 2Uν . From
(22) and (23), we have:

V0 = r, V1 = rs+ 2t, Vm+2 = 2sVm+1 − Vm,
p0 = 1, p1 = r ± 2, pl+2 = 2rpl+1 − pl,

for m, l ≥ 1. Notice that (Vm)m≥0 and (pl)l≥0 are increasing sequences.

If we prove that Vm 6= pmν+1, then l 6= mν + 1 so ∆ 6= 0. By induction
over m we will prove that if {a, b, c, d} is irregular, then Vm 6= pmν+1.
Notice that here we consider the case from Lemma 1 b), so x = Vm is
not possible at all for even values of m.

For m = 1, if x = V1 = pν+1 then, by (5), d = d+. For m ≥ 2, the idea
is to express s and t as polynomials in variable r. Hence, we also have
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Vm and pl expressed as polynomials in variable r and we can compare
them. For ν = 1, s = s+

1 = r + 2 and t = t+1 = (r2 + 2r − 1)/2. We
obtain p3 < V2 and p4 < V3. For ν = 2, if s = s−2 = 2r2 − 4r − 1 and
t = t−2 = r3 − 2r2 − r + 1, it holds p5 > V2 and p7 > V3. Similarly,
if s = s+

2 = 2r2 + 4r − 1, then p5 < V2 and p7 < V3. For ν = 3,
if s = s−3 = 4r3 − 8r2 − 3r + 2 then p7 > V2 and p10 > V3, while if
s = s+

3 = 4r3 + 8r2 − 3r − 2 then p7 < V2 and p10 < V3. Therefore, for
m = 2 and m = 3, we have Vm 6= pνm+1.

The step of induction can be obtained for each possible value of ν sepa-
rately, as follows. For ν = 1, if pm < Vm−1 then

pm+1 = 2rpm − pm−1 < 2rVm−1 + 2Vm−1 − Vm−2

= 2sVm−1 − Vm−2

= Vm.

For ν = 2, we will use Lemma 3.

Let s = s−2 . If p2m−1 > Vm−1 then, by Lemma 3,

p2m+1 = (4r2 − 2)p2m−1 − p2m−3 > (4r2 − 3)p2m−1

> (4r2 − 3)Vm−1

>
4r2 − 3

2s
Vm

=
4r2 − 3

4r2 − 8r − 2
Vm > Vm.

Let s = s+
2 . If p2m−1 < Vm−1 then, by Lemma 3,

p2m+1 = (4r2 − 2)p2m−1 − p2m−3 < (4r2 − 2)p2m−1

< (4r2 − 2)Vm−1

<
4r2 − 2

2s− 1
Vm

=
4r2 − 2

4r2 + 8r − 3
Vm < Vm.
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For ν = 3, we firstly get

p3m+1 = 2rp3m − p3m−1

= 2r(2rp3m−1 − p3m−2)− p3m−1

= (4r2 − 1)p3m−1 − 2rp3m−2

= (4r2 − 1)(2rp3m−2 − p3m−3)− 2rp3m−2

= (8r3 − 4r)p3m−2 − (4r2 − 1)p3m−3.

Hence,

(8r3 − 4r2 − 4r + 1)p3m−2 < p3m+1 < (8r3 − 4r)p3m−2. (36)

Let s = s−3 . If p3m−2 > Vm−1 then, by (36),

p3m+1 > (8r3 − 4r2 − 4r + 1)p3m−2 > (8r3 − 4r2 − 4r + 1)Vm−1

>
8r3 − 4r2 − 4r + 1

2s
Vm

=
8r3 − 4r2 − 4r + 1

8r3 − 16r2 − 6r + 4
Vm > Vm.

Let s = s+
3 . If p3m−2 < Vm−1 then, by (36),

p3m+1 < (8r3 − 4r)p3m−2 < (8r3 − 4r)Vm−1

<
8r3 − 4r

2s− 1
Vm

=
8r3 − 4r

8r3 + 16r2 − 6r − 3
Vm < Vm.

c) We omit the proof as it is very similar to the proof of case b).

Remark 1. If l = 0 or m = 0 in equation x = pl = Vm, then d = 0 by (12),
(22), (23) and Lemma 1. If m = 1, then we can obtain a regular quadruple

{2, b, c, x
2−1
2 }, as it is explained in parts b) and c) of the Lemma 4. Since in the

part a) the case x = V1 is not possible, for m = 1 the quadruple {2, b, c, x
2−1
2 }

is regular, if it exists. If m = 2, then we can also obtain a regular quadruple

{2, b, c, x
2−1
2 }, as it is explained in the part a1) of the Lemmma 4. By Fujita

[9, Lemma 8], for m = 2 we can’t have an irregular Diophantine quadruple.

