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A B S T R A C T   

At the time of designing structures up to date, the density and magnitude of the load have increased, and the 
requirements for regulation have also become more stringent. To ensure the essential requirements, especially 
the mechanical resistance and stability, the numerical modelling of the structure is carried out according to the 
current regulations. Due to various assumptions, idealization, discretization, and parameterizations that are 
introduced numerical modelling, obtained numerical model may not always reflect the actual structural 
behavior. It is known that these structures have a hidden resistance that can be determined by combining 
experimental investigations (static or/and dynamic tests) and finite element model updating methods to mini-
mize the differences between the actual and predicted structural behavior. This paper provides a review of the 
FEMU process and methods used and summarizes the FEMU approach to help future engineers to select the 
appropriate method for solving some discussed issues. First, the main terms important for understanding FEMU 
are introduced. The whole process of model updating is described step by step: selection of updating parameters 
(design variables), definition of the model updating problem, its solution using different FEMU methods. An 
overview of the following methods is given: sensitivity-based, maximum likelihood, non-probabilistic, proba-
bilistic, response surface and regularization methods. Each of the method is presented with the corresponding 
mathematical background, implementation steps, and examples of studies from the literature.   

1. Introduction 

Numerical models are an effective modern tool for continuous 
monitoring of structures, damage detection, prediction of service life, 
and determination of an optimal maintenance strategy. The growing 
number of new and the advance of current numerical modelling 
methods have led to the need for numerical models to fulfil stringent 
requirements related to the accuracy and reliability of model and the 
results. Therefore, the errors and uncertainties associated with model 
assumptions that most often lead to inaccuracies and uncertainties must 
be quantified. Their evaluation is important to determine the degree of 
reliability and accuracy of the numerical model. This has led to the 
development of finite element model updating (FEMU) methods that 
aim to calibrate the numerical model based on the actual behavior of the 
structure determined as a part of static and/or dynamic testing of 
structure. In the context of different types of structures, numerical 
modelling is usually performed using finite element (FE) models [1]. 
This type of models is used to analyse the internal forces, stresses, dis-
placements, and structural dynamic parameters [2]. While updating the 

finite element models, there are two possible uncertainties, one related 
to the predicted FE model and one related to the experimentally ob-
tained data. Uncertainties associated with the FE model include differ-
ences between the predicted behaviour (numerical model) and the 
actual behaviour of the structure. In practise, this error can be reduced 
but never eliminated. Modelling uncertainties can be generally divided 
into the uncertainties of the model parameters, the model structure, and 
the model code [3]. Uncertainty in model parameters is usually due to 
incorrect assumptions of model parameters such as material properties; 
section properties, and thickness of shell or plate elements [4]. The 
uncertainty of the model structure arises from incorrect assumptions 
about the mechanical properties and physical behaviour of the structure. 
Such erroneous assumptions arise from different idealization and 
simplification of the structure, inaccurate assumption of mass distribu-
tions, incorrect modelling of mesh connections, boundary conditions, 
joints [5-7], and so on. Incorrect assumptions of loads, geometric shape, 
and structural behaviour (nonlinear/linear) can also lead to obvious 
uncertainty in the model structure [8]. These types of errors can be 
eliminated by introducing appropriate modelling assumptions. Some 
differences and unreliability can be minimized by developing a more 
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Nomenclature 

M̃ experimental data sets 
θ structural model parameters 
z output model 
M model operator 
M m class of models 
PM model parameter space 
PO response output space 
ε model uncertainty 
μ measurement uncertainty 
θopt optimal value of structural model parameters 
fi ith natural frequency 
ϕi nth mode shapes displacement 
nf size of the frequency residual vectors 
wf

i weighting factor of the ith element of the natural frequency 
residuals 

rf
i (θ) the ith element of the natural frequency residual vector 

nm size of the mode shape residual vectors 
wm

i weighting factor of the ith element of the mode shape 
residuals 

rm
i (θ) − ith element of the mode shape residual vector 

FRF Frequency response function 
Hexp(f) FRFs of experimental model 
Hnum(f) FRFs of FE model 
MF Modal flexibility 
MFnum(θ) Modal flexibility of FE model to be updated 
MFexp

(
θref
)

Modal flexibility of experimental model 
MFnum(θini) Initial modal flexibility of numerical model 
‖ • ‖fro Frobenius norm 
MSE Modal strain energy 
MSEnum,i modal strain energy for ith mode of the FE model 
MSEexp,i modal strain energy for ith mode of the experimental model 
ACC acceleration 
TH time history 
k node number 
nn total number of nodes 
nt time step of measured acceleration 
a*

kl measured acceleration at kth node at lth time step 
akl simulated acceleration at kth node at lth time step 
IL influence line 
t total number of influence line test points 
v total number of load step 
ZCk calculated influence line 
ZTk measured influence line 
ws weight factor of the kth test point 
ε strain 
nε size of the strain residual vector 
εexp

i actual measured strain time histories 
εnum

i estimated strains time histories 
nδ size of the displacement residual vector 
δ displacements 
δexp

i actual measured deflection 
δnum

i numerically estimated deflection ‖ • ‖- 2 norm 
P(θ|M m ) probability density function of the design space in the 

absence of any data 

P
(

θ|M̃,M m

)
posterior probability density function after the data 

have been observed 

P
(

M̃
⃒
⃒
⃒θ,M m

)
likelihood function of data M̃ in the presence of 

parameters θ and the model class M m 

P
(

M̃
⃒
⃒
⃒M m

)
normalisation function in the presence of the model class 

M m 

E
(

f(θ) |M̃
)

posterior expectation of function of the mean value of 
the updated parameters 

μ̃x membership function 
x̃ fuzzy set 
L(x) left reference membership function 
R(x) right membership reference function 
m average value 
p, q constants value in membership function 
Si sensitivity matrix 
OA Optimization Algorithm 
NNLSS Non-Negative Least Square Solution 
GA Genetic Algorithm 
NSGA-II Non-Dominated Sorting Genetic Algorithm-II 
HGA Hybrid Genetic Algorithm 
SGA Simple Genetic Algorithms 
CCGA Cooperative Coevolutionary Genetic Algorithm 
ELD Encoding by locations and damage factor 
SQP Sequential Quadratic Programming 
IRR GA Implicit Redundant Representation Genetic Algorithm 
SAA Simulated Annealing Algorithm 
GAHA Genetic Annealing Hybrid algorithm 
ML-GA Multi-Layer Genetic Algorithm 
EnKF Ensemble Kalman filter 
Xn

i position of swarms 
m number of swarm particle 
n number of the iteration 
s number of variables 
xn

ij position of the particle in the iteration n 
vn

ij the velocity of the particle in the iteration n 
C1, C2 learning factors 
rand1, rand2 random numbers between the zero and one 
Pbest ij, Gbestj the best positions achieved by the i-th agent closest to 

the target since the beginning of the process 
HPSO-NT Hybrid Particle Swarm Optimization with Sequential 

Niche technique 
MWFEM Multivariable Wavelet Finite Element Method 
PS-NM Hybrid Particle Swarm–Nelder–Mead 
MPSO Modified Particle Swarm Optimization 
MOPSO Multi-Objective Particle Swarm Optimization 
IEPSO Immunity Enhanced Particle Swarm Optimization 
PSO-NN Particle Swarm Optimization-based approach to train the 

Neural Network 
PSO-t-IRS Particle Swarm Optimization algorithm and an enhanced 

instantaneous response surface 
SA Simulated annealing 
ΔE energy change 
Pr Metropolis Hastings acceptance ratio 
KB Boltzmann constant 
T temperature in Kelvin 
HS Harmony search 
HM Harmony memory matrix 
MI Maximum improvisation parameter 
HMCR Harmony Memory Consideration Rate 
PAR Pitch Adjustment Rate 
UKF-HS Unscented Kalman Filter- Harmony Search 
RS response surface based method 
GRSMU Generalized Response Surface Model Updating 
MLSM Moving Least-Squares Method 
DEA Differential Evolution Algorithm 
r number of factors 
b number of samples 
v number of design variables 
MLP Multi layer perceptron 
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detailed FE model or so called a high fidelity finite element model [9]. 
Detailed modelling can minimize the degree of uncertainty in the model 
and the number of parameters that need to be updated. Most often this 
type of models and large scale models require performing the parallel 
computing in order to reduce the time required to perform model 
updating. Some of the parallel computing methods are bisection [10- 
13], domain [14] or loop based [15] decomposition, preconditioned 
conjugate gradient [16], Davidson algorithm [17], graphics processing 
unit GPU [18], Branch and Bound [19]. To reduce the error between the 
experimentally obtained structural dynamic properties and numerically 
obtained one, a sensitivity-based function with multiple variables is 
used. To find optimal structural parameters that minimize the chosen 
objective function, an iterative optimization process is performed. The 
development of a high-fidelity model FE can help to simplify the process 
of calibrating large structural models, which is contrary to common 
ideas about it [20]. The main problem on this type of models is the 
computational time require to perform any type of analysis, but this 
problem can be overcome using multi-fidelity FEM [21]. On the other 
hand, the symmetry and regularity of structures and their numerical 
models often challenge the solution of large-dimensional matrices, the 
computation of eigenvalues and eigenvectors. Methods such as graph 
coloration, group theory [22-24] bisection [25] and so on are used to 
solve this kind of problems. The uncertainty of the model code is related 
to numerical uncertainties or technical model uncertainties. These un-
certainties are mostly the result of software and hardware errors [3]. 

The experimental methods and their results most used to update the 
finite element model include static and dynamic structural tests or data 
and results obtained as a part of structural health monitoring. The errors 
that are most common in this field include those due to the imperfection 
of measuring equipment, random measurement noise, signal processing, 
and, in general, the problem of post-processing the measurement data 
[26-28]. In order to obtain a numerical model that represents the real 
structural behaviour as well as possible, its quality must be evaluated 
[29]. This assessment consists of three steps. In the first step, the 
assessment of the idealisation and numerical method errors is performed 
in order to eliminate or reduce these two types of errors. Then, the 
correlation analysis between the numerical model predictions and the 
experimental test results is performed to determine the differences and 
the extent of correlation between the predictions and the test results, 
and to determine which design parameters of the numerical model affect 
the output results. In the third step of the assessment, the quality of the 
numerical model is assessed after updating the selected design 
parameters. 

The definition of FEMU is not uniformly established in the literature. 
Marwala et al., [30] write in their study that model updating is devel-
oped to correct and improve the FE model of the structure according to 
the actual behavior. Shahbaznia et al., [31] define FEMU as the process 
of updating the original numerical model of a structure to better reflect 
the measured response of the actual structure. Schommer et al., [32] 
defined model updating as an optimization method. In this method, the 
objective function defined during the FEMU procedure minimizes the 
deviation between the structural behavior predicted by the numerical 
model and the actual structural behavior. Mottershead and Friswell [33] 
define FE model updating as a procedure to update the numerical model 
to better reproduce the measured response of the actual structures. In 
another paper [34], the same authors define model updating as the 
process by which the response of a FE model gradually approximates the 

response of the real structure by gradually updating the physical pa-
rameters. So, the definition is not uniform, but more or less all authors 
have the common basis of the definition: updating the numerical model 
based on the experimentally obtained test results to obtain the actual 
structural behaviour numerically. 

General division of FEMU methods divide them into the manual and 
automated methods. Although this is a very general classification, it is 
still very important, because often a combination of these methods leads 
to much better results and they are often used together [35-39]. This 
combination of automated and manual methods is usually used to bring 
the initial numerical model as close as possible to the actual behavior of 
the structure using manual updating, while automated model updating 
is performed to further reduce these differences and obtain a more 
reliable estimate of the unknown parameters. In addition, this combi-
nation can improve complete process of model updating and speed up 
computational time [36,37]. Generally, manual methods rely on trial 
and error in the selection of structural parameters such as geometry, 
material properties and boundary conditions. They are used when the 
number of parameters to be updated is small [40]. This method is not 
able to provide a reasonable physical explanation for the changes in the 
results. This can lead to inefficient results despite its simplicity [41]. 
When more parameters are considered, it is recommended to use auto-
mated methods. These methods are commonly used to reduce idealiza-
tion errors [5] and they are introduced with two sub-methods. The first 
one is a global FEMU and the second one is a local FEMU. The global 
model update assumes that the uncertainty parameters in the overall 
model have a single value for each selected element. The local model 
updating assumes that each mesh element has its own value for the 
uncertainty parameters [42]. 

The second classification is a bit more concrete. It divides FEMU 
methods into non-iterative (direct) and iterative (indirect). Direct model 
updating methods are the oldest methods used to update numerical 
models [43,44]. They are used to directly update the structure FEM by 
changing the structural stiffness matrix and the mass matrix. Without 
the use of iterative procedures, these methods can reproduce accurate 
experimental data, which makes them computationally efficient. These 
methods include the matrix update methods [45], the optimal matrix 
methods [46], the eigenstructure assignment methods [47], and the 
Langrage multiplier method [48]. As there are no direct changes in 
physical parameters of FEM when the model updating is performed 
under direct methods, the importance of the numerical model decrease, 
i.e., its ability for simulation decreases [49]. Despite the computational 
efficiency demonstrated in numerous studies [45,50,51], the use of the 
direct model updating method has decreased, and it has been replaced 
by indirect (iterative) methods [50]. The iterative methods are the most 
commonly used method for performing FEMU of civil engineering 
structures. They are further divided into deterministic (maximum like-
lihood) and stochastic (uncertainty quantification) methods. 

This paper gives a review of the most used approaches in finite 
element model updating of civil engineering structures, focusing on the 
iterative stochastic and deterministic methods and the process of their 
application. First, the main terms important for understanding the finite 
element model updating procedure are introduced. Then, the process of 
selecting the updating parameters is discussed. The mathematical 
formulation of finite element model updating problem for deterministic 
and stochastic iterative methods are discussed in the section 4. Sections 
5-11 discuss the deterministic and stochastic iterative methods most 

ANN Artificial neural network 
t-IRS instantaneous response surface method for time-dependent 

reliability analysis 
MCMC Markov Chain Monte Carlo 
TMCMC Transitional Markov Chain Monte Carlo 
MAP Maximum a posterior 

ACO Art Colony Optimization 
FKH Fuzzy- Krill Herd 
β regularization parameters 
‖{θ}‖2

2 l2 regularization term or norm solution 
MPC Minimum Product Criterion  
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often used for FEMU. Each of the methods is presented with the 
appropriate mathematical background and examples of studies in which 
it has been used to improve simple and complex numerical models and 
structures. 

2. Main terms in FEMU procedure and their relationship 

Before starting with the procedure and methods of FEMU, definition 
and explanation of some main terms is required. Those terms include the 
model, model class, measured data and model updating. In the following 
their definition and mathematical description is given. 

Experimental datasets M̃ is a q-component vector that can compress 
one type of dataset (homogeneous) or multiple types of datasets (het-
erogeneous). This vector is based on the output quantities such as the 
natural frequency and mode shapes, while it can also be based on the 
strains and displacements. 

Considering the structural properties as input variables and the re-
sults of numerical analysis as the output variables. The model can be 
generally described as the input–output function between the updating 
design variables and output results. Input variables considering the 
structural model parameters θ, while the output response z is defined as 
the output (i.e., displacements, strains, natural frequency, mode 
shapes…) due to the any input vector x. To sum previous, can be 
generally defined by the equation that connects the input and the output 
variables in the following form: 

z = M(x, θ) (1)  

where M is model operator which describes the input–output behaviour. 
In the finite element model updating procedure it is often working with 
the output results which are independent of vector £, and the previous 
relation can be expressed as: 

z = M(θ) (2) 

Model parameter vector θ represents a class of models M m and 
ranges over a subset PM. The model in the structural model class can be 
defined as: 

M m = {M m(θ) |θ∊PM } (3) 

Each of the associated model in model class maps the model 
parameter space PM into the model output response space PO. 

After defining the experimental data sets, model, model class, the 
model updating can be defined as a process of parameter estimation of 
specific model class. If considering the vector of model uncertainty (ε) 
and vector of measurement uncertainty (μ), the vector of measured data 
sets can be defined as follows: 

M̃ = M(θ)+ ε+ μ (4) 

For model parameter optimal value θopt, the outputs of numerical 
model M(θopt) represent a model M m

(
θopt
)

for the experimentally ob-
tained data sets M̃. 

The next section discussed about the selection of design variables 
whose values are updated when the finite element model is updated. 