Now we want to find the lower bound for m in a solution (l,m) of the
equation pl = Vm.
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Lemma 5. If the equation pl = Vm, where pl and Vm are defined by (22) and
(23), has a solution (l,m) with m ≥ 1 then, for b > 4000, we have

m > 0.69|∆|
√
b logα. (37)

Proof. From (31), we obtain∣∣∣∣ l − λm − log β

logα

∣∣∣∣ < 2
√

2

m
√
b logα

.

Using that and (32), we further obtain

|∆|
m

<

∣∣∣∣ log β

logα
− ν
∣∣∣∣+

2
√

2

m
√
b logα

. (38)

Also, there holds∣∣∣∣ log β

logα
− ν
∣∣∣∣ =

∣∣∣∣ log( β
αν )

logα

∣∣∣∣ =

∣∣∣∣ log(1 + β−αν

αν )

logα

∣∣∣∣. (39)

Using (25), (32) and (35), we have

∣∣∣∣β − αναν

∣∣∣∣ =

∣∣∣∣s+
√

2c− (r +
√

2b)ν

(r +
√

2b)ν

∣∣∣∣ =

∣∣∣∣∣2s−
1

s+
√

2c
−
(

2Tν − 1
Tν+Uν

√
2b

)
Tν + Uν

√
2b

∣∣∣∣∣
=

∣∣∣∣±4Uν − 1
s+
√

2c
+ 1

Tν+Uν

√
2b

Tν + Uν
√

2b

∣∣∣∣ < 4Uν + 0.01

2Uν
√

2b
<

1.42√
b
.

Hence, ∣∣∣∣ log
(

1 +
β − αν

αν

)∣∣∣∣ < 1.01

∣∣∣∣β − αναν

∣∣∣∣ < 1.44√
b
. (40)

From (38), (39) and (40),

|∆|
m

<
1.44√
b logα

+
2
√

2

m
√
b logα

=
1.44 + 2

√
2

m√
b logα

and then

1.44m+ 2
√

2 > |∆|
√
b logα.

Therefore, (37) holds.



THE EXTENSIBILITY OF THE DIOPHANTINE TRIPLE {2, b, c} 20

4 Linear forms in two logarithms and the proof of The-
orem 1

As in [11], we apply Laurent’s results (see [13]) on linear forms in two loga-
rithms. We obtain an upper bound on m, which will contradict lower bound
from Lemma 5 unless k < 106 roughly. Then we finish the proof of our main
result using the well known Baker-Davenport reduction method.

We can rewrite (27) into

Λ = log(α∆+λγ)−m log
( β
αν

)
= m log

(αν
β

)
− log(α−∆−λγ−1), (41)

where α, β, γ and αν are given with (24), (25), (26) and (32), respectively.
Let α1 := αν

β and α2 := α∆+λγ. Then, α1 is a zero of the polynomial(
X − Tν + Uν

√
2b

s+
√

2c

)(
X − Tν − Uν

√
2b

s+
√

2c

)
·

·
(
X − Tν + Uν

√
2b

s−
√

2c

)(
X − Tν − Uν

√
2b

s−
√

2c

)
= X4 − 4sTνX

3 + (4T 2
ν + 8c+ 1)X2 − 4sTνX + 1,

which is its minimal polynomial over Z, or minimal polynomial divides it.
For any non-zero algebraic number α of degree d over Q, with minimal

polynomial a0

∏d
j=1(X −α(j)), the absolute logarithmic height of α is defined

with

h(α) =
1

d

(
log |a0|+

d∑
j=1

log max{1, |α(j)|}
)
,

where α(j) are the conjugates of α in C. Here we have the linear form (41) in
two algebraic numbers α1 and α2 over Q. Since at most two conjugates of α1

are greater than 1, depending on wether αν > β or αν < β, as in [11], we have

h(α1) ≤ ν

2
logα or h(α1) ≤ 1

2
log β.

It holds

h(α∆+λ) =
1

2
|∆ + λ| logα
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and

h(γ) = h

(√
c(y2

√
2 + x2

√
b)√

b(z0

√
2 + x0

√
c)

)
≤ h

(
y2

√
2 + x2

√
b√

b

)
+ h

(
z0

√
2 + x0

√
c√

c

)
≤ 1

2
log(b+

√
2b) +

1

2
log(rc+ t

√
2c)

<
1

2
log(4rbc) <

3

2
logα+ log β.