3. Selection of the updating parameters and model class 

The selection of an appropriate set of parameters of the numerical 
model, whose values are updated during the model updating is a non- 
trivial procedure. The selected parameters of the numerical model 
should represent the unknown structural properties, but their number is 
also be limited to avoid ill-conditioned problems. However, in addition 
to adjusting the number of updating parameters, ill-conditioned prob-
lems can also be solved by conditioning the structural stiffness matrices 
using the cut-set basis [52] and preconditioned conjugate gradients 
methods [53], flexibility matrices using the methods for generating 

cycle bases of networks [54] and other methods [55]. 
Regardless of the method used to perform model parameterization, 

problems arise during updating that lead to non-unique solutions. 
Parameter estimation is constrained when the amount of measured data 
is insufficient. This leads to an underdetermined system of equations in 
deterministic methods or unidentified parameters in stochastic iterative 
methods [2956]. Regularisation is often used to update the deterministic 
finite element model, but parameterization is also preferred [57]. 
Regardless of the simplicity or complexity of finite element models, they 
often have many parameters, including the material properties and cross 
section of the element, the connection of model and boundary condition 
properties, and the model geometry, which can be selected as updating 
parameters. Model parameterization has a significant impact on 
reducing errors and simplifying the finite element models. According to 
Mottershead and Friswell [33] in order to meet the requirements for the 
accuracy and reliability of the numerical model and the performance of 
the model updating procedure, the parameterization procedure should 
meet the following criteria: 

• To overcome the ill-conditioned problems, a limited number of pa-
rameters should be selected for updating.  

• The uncertainties model should be corrected by model 
parameterization.  

• The outputs of the numerical model must be sensitive to selected 
updating parameters. 

Model parameterization that includes sensitivity analysis of the 
model has the great advantage of providing sensitive parameters and 
suppressing the problem of inadequacy. This group of parameterization 
methods includes the subset selection method [58] and the parameter 
clustering method [59]. In the subset selection method, a reduced 
number of parameters of the finite element model are selected to be used 
as updating parameters. The parameters that do not affect the output 
results are excluded from the model updating process. Originally, this 
approach was used in regression analysis [60]. Since it is not practical or 
possible to test all possible subsets of parameters for a large number of 
parameters, heuristics are used [61]. In these approaches, parameters 
are selected by an orthogonalization process based on the similarity of 
their sensitivity vector corresponding to the columns of the sensitivity 
matrix. The orthogonalization process ensures that each parameter has a 
different effect on the residual reduction. In addition, there are methods 
based on the decomposition of the sensitivity matrix [62] and the 
method that uses global sensitivity analysis for subset selection in model 
updating [58]. The second sensitivity-based method, the clustering 
method [59], is based on grouping the parameters of a numerical model 
with similar sensitivity into a cluster, each of which changes with an 
update parameter [63]. Selected updating parameters from the same 
cluster have the same effect on the model updating process. To link 
similar sensitivities, the unweighted pair group method (UPGMA) is 
used along with the arithmetic mean [64]. This method allows grouping 
parameters into binary clusters and then all uncertain parameters are 
normalized to specific values based on their physical values. To obtain 
an updated model for further analysis, the updated parameters are 
multiplied by their initial value. In addition to the previously described 
parameterization methods based on sensitivity analysis, some other 
iterative methods are also used for parameterization, such as Bayesian 
parameterization [65] and particle swarm parameterization [66]. 

Despite the proposed techniques, the selection of updating parame-
ters depends mainly on the understanding of structural principles, good 
engineering judgment, and test objectives [29,67]. In order to obtain a 
physically accurate model, avoid convergence difficulties and ill- 
conditioned problems, the number of updating parameters must be 
limited and correspond to the test objective. Ultimately, it should pro-
vide an updated analytical model that represents a real structure and its 
actual behavior [38,68]. 

In addition to properly defining parametrization and selection of the 
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updating parameters, properly performing the selection of the class of 
the structural model is also important for the successful and efficient 
updating procedure. The class of numerical model represents a set of 
probable input–output models of the modelled system with respect to 
the various parameterizations of the structure [69]. To perform the 
model class selection different methods can be used such as the 
sensitivity-based method [70], the Bayesian approach [71], and the 
Particle Swarm Optimization [66]. Most often, the model class selection 
is performed using the Bayesian approach due to the fact that it gives a 
quantitative expression that can be used to set those simpler models are 
to be preferred over unnecessarily complicated [65]. According to this 
method, the model class with the highest probability is selected for 
further use. It often happens that a complex model class is better than 
one that has less adjustable uncertain parameters, which is a problem. If 
the selected model class, which is considered optimal in each class, 
minimizes the rate of fitting error between the output data and the 
corresponding predictions, the choice of model will tend to those that 
have more efficient free parameters. Therefore, in choosing the optimal 
model class, it is very important to penalize the complicated model, 
which is a great challenge [71]. This topic is very important in order to 
select the numerical model which best describes the actual structure 
without compromising the computational efficiency of the model 
updating process and the accuracy of the adjustment [72]. This pro-
cedure is very important in model updating and the closely related 
procedure of selecting a model class that most accurately describes the 
actual behavior of the structure without compromising the complexity 
of the model, the computational efficiency of the improvement method, 
and ultimately the results of the model updating. Therefore, this topic 
will be discussed through the some of the following chapters that deal 
with the model updating methods that are also used for model class 
selection. 

4. Definition of finite element model updating problem 

The finite element model updating problem is generally defined as 
the difference between the structural behavior predicted by the nu-
merical model and the actual behavior. Depending on the method used, 
whether iterative stochastic or deterministic, this problem is defined as 
an optimization or statistical problem. This section gives an overview of 
the definition of finite element model updating problem using the iter-
ative deterministic or stochastic (probabilistic and non-probabilistic) 
method. 

4.1. Iterative deterministic maximum likelihood method 

In practical engineering applications, FEMU is performed using the 
maximum likelihood method (MLM), which transforms the model 
updating problem into an optimization problem. As part of the trans-
formation, an objective function is defined in terms of residuals between 
different types of numerically and experimentally obtained data sets 
(Tables 1 and 2). These data sets include the structural dynamic prop-
erties [73-80], static data sets [81-84] or their combination [32,85-88]. 
The most often, as a first indicators the structural dynamic properties - 
natural frequencies and mode shapes are used. These data sets are the 
best indicators of the actual behaviour of the structure, because when 
there are changes to the structure, this leads to a change in the structural 
stiffness (structural flexibility), which in turn leads to a change in the 
structural dynamic properties. These changes are not large and 
emphasize. Therefore, it is very important to achieve high accuracy 
when performing the experimental tests in the field. In addition to the 
natural frequencies and mode shapes, the formulation of the objective 
using the frequency response function (FRF) in FEMU is also very pop-
ular [75,89-95] and offers some advantages in the application. These 
advantages are related to the fact that the FRF can adequately reproduce 
the dynamic properties. Moreover, by using the FRF, the FEMU avoids 
the error caused by modal fitting and does not require any fitting be-
tween the predicted and measured mode shapes [75]. Other widely used 
forms of the objective function that have also been successfully used in 
FEMU are the modal flexibility residuals (MF) [77,78,96-98]. 
Comparing the influence of different possible residuals (frequency, 
mode shapes, and modal flexibility and their combination), the authors 
conclude that [77] the objective function that considers all three re-
siduals shows the best performance in model updating. In addition to the 

Table 1 
Examples of objective function defined using dynamic data sets.  

Data sets Examples of related studies Example of objective function 

fi, ϕi Jiménez-Alonso et al., [110] SINGLE OBJECTIVE 

f(θ) =
1
2

[
∑nf

i
wf

i • rf
i (θ)

2
]1/2

+
1
2

[
∑nm

i
wm

i • rm
i (θ)

2

]1/2

θ ∊ [θl , θu]&
∑

wi =
∑

wf
i +
∑

wm
i = 1 wi ≥ 0 

MULTI OBJECTIVE 

min f (θ) = min ( f1(θ)&f2(θ) )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(θ) =
1
2

[
∑nf

i
rf
i (θ)

2
]1/2

f2(θ) =
1
2

[
∑nm

i
rm
i (θ)

2

]1/2 

FRF Pu et al., [91] Hexp(f) − Hnum(f)

MF Cui et al., [97] ‖MFnum(θ) − MFexp
(
θref
)
‖

2
fro

‖MFnum(θini) − MFexp
(
θref
)
‖

2
fro 

MSE Jaishi and Ren [79] ∑nm
i=1

(MSEnum, i

MSEexp, i
− 1
)2 

ACC and TH Feng and Feng [104] ∑nn
k=1

(∑nt
l=1
[
a*

kl − akl
]2
)

Table 2 
Examples of objective function defined using static data sets.  

Data 
sets 

Examples of related 
studies 

Example of objective function 

IL Liao et al., [81] ∑t
s=1ws

∑v
k=1

(ZCk − ηZTk

ZTk

)2 

ε Tchemodanova 
et al., [82] 

∑nε
i=1

(
1 −

‖εexp
i − εnum

i ‖

‖εexp
i − εinum‖

)

δ, ε Kim et al., [83] 
Sanayei et al., [84] 

∑nδ
i=1

(
1 −

‖δexp
i − δnum

i ‖

‖δexp
i − δinum‖

)
∑nε

i=1

(

1 −
‖εexp

i − εnum
i ‖

‖εexp
i − εinum‖

)
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previously mentioned dynamic properties and their derivatives, the 
objective function can also be defined using the modal strain energy 
(MSE) [79,80,99-101]. Measured acceleration is most commonly used 
for damage detection and estimation of remaining capacity in combi-
nation with some of the FEMU methods for structures subjected to 
traffic-induced vibrations [102-104]. In addition to the use of structural 
dynamic properties, which are more suitable for modelling complex 
structures, displacements and strains obtained from in-situ static tests 
have also been successfully used for FEMU [81-84] performing the 
FEMU. These types of data sets are also combined with the structural 
dynamic properties to perform model updating [6,32,36,85,88,105- 
109]. 

Since different types of data sets with different nature can be used to 
perform the model updating, a problem how to weigh the influence of 
each residuals arise. There are two possible approaches: single (5) and 
multi (6) objective approach. 

min f (θ) = min
1
2
∑n

i=1
wiri(θ)2

= min

(
1
2
∑nf

i=1
wf

i r
f
i (θ)

2
+

1
2
∑nm

i=1
wm

i rm
i (θ)

2

)

(5)  

min (f1(θ), f2(θ) ) = min

(
1
2
∑nf

i=1
rf

i (θ)
2,

1
2
∑nm

i=1
rm

i (θ)
2

)

(6) 

In a single objective approach (5), the objective function is defined 
by the weighted differences (referred to as residuals) between the nu-
merical and experimental properties under consideration. To account 
for the relative contributions and uncertainties associated with an 
experimental estimate of a dynamic or static structural parameter to the 
objective function, the residuals must be weighted in this approach. The 
weighting of the residuals is very important to obtain more accurate 
FEMU-a results. When the natural frequencies are taken into account, 
their values can be determined experimentally very easily and with high 
accuracy. Therefore, weighting factors with a high value are assigned to 
them. On the other hand, compared to the natural frequencies, the mode 
shapes are less sensitive to changes in structural stiffness and have about 
10 times greater influence due to noise [51]. In order to achieve a 
possible correlation between the experimentally and numerically ob-
tained data sets, the weighting factors of the mode shapes must be 
analysed to obtain their optimal values [111]. Since the optimal value of 
the weighting factors is not known in advance, they can be obtained by 
the trial-and-error method [108] or by statistical criteria [33]. Usually, 
it is assumed that the optimal value is between 0 and 1 [112]. The use of 
these values ensures the best correlation between experimentally and 
numerically determined mode shapes. In another work, it was assumed 
that the optimal value of the weighting factors is different [36]. In 
damage detection based on FEMU, it is also difficult to define an 
objective function and choose appropriate weighting factors for mode 
shapes or natural frequencies when structural dynamic parameters are 
involved, since it is not known which of them are important for a 
particular damage detection problem [113]. On the other hand, multi- 
objective approach (6) uses different objective functions with respect 
to the different residuals [114]. The general aim of this approach is to 
find the optimal solution in the Pareto optimal front [115]. To determine 
the best solution, a reasonable criterion must be defined. In a FEMU 
problem defined with two sub-objective functions (bi-criterion prob-
lems), an additional constraint is applied in most cases, mainly based on 
the decision-making strategy [116]. This approach tries to find good 
compromises or “trade-offs” between conflicting objective functions in 
an optimal manner. Moreover, the most commonly used criteria 
consider the edge knee point [117]. This criterion is based on finding a 
solution where a small improvement in one objective would lead to a 
large deterioration in at least one other objective [117]. 

Comparing the single and multi-objective approach their advantages 
and disadvantages can be pointed out. The single-objective approach 
depends on weighting factors given by subjective preferences, 

experience, or engineering judgement [118]. In addition, multiple 
optimization runs may be required to validate the potential models. All 
alternative updated models are searched in one step and the best model 
is selected in a single optimization run using a decision strategy, 
reducing the time required to find the best FE model. To compare the 
effectiveness of single and multi-objective functions, authors usually 
perform FEMU using both approaches. To overcome the disadvantage of 
the computational cost and the unique dependence between the updated 
model and the objective function considered, Jiménez-Alonso et al., 
[110] performed a study on a laboratory model of footbridge using both 
a single and a multi-objective function. Based on the research per-
formed, they concluded that the multi-objective approach is the best 
option for the FEMU, since it allows a large search space, reduces the 
computational time, and provides a better balance of the influence of 
two sets of considered residuals based on the natural frequencies and 
mode shapes. Naranjo-Pérez et al., [119] validated the performance of 
the new hybrid algorithm by comparing it with three different compu-
tational intelligence algorithms performed for the same real structure as 
in [110]. The comparison was based on the speed of convergence and 
accuracy of matching, using both single and multi-objective functions. 
They also concluded that the multi-objective approach is better than the 
single-objective approach. Jin et al., [118] performed the comparison 
between the single and multiobjective approaches and concluded that 
all the updated models of the single objective approach are behind the 
optimal Pareto front (far from the origin). On the other hand, it is also 
found that the weighting factors should balance the sub-objective 
functions, but in some cases deviate from this expectation. In addition, 
the updated parameters of the multi-objective approach appeared to 
contain physical significance with fewer objective function values, while 
the single-objective approach resulted in about 50% of the updated 
parameters being close to constraints. Based on the literature review 
conducted to define the FEM problem as an optimization problem, it can 
be concluded that the multi-objective method shows better performance 
in solving the updating problem. 

4.2. Iterative stochastic methods 

Using the iterative stochastic method to update the finite element 
model, the FEMU problem is considered as a statistical problem focusing 
on the quantification of uncertainty. This quantification can be divided 
into two categories: probabilistic and non-probabilistic. The first cate-
gory represents the classical approach to modelling uncertainty, which 
is based on probability theory and in which uncertainty is modelled 
using the probability density function (PDF). The probability distribu-
tion can be defined in different forms: Bernoulli distribution [120], 
uniform distribution [63], binomial distribution [121], normal distri-
bution [122], Poisson distribution [123] or exponential distribution 
[124]. In civil engineering applications and finite element model 
updating, the uniform distribution and the normal distribution are most 
commonly used [20]. Each set of parameters is assigned a priori prob-
ability density function. The assigned functions incorporate prior 
knowledge or information about the value of the structural parameters 
and are subject to bias due to the quality and uncertainty of the infor-
mation. The quantified uncertainty of the prior PDF is updated using 
Bayes’ theorem, which is mathematically represented as follows (Eq 
(7)): 

P
(

θ|M̃,M m

)
=

P
(

M̃
⃒
⃒
⃒θ,M m

)
P(θ|M m )

P
(

M̃
⃒
⃒
⃒M m

) (7)  

where P(θ|M m ) is the probability density function of the design space in 
the absence of any data (prior distribution function) when the model 

class M m is known and the data M̃ is absent; P
(

θ|M̃,M m

)
is the posterior 

probability density function after the data are observed (in the presence 
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of data M̃ and the model class M m; P
(

M̃
⃒
⃒
⃒θ,M m

)
is the likelihood 

function of data M̃ in the presence of parameters θ and model class M m; 

P
(

M̃
⃒
⃒
⃒M m

)
is the normalisation function in the presence of model class 

M m. In the situation where experimentally obtained data sets are con-
stant, the marginal distribution of the data M̃ does not depend on the 
model parameters θ and the previous equation (Eq.7) can be rewritten as 
follows (Eq (8)): 

P
(

θ|M̃
)

∝P
(

M̃
⃒
⃒
⃒θ
)

P(θ) (8) 

To obtain the mean value of the updated parameters the following 
equation (Eq (9)) is used: 

E
(

f(θ) |M̃
)
=

∫
f(θ)P

(
M̃
⃒
⃒
⃒θ
)

P(θ)

P(θ)
(9)  

where E
(

f(θ) |M̃
)

is the posterior expectation of the function of the 

mean of the updated parameters f(θ) = θ, which depends on the pos-
terior PDF. For complex systems, which are usually very large, this in-
tegral may not be available. In general, several methods are used to solve 
this integral. They can be generally divided into numerical evaluation, 
analytical approximations, and sampling methods. When the posterior 

distribution function P
(

θ|M̃
)

is very large, numerical evaluation may 

not be accurate [125]. On the other hand, analytical approaches are 
suitable and converge in local minima [126]. They considers maximum 
likelihood [127], maximum a posterior MAP [126] and Laplace’s 
method [128]. Third, sampling methods are most popular to solve the 
complex posterior distribution. This method considers method such as 
Markov Chain Monte Carlo method [128]. 