Therefore,

h(α2) = h(α∆+λγ) ≤ 1

2
(|∆ + λ|+ 3) logα+ log β.

By (40), |α
ν−β|
αν < 1.426√

b
. Assuming k ≥ 1000, we have

| logαν − β| < 0.01.

We use the notation as in [11, Lemma 8] and get

h1 =
ν

2
logα+ 0.01 > h(α1),

h2 =
1

2
(|∆ + λ|+ 3 + 2ν) logα+ 0.01 > h(α2).

Further, since by (41) b1 = m, b2 = 1 and D = 4, we have

|b2|
Dh1

=
1

2ν logα+ 0.04
< 0.07.

Let us define

b′ =
m

2(|∆ + λ|+ 3 + 2ν) logα+ 0.04
+ 0.07. (42)

If log b′ + 0.38 ≤ 30
D = 7.5, then

b′ ≤ 1236.

Else, by [11, Lemma 8],

log |Λ| ≥ −17.9 · 44(log b′ + 0.38)2h1h2.

Also, by (29),

m log β < 17.9 · 128(log b′ + 0.38)2h1h2.
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Since log β > logαν − 0.01 > 2h1 − 0.03, we have

m < 1.01 · 17.9 · 64(log b′ + 0.38)2h2

and then
b′ − 0.07 =

m

4h2
< 289.264(log b′ + 0.38)2,

which yields b′ ≤ 33789.
Finally, from (42), we obtain the following statement.

Lemma 6. If for the triple {2, b, c±ν }, with 1 ≤ ν ≤ 3, the equation pl = Vm,
where pl and Vm are defined by (22) and (23), has a solution (l,m) with m ≥ 1
then, for k ≥ 1000, we have

m < 67578.15(|∆ + λ|+ 3 + 2ν) logα+ 1351.57. (43)

If the Diophantine quadruple {2, b, c, x
2−1
2 }, where c = c±ν for ν ∈ {1, 2, 3}

and x = pl = Vm, is not regular, then by Lemma 4, ∆ 6= 0. Therefore, we
assume that |∆| ≥ 1. If k ≥ 1000, by Lemma 5 and Lemma 6, we get

0.69|∆|
√
b logα < 67578.15(|∆ + λ|+ 3 + 2ν) logα+ 1351.57.

From that, we have

√
b <

67578.15(|∆ + λ|+ 3 + 2ν)

0.69|∆|
+

1351.57

0.69|∆| logα

< 97939.36(2ν + 5) + 257.71

< 1077590.56.

By inserting (6) into the last inequality, we obtain

k ≤ 761970.

We now finish the proof of Theorem 1 using the Baker-Daveport reduction
method, which is standard method in solving such problems for years. We
use its version from [8]. We get the first bound m < 1.33 · 1018 using the
same method as it was used in [7, Section 8]. Only this time we have the
exact values for fundamental solutions. In at most two steps of reduction in
all cases we get m ≤ 3. By Fujita [9, Lemma 8], if the equation (19) has a
solution which leads to an irregular Diophantnine quadruple, then m,n ≥ 3
and (m,n) 6= 3. Hence, if m = 3 then n ≥ 4. By Dujella [7, Lemma 3], for
m = 3 it holds n ≤ 4. Therefore, n = 4, which is not possible since m and n
have the same parity. That finishes the proof of Theorem 1 since for m ≤ 2,
by Remark 1, we get only the extensions to a regular quadruple (or d = 0).
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for several n’s, J. Number Theory 184 (2018), 330 –341.

[2] J. Arkin, V. E. Hoggatt and E. G. Strauss, On Eulers solution of a problem
of Diophantus, Fibonacci Quart. 17 (1979), 333–339.

[3] M. Cipu, A. Filipin and Y. Fujita, Bounds for Diophantine quintuples II,
Publ. Math. Debrecen 86 (2016), 59–78.

[4] M. Cipu, Y. Fujita and T. Miyazaki, On the number of extensions of a
Diophantine triple, Int. J. Number Theory 14 (2018), 899-917.

[5] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J.
Number Theory 89 (2001), 126–150.

[6] A. Dujella, Diophantine m-tuples,
http://web.math.pmf.unizg.hr/~duje/dtuples.html

[7] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine
Angew. Math. 566 (2004), 183–214.
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