A variety of methods have been developed to obtain a priori prob-
ability density function. One of the most popular approaches is the 
conjugate prior [129]. In this approach, the prior PDF is chosen based on 
the likelihood function such that the posterior PDF is assigned to the 
same family distribution [130]. The main advantage of this approach is 
that it greatly facilitates the accurate calculation of the full posterior 
PDF. The conjugate prior approach is still relevant because it provides 
better insight into exactly how the data change or update the prior PDF. 
Other approaches [131,132] assume that the prior PDF should add as 
little as possible to the available prior information. In addition, some 
more formal methods for avoiding the addition of information by the 
prior PDF have been developed, mainly based on information theoretic 
criteria [133-135]. The most commonly used prior PDF selection 
approach is based on maximum entropy [135]. This approach is based 
on expressing the probability distribution as the best representative of 
the current knowledge about a parameter that provides the largest in-
formation entropy. Thus, the method itself leads to a uniform prior PDF 
when it is known that the parameters in the final range of values are non- 
zero within a certain interval. If the prior available information contains 
a mean and a finite variance, the maximum entropy leads to a normal 
distribution. 

A likelihood function is a function describing the probability of the 
observed data parameterized by θ. It can be determined by applying the 
law of total likelihood and according to the equations with the proba-
bilistic model of measurement error and modelling error. The likelihood 
function can be calculated as the convolution of the PDFs of measure-
ment error and modelling error. If the data sets on the individual errors 
are not available, the likelihood function can be determined using the 
probabilistic models of the total prediction error, parameterized by θ. 
Since there is often very little information available about the error 
properties, the impact of the likelihood function on the process of model 
updating using the Bayesian method is very large. Therefore, the defi-
nition of this function has attracted much attention in recent decades. In 
terms of the likelihood model, a realistic estimate can be made. The 

probability model represents a prediction error. It is usually assumed 
that the probabilistic prediction error model is known and fixed, so that 
the set of parameters reduces to θ = {θM}∊RNM . To represent the pre-
diction error in structural dynamics application, an uncorrelated 
Gaussian model with zero mean is usually used, which is important for 
better understanding of the expression and calculation. In this approach, 
entropy is maximised in terms of prediction errors rather than model 
parameters. This model is not applicable in situations where errors have 
correlation [136] or in situations with system components [137]. To 
prevent the influence of incorrect and inappropriate assumptions on the 
results of Bayesian model updating, identification methods are used 
[138]. One of them incorporates error parameters (variance of the un-
correlated Gaussian model with zero mean or correlation parameters in 
terms of correlation length) into the Bayesian scheme and a reasonable 
assumption about the model class [71]. The second method uses 
Bayesian model class selection to determine the class that is most 
appropriate based on the available information. This category is divided 
into two subcategories. The first subcategory is used to distinguish 
several alternative classes of model predictions to eliminate or at least 
reduce model errors. The second subcategory applies model class se-
lection to determine the most appropriate probabilistic model class that 
represents the prediction error based on the available information. Once 
the prior probability density function and the likelihood function have 
been determined, the following equation allows the PDFs of the model 
parameters to be updated based on the results of the experimental 
investigation. 

When dealing with real constructions and real systems, the compu-
tation of joint and marginal PDFs involves a large number of parameters. 
This leads to high-dimensional integrals for which approximate mea-
sures or sampling methods, such as the Markov Chain Monte Carlo 
method, are used to solve. If a conjugate prior is used, the posterior 
probability density function can be determined numerically. If the 
number of parameters is limited, the posterior PDF can be determined 
analytically. After the posterior PDF is calculated, estimated, or 
approximated, it can provide information on how much the uncertainty 
of the parameters decreases relative to the observed data and the 
available prior information. The posterior probability density function 
can be approximated in a different way, including the Gaussian distri-
bution, asymptotic approximations, or sampling techniques. If both the 
prior PDF and the likelihood function are Gaussian, the posterior PDF 
will also have a Gaussian distribution [127]. Asymptotic approximations 
are used when a large amount of data is available. Here, the posterior 
PDF is approximated by a Gaussian PDF at the point of maximum pos-
terior or MAP and characterized by a covariance matrix [139]. The most 
popular Markov Chain Monte Carlo method is used to sample the pos-
terior PDF and improve the convergence speed. 

On the other hand, the non-probabilistic approach uses a random 
matrix theory [140] to construct the prediction operator [141]. Most of 
the proposed non-probabilistic approaches are mainly based on interval 
analysis [142], where the uncertainties of the variables are represented 
by a certain range of values. The defined ranges of values are transferred 
to the outputs of interest (interval analysis). One of the most popular 
extensions of interval analysis is fuzzy set theory [143]. Fuzzy set theory 
offers the possibility to model uncertainty if, in addition to the interval 
bounds, the desired reliability values or confidence levels are available 
with respect to uncertain quantities. In this approach, the classical bi-
nary concept of a set, according to which an element either belongs or 
does not belong to a set, is replaced by a more intuitive description of the 
set, where the membership is determined stepwise by the so-called 
membership function 

(
μ̃x

)
. The strength of the application of fuzzy 

set theory can be seen in the stepwise description of membership, which 
can be interpreted differently depending on the application. Fuzzy finite 
element model updating (FFEMU) considers the fuzziness in a design 
variable in the finite element framework [144,145]. It uses the fuzzy 
theory based on classical set theory [146]. The difference between these 
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two theories is that classical set theory distinguishes between members 
and non-members. Fuzzy theory, on the other hand, introduces the de-
gree of membership. The degree of membership weights the possibility 
of members belonging to the set and is described by the membership 
function. The membership function is constructed based on some 
probability measures, e.g., estimated means and standard deviations or 
confidence intervals, or even based on a complete (estimated) proba-
bility density function. In either case, it must be clear that the resulting 
membership value cannot be interpreted as probabilities. The strength 
of the fuzzy method lies in the stepwise description of the membership 
[3]. It can be described and interpreted differently depending on the 
application [3]. The fuzzy set in which the membership of a particular 
element × is observed can be defined as follows in Eq (10): 

x̃ =
{(

x, μx̃ (x)
) ⃒
⃒
(
x∊X, μx̃ (x)∊[0, 1]

) }
(10)  

where x̃ is the fuzzy set, μ̃x is the membership function defined for all 
elements × in the domain X. If the membership function is equal to 1 
(
μ̃x(x) = 1

)
, it means that × is a member of the set ̃x. On the other hand, 

if the membership function is zero 
(
μ̃x(x) = 0

)
, it means that the 

element × is not a member of the set ̃x. If the membership function takes 
values between 0 and 1, 

(
0 < μ̃x(x) < 1

)
it means that the element × is a 

member of the set x̃ with a certain degree of membership. The mem-
bership function defined using the left and right reference functions, the 
left–right membership function, can be defined as follows in equation Eq 
(11). 

μ̃x(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L
(

m − x
p

)

, (x ≤ m, p > 0)

R
(

x − m
q

)

, (x > m, q > 0)
(11)  

where L(x) is the left reference function; R(x) is the right reference 
function; m is the average value; p and q are a constant value. The most 
common forms in which a membership function can be defined are 
trapezoidal [147], triangular [145], singleton [148], Gaussian [149] 
and piecewise linear [150] shapes (Fig. 1). 

In the analysis of fuzzy FEMU problems, the fuzzy membership 
function is divided into different sublevels, the most commonly used 
being the α-sublevel technique [145]. In the α-sublevel technique, a 
membership function is divided into a set of sublevels. For each sublevel, 

the lower and upper bounds are defined, and the fuzzy uncertainty 
propagation is defined as the application of the series to the interval 
analysis at multiple α-sublevels. An important problem associated with 
standard fuzzy set theory is the inability to account for the dependence 
or interaction between fuzzy input variables and outputs. This means 
that fuzzy modelling always specifies the maximum range of output 
variables at each α-sublevel because it is implicitly assumed that any 
combination of values of the input variables is equally probable. Fuzzy 
uncertainty propagation is performed using two methods: the interval- 
based and the global optimization approaches [151]. The first, 
interval-based approach is based on standard interval arithmetic and 
treats the fuzzy variables as an interval for each α-sublevel. The second, 
global optimization approach is based on two steps. In the first step, the 
minimum value of the output vector is determined, after which its 
maximum value is determined in the second step. By combining the 
obtained results for all defined α-sublevels, the membership function for 
the output variables is obtained. Thus, the uncertainties associated with 
the modal parameters can be defined as membership functions, while 
the model updating procedure is defined as an optimization problem. In 
this optimization problem, the objective function is defined as the dif-
ference between the upper and lower bounds of the experimentally and 
numerically obtained data sets. The defined objective function must be 
minimised to obtain interval values for the modal parameters. The ob-
tained modal parameter values are combined to obtain the final fuzzy 
parameters. 

In the following section follows an overview of the most commonly 
used finite element model updating methods: sensitivity-based FEMU, 
FEMU using a nature-inspired computational algorithm, Response Sur-
face FEMU, FEMU under the non-probabilistic and probabilistic 
approach, and FEMU using the regularization method. All of these 
methods are presented with the appropriate mathematical background 
and examples of studies and research conducted in the field of FEMU and 
their application to damage detection, reliability analysis, model class 
selection, optimal sensor placement, and so on. 

5. Sensitivity based model updating 

The main idea of the sensitivity-based method is based on the line-
arization of the generally non-linear relationship between the measur-
able outputs and the structural model parameters that require 
correction. It is developed from a Taylor series expansion truncated after 

Fig. 1. Graphical representation of a) triangular b) trapezoidal c) singleton d) Gaussian e) piecewise linear membership functions.  
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Fig. 2. Sensitivity based model updating method flowchart.  
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the linear term (Eq (12)): 

εm = M̃ − M(θ) ≈ ri − Si(θ − θi) (12) 

The residual ri is defined at the ith iteration as (Eq (13)): 

ri = M̃ − M(θ) (13) 

so that the linearization is carried out at θ = θi. Experimentally ob-
tained and predicted outputs are denoted by M̃ and Mi(θ) = M(θi). The 
sensitivity matrix Si is given by Eq (14): 

Si =

[
∂Mj

∂θk

]

θ=θi

(14)  

where j = 1, 2,⋯, q denotes the output data points and k = 1, 2,⋯, p is 
parameter index. Sensitivity matrix, Si, is calculated at the current value 
of the complete vector of the parameters θ = θi. The error, εz, is assumed 
to be small for parameters θ in the vicinity of θi. At each iteration (14) is 
solved for: 

Δθi = θ − θi (15) 

and the model is than updated to give: 

θi+1 = θi +Δθi (16) 

This procedure continues until consecutive estimates θi and θi+1 are 
successfully converged. The flowchart of the sensitivity based finite 
element model updating method is shown on following Fig. 2. 

He et al., [5] performed a sensitivity-based FEMU of a skewed 
highway bridge using monitoring data from wireless measurements to 
obtain a more accurate numerical model. They formed the FEMU pro-
cess into a numerical optimization problem. Based on the model 
updating performed, the authors concluded that the idealization and 
simplification of the numerical model can be minimized if only model 
updating is performed instead of parametric updating. The results also 
show that the superelevation and the cross slope can have a great in-
fluence on the dynamic characteristics of the skew bridge. Jiang et al., 
[152] compared two FEMU methods using frequency response function 

data by updating the truss model and cantilever. The first method is 
based on sensitivity analysis, while the second method is based on 
defining the modelling errors as linear combinations of individual 
element matrices. These individual matrices can be used for both model 
updating and fault localization. The comparison showed that the 
sensitivity method is effective only when the test data is extremely 
incomplete. Zhu et al., [153] performed sensitivity-based model update 
of a cable-stayed bridge by using influence line analysis to update the 
multiscale model with the measured modal frequencies. Ren and Chen 
[154] compared the response surface-based finite element model 
updating with the sensitivity-based method tested on a simply supported 
beam and a full-size continuous precast box girder bridge under service 
vibration conditions. Based on the comparison, the authors concluded 
that the response surface based method was more efficient and 
converged faster than the traditional sensitivity based method. Park 
et al., [155] proposed an update of the finite element model for a cable- 
stayed bridge based on a two-step procedure. In the first step, the 
manual model update is performed based on the initial design infor-
mation and construction and maintenance history. In the second step, 
the base model is calibrated using a sensitivity-based optimization. To 
simultaneously fit the FE mass and stiffness matrices using incomplete, 
noisy modal data, Rezaiee-Pajand et al., [99] proposed an innovative 
sensitivity-based FEMU strategy that combines modal kinetic energy 
(MKE) and modal strain energy (MSE). Using model parameterization 
and first-order Taylor series, the sensitivity-based FEMU strategy was 
developed into an inverse problem solved by regularization methods. 
Mosavi et al., [20] performed an update of a high-fidelity finite element 
model of highway bridges using a multivariable sensitivity-based 
approach to match the structural behavior predicted by the numerical 
model to the actual behavior. Razavi and Hadidi [78] investigated the 
robustness of sensitivity-based model updating for damage detection of 
structures with large spaced structures using vibration measurements. 
Based on their study, they concluded that this method is efficient in 
damage detection in large space structures and that the process of 
damage detection is independent of the size and nature of structures. 
Durmazgezer et al., [73] performed the sensitivity-based FEMU on a 

Table 3 
Review of the using sensitivity based method for FEMU and damage detection.  

Reported 
application 

Examples of related 
study 

Type of Sensitivity based method Structure 

FEMU He et al., [5] Sensitivity-based FEMU Skewed highway bridge   

Jiang et al., [152] Truss model and the cantilever beam   

Zhu et al., [153] Cable-stayed bridge   

Ren and Chen [154] Full size precast continuous box girder bridge under service vibration 
conditions 

Park et al., [155] Two step model updating Cable stayed bridge 

Rezaiee-Pajand et al.,  
[99] 

Sensitivity based strategy and regularized solution 
methods 

Two story concrete frame and two-span continuous steel truss 

Mosavi et al., [20] Multi variable sensitivity based high fidelity FEMU Highway bridge 

Damage detection Razavi and Hadidi [78] Sensitivity-based FEMU Large-spaced structures   

Durmazgezer et al., [73] Half-scale reinforced concrete portal bare frame   

Li et al., [156] Seven storey plane frame structure 

Venanzi et al., [157] FEMU through modal sensitivity analysis Historic masonry tower 

Jaishi and Ren [159] Sensitivity based FEMU in combination with OA Reinforced concrete beam 

Entezami et al., [160] Sensitivity base model updating in combination with 
GA 

Planar truss 

Blachowski [161] Sensitivity based strategy and NNLSS 3D truss girder, upper deck arch bridge 

Shahbaznia et al., [31] Sensitivity base MU using Tikhonov regularization Railway bridge  
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half-scale reinforced concrete portal frame for damage detection using 
measured dynamic response data. Li et al., [156] performed damage 
detection using sensitivity-based model updating, but on a seven-story 
plane frame structure and using acceleration measurement. The dam-
age detection performed is based on the transmission of the autospectral 
power density, which formulates the relationships between two sets of 
autospectral density functions of the output responses. Venanzi et al., 
[157] proposed a model updating of a historic masonry tower using a 
modal sensitivity analysis [158] and a linear single-step method for 
locating earthquake-induced damage using ambient vibration tests and 
long-term SHM monitoring data. The proposed improvement of the 
method considers not only the natural frequencies for damage locali-
zation but also the mode shapes. In this way, the authors increased the 
number of DOF and investigated the robustness of the solution and 
avoided unphysical results. Jaishi and Ren [159] carried out the 
sensitivity-based model updating of reinforced concrete beam for dam-
age detection using the dynamic properties determined by laboratory 
experiments. They formulated the objective function consisting of the 
residuals of modal flexibility and its gradient. By minimizing the 
objective function using the sensitivity-based model updating and 
optimization algorithm, the author provided the damage detection 
capability. Entezami et al., [160] proposed a sensitivity-based finite 
element model updating method for damage detection using incomplete 
noisy modal data. In order to adapt the initial sensitivity formulation of 
modal strain energy (MSE) to the damage detection problem, an 
improvement of MSE sensitivity functions based on the Langrage opti-
mization problem was performed. To overcome the misplaced damage 

equation problem caused by sparsity, ill- conditioning, and rectangu-
larity of the sensitivity matrix, a regularized least square minimal re-
sidual was proposed. The accuracy of the proposed approach was 
verified on designed trusses. Blachowski [161] proposed a three-step 
method for damage detection in spatial truss structures. In the first 
step, the sensitivity of the modal characteristics is calculated. In the 
second step, the sensitivity matrix of natural frequency is used to 
determine hard-to-identify structural parameters, while the sensitivity 
matrix of mode shape is used to select damage-sensitive sensor locations. 
In the third step, two algorithms based on norm regularization or non- 
negative least squares (NNLSS) are used to efficiently identify the 
applied damage scenarios. In the studies presented, the non-negative 
least squares solution showed better performance. Shahbaznia et al., 
[31] proposed a sensitivity-based model updating in the time domain for 
railway bridge structures under an unknown moving load, considering 
the interaction between the bridge and the vehicle. By using sensitivity 
analysis and Tikhonov regularization, the computational cost is drasti-
cally reduced. 

Recent research and examples of studies dealing with the imple-
mentation of model updating using the sensitivity-based method and the 
application are summarized in Table 3. 

Previous research (Table 3.) showed the sensitivity-based methods 
allow a large number of the updating parameters and measured outputs 
and most often require a high computational effort, but this problem can 
be solved by combining the sensitivity based with some other methods 
such as regularization. Moreover, the sensitivity equation (Eq. (12)) is 
generally a nonlinear equation linking the input parameters of the 

Fig. 3. Flowchart of Genetic Algorithm method.  
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numerical model and its output, so an iterative procedure must be 
performed. Consequently, there may be a convergence problem in 
determining the updating parameters values. In the following section, 
the iterative optimization procedure, and the application of the nature- 
inspired computational algorithms, especially the genetic algorithm and 
particle swarm optimization, in updating the finite element model are 
discussed. 

6. Nature inspired computational optimization algorithms 

Iterative finite element model updating techniques are based on the 
use of changes in the physical structural parameters to perform the 
model updating and produce the models that are physically realistic 
[27]. As mentioned earlier, these methods are based on solving an 
optimization problem for which computational optimization algorithms 
are usually used to find the global optimum. In this chapter, the genetic 
algorithm and particle swarm optimization are discussed in detail. For 
more information and application of the other intelligent algorithms, the 
reader is referred to the following [9]. 

6.1. Genetic algorithm 

Genetic algorithm represents a stochastic global searching technique 
based on the global evolution process and Darwin natural selection 
[164] that was first presented and simulated for FEMU application by 
Levin and Lieven [165]. It operates to find a solution of an optimization 
problem for population of possible solutions. In most of the optimization 
problems, GA works with the initial population size. This population 
covers a good representation of the updating solution space, and its size 
should depend on the nature of the optimization problem. The nature of 
the optimization problem is determined by a set of structural model 
parameters, which may be updating parameters. From the initial pop-
ulation through the crossover, mutation and selection phases a better 
generation are iteratively formed. Through phase of crossover, new in-
dividuals are generated by combining the random parent chromosomes. 
Mutation phase is used as an auxiliary method that creates new in-
dividuals to avoid the information that is lost in selection and crossover 
phases. In this phase, the parts of the parent chromosomes are selected 
and inverted. In this way, new information is introduced into the pop-
ulation [127], diversity of population is maintained, and the local search 
ability of GAs is improved [166]. To grow a new population from each 
generation, selection is performed using the fitness-based method. The 
population that is fitter has a higher probability of being selected. Se-
lection can be done by ranking the fitness of each solution and selecting 
the best solution or by ranking a randomly selected sample of the pop-
ulation (computational efficiency) using methods such as uniformly 
order selection [127], stochastic tournament selection [166], and rou-
lette wheel selection [167]. The previous phases are repeated until the 
stopping criteria are reached (Fig. 3). Commonly used stopping criteria 
include the maximum number of generations/iteration [168-171], the 
minimum fitness value [172,173] or any combination of these criteria. 

Most early studies focus on the using the GA in performing model 
updating searching form the properties of structural materials [35], 
investigating the effect on temperature on the modal frequency [4], for 
help in understanding the current state of structural restauration [174], 
etc. Ye and Chen [4] performed the FEMU of the TV tower based on GA 
to investigate the effects of the different effects of temperature on the 
modal frequency under two situations. In the first case, they proposed 
that temperature only affects the elastic modulus, while in the other 
case, they proposed that it only affects the geometric stiffness of struc-
tures. The first situation was considered more important because of the 
significant frequency change. In the second case, the frequency change 
was very small, and it was suggested to be ignored. Genetic Algorithm 
can be very useful for structural identification of the historical buildings 
and structural health monitoring performed on it. Bianconi et al., [35] 
performed the FEMU of the bell tower using the GA for the automatic 

calibration of the elastic parameters to reduce modelling error following 
the model assurance criterion. In addition to automated FEMU, the 
authors performed also the manually calibration. Comparing the results 
obtained using both FEMU methods, it was concluded that with the GA 
the numerical model was much improved, but the frequencies had a 
higher deviation. The obtained results of comparison authors connected 
with the possible influence of soil structure interaction. To obtain an 
accurate and robust numerical model of the Baptistery of San Giovanni 
in Firenze, Lacanna et al., [41] performed FEMU based on Genetic al-
gorithm using ambient vibration test data. Jiménez-Alonso and Sáez 
[174] used GA to performed the FEMU and help understand the actual 
state of structural conservation of the reinforced concrete truss bridge to 
select the appropriate retrofitting technique. Costa et al., [175] cali-
brated a numerical model of stone masonry arch railway bridge with GA 
by using dynamic modal parameters estimated from an ambient vibra-
tion test. Sabamehr et al [176] used GA to identify system properties and 
find correlations between the structural frequencies and changes in the 
sectional properties of the bridge segment. Pachón et al [177] used GA 
to adjust the numerical model of the E. Torroja’s bridge to the experi-
mental results with a reduced number of sensors. Hernández-Díaz et al., 
[178] used GA to obtain the numerical acceleration at the mid span of 
the footbridge under different pedestrian flows. Gentilini et al., [179] 
proposed a procedure based on dynamic testing, added masses and ge-
netic algorithm (GA) to identify the tensile force, the modulus of elas-
ticity of the material and the rotational stiffness of restrains for 
structural characterization of the tie rods. 

Yang et al.[180] use GA, to solve the optimization problem of 
surrogate-based FEMU of a three-story structure using the frequency 
response function. Kim et al., [108] employed a FEMU method based on 
static and dynamic data sets to improve the identification of structural 
updating parameters. They used GA, to identify the updating parameters 
for the conventional FEMU method and verified the effectiveness of the 
proposed FEMU method on a simply supported plate girder prestressed 
bridge deck. Sun et al., [181] used a genetic algorithm to evaluate the 
Pareto-optimal solution of the updating parameters to perform fuzzy 
FEMU and accurately evaluate the mechanical state of an in-service 
cable-stayed bridge. Oh et al., [182] proposed a dynamic displacement 
based FEMU using a motion capture system to find parameters that 
minimize the difference between the updated model and the direct 
measurement. To minimize the combined error functions with the same 
number of modes simultaneously, non-dominated sorting genetic 
algorithm-II was used. Cui et al., [183] proposed a FEMU method of 
structural multi-scale monitoring model based on multiobjective opti-
mization using the non-dominated sorting genetic algorithm- II (NSGA- 
II) is used to obtain the optimal parameter values of the large shell 
structure of Zhuhai Opera House. Wang et al., [184] used a non- 
dominated sorting genetic algorithm to perform a multi scale model 
updating of the structure of a transmission tower using the measured 
dynamic response as well as the static displacement and strain response. 
Luong et al., [185] used a GA, to update the steel truss structures using 
vibration-based data and identified the axial forces in all members. Sun 
and Xu [87] used a non-dominated sorting GA, to perform the FEMU of a 
long-span aqueduct structure based on the multi-objective optimization. 
Tran-Ngoc et al., [168] performed the FEMU for the bridge using GA and 
particle swarm optimization (PSO), and analysed and evaluated the ef-
fects of different joint assumptions on large-scale truss bridge. The 
comparison of the results obtained with both FEMU methods showed 
that the PSO algorithm provides a better result and reduces the 
computation time. In addition, the authors confirmed that the dynamic 
analysis results are extremely sensitive to the assumptions for the joints. 
To perform a preliminary evaluation of the bridge structure in terms of 
its mechanical resistance and stability after an earthquake damage, 
Mosquera et al., [186] used GA, to perform a high fidelity finite element 
modal updating. 

In addition, GA is also used to update the finite element model for the 
purpose of damage detection. Srinivas et al., [101] identified and 
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quantified damage to beams and plane truss structures by implementing 
a multi stage approach based on modal strain ratio change using GA. To 
minimize the differences between the analytical and experimental 
modal properties of a concrete-filled steel tubular arch bridge, Zhou 
et al., [85] used three artificial intelligence algorithms to calibrate un-
certain parameters. These three algorithms were the simple genetic al-
gorithm (SGA), the simulated annealing algorithm (SAA), and the 
genetic annealing hybrid algorithm (GAHA). The results of this study 
showed that the use of GAHA gave the best performance. In addition, the 
arch bridge could be efficiently calibrated using a combination of SGA 
and SAA. Park et al., [187] used GA, to solve the optimization problem 
of the proposed damage detection method based on FEMU. The pro-
posed method is based on the modal participation ratio (MPR), which is 
defined as an indicator of the extent of modal contribution. This ratio 
was used to define the objective function as the differences between the 
MPR extracted from the sensors and the MPR estimated from the model. 
Jeenkour et al., [188] proposed encoding by locations (ELD) and 

damage factor and used GA to determine the location and extent of 
damage to the beam in which the location and damage extent were used 
as a decision variable in GA. Wang et al., [100] proposed a multilayer 
genetic algorithm for damage detection of truss structures to solve this 
problem. In the proposed method, the damage detection is divided into 
several groups for optimization purposes. Comparing the proposed 
method with GA, the advantages of the proposed method can be high-
lighted, such as computational efficiency, less possibility of local op-
tima, and small size of search for each group. 

In general, when updating the finite element model, the most 
important thing is to find a computationally efficient algorithm that can 
solve the proven FEMU optimization problem. For complex structures 
(cable-stayed bridges, suspension bridges and other complex structures), 
model updating with GA is very difficult to perform in terms of 
computation time and obtaining accurate results. For this reason, there 
are many studies in which the genetic algorithm is combined with 
another method to reduce the computation time and provide the 

Table 4 
Review of the using computational intelligence GA and its hybridization algorithms for FEMU, damage detection and optimal sensor placement.  

Reported  

Application 

Examples of 
related study 

Type of GA Structure 

FEMU Ye and Chen [4] GA High rise structure   

Jiménez-Alonso et al., [110] Laboratory footbridge   

Bianconi et al., [35] Bell tower of the cathedral   

Lacanna et al., [41] Historical building (Baptistery)   

Jiménez-Alonso and Sáez [174] Reinforced concrete truss bridge   

Costa et al., [175] Arch Railway bridge   

Sabamehr et al., [176] Pre-stress concrete box girder bridge   

Pachón et al., [177] Inverted truss bridge   

Hernández-Díaz et al., [178] Cable-stayed footbridge   

Gentilini et al., [179] Tie rods in historical buildings 

Yang et al., [180] GA (Surrogate based) Three story structures 

Kim et al., [108] GA (Sequential framework) Simply supported plate girder prestressed bridge 

Sun et al., [181] GA (Fuzzy FEMU) Cable stayed bridge 

Oh et al., [182] NSGA-II Three story shear frame   

Cui et al., [183] Large shell structure   

Wang et al., [184] Transmission tower 

Luong et al., [185] GA and strategy validation criteria Truss structures 

Sun and Xu [87] Non-dominated sorting GA Long-span aqueduct structure 

Jin et al., [118] GA and NSGA-II Highway bridge structure 

Mosquera et al., [186] GA of High Fidelity Finite Element model Highway bridges 

Damage detection Boonlong [192] CCGA Beam 

Jeenkour et al., [188] GA with ELD 

Srinivas et al., [101] GA Beam, plane truss structure 

Zhou et al., [85] SGA, SAA, GAHA Concrete-Filled Steel Tubular Arch Bridge 

Wang et al., [100] ML-GA Truss bridge 

Park et al., [187] GA and NSGA-II Four story shear type building 

Optimal sensor placement Pachón et al., [193] GA Historical Masonry Tower 

Soman et al., [190] GA Aluminium Plate 

Hou et al., [191] GA (Damage detection using L1 regularization) Cantilever beam, 2-storey frame structure 

Nasr et al., [173] GA in combination with the EnKF (Damage detection) 10-story shear building  
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required accuracy of the numerical model. Erdogan et al., [106] used 
GA, to solve the inverse fuzzy model updating problem of the benchmark 
test structure using static and dynamic data sets under different loads 
and conditions. Jin et al., [118] used GA to solve the single objective 
problem and NSGA-II to solve the multi-objective problem of FEMU of 
highway bridge structures using modal properties. Yu et al., [189] used 
GA, to perform the FEMU of the cable stayed bridge response surface 
model using structural health monitoring data. In addition, there are 
examples of research reporting the use of a genetic algorithm for optimal 
placement of sensors for structural identification and damage detection. 
Soman et al., [190] proposed the implementation of GA to improve the 
coverage of sensor networks for damage detection using guided waves. 
The first step of the proposed method was to determine the minimum 
number of sensors based on the quality of the signal processing algo-
rithm. The second step involved determining the optimal sensor place-
ment by improving the implementation of GA. Hou et al., [191] used GA 
to define the optimal sensor placement for determining the modal pa-
rameters used for L1-regulated damage detection of cantilever beams 
and three-story frame structures. Nasr et al., [173] proposed a method 
for optimal sensor placement by combining GA with the Ensemble 
Kalman filter for structural system identification and damage detection. 

The literature review on finite element model updating under the GA 
optimization (Table 4) shows that this method is widely used and 
frequently applied in solving such problems as model updating, damage 
detection, and optimal sensor placement. This is mainly due to its ease of 
use and integration in the computational software, Matlab, most 
commonly used for model updating and solving optimization problems. 
On the other hand, the main problem is the computational effort 
required to solve the optimization problem. Several studies have 
compared the computational efficiency of GA with that of other opti-
mization algorithms in solving single and multi-objective optimization 

problems, and it was found that it takes the most time. 

6.2. Particle swarm optimization 

Particle swarm optimization was introduced by Kennedy and Eber-
hart [194], inspired by the social behaviour and movement dynamics of 
animals and insects. It represents an efficient global optimization 
method for continuous variable problems that can be easily imple-
mented with very few parameters. It is successfully applied in various 
types of optimization problems and in solving the FEMU optimization 
problem. The basic term in this method is the particle that stores the best 
position data it has ever visited, and the particle that was closest to the 
target in the whole particle swarm (global PSO-gbest) or only in its 
neighbourhood (local PSO-lbest), determined by its position and velocity. 
Based on the information the particle gathers, it decides on the speed of 
movement to the new position. Position, Xn

i , is the solution reached by 
the i-th particle out of a total of m swarm particles in the n-th iteration. 
Position is defined by coordinates in s-dimensional space, where s rep-
resents the number of variables, xn

ij, that make up the solution Xn
i =

{
xn

i1,

xn
i2,⋯, xn

is
}
, i = 1,2,⋯,p. The velocity of the particles is represented by 

the ratio of the position changes. A graphical representation of the PSO 
optimization algorithm can be seen in Fig. 4, where the main steps can 
be summarised as follows:  

• Definition of the number of particles, initialization of the algorithm 
constants (position and velocity).  

• Definition of an objective function as the difference between the 
current position and the target position. 

• Recording and updating the best particle position and the best po-
sition ever reached by the swarm members 

Fig. 4. Flowchart of Particle swarm optimization.  
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• Updating the velocity of the particle swarm according to the equa-
tion: xn+1

ij = xn
ij + vn+1

ij , where vn+1
ij is the velocity, xn

ij is the position in 
the iteration n + 1, and xn

ij is the position in the iteration n. The 
velocity is calculated with the next equation: 

vn+1
ij = wvn

ij +C1rand1

(
Pbest ij − xn

ij

)
+C2rand2

(
Gbestj − xn

ij

)

• In the previous equation, C1 and C2 represent learning factors. These 
factors are positive weighting coefficients used to balance the in-
fluence of individual and social experiences. rand1 and rand2 are 
random numbers between zero and one, while Pbest ij and Gbestj are 
the best positions achieved by the i-th agent closest to the target since 
the beginning of the process.  

• Update the position of each particle based on social behaviour to 
match the environment by constantly returning to the most prom-
ising identified region.  

• Repeat steps 1–5 until the termination criteria are met. 

Tran-Ngoc [168] used particle swarm optimization (PSO) to update 
the model of Nam O Bridge using vibration-based SHM to build a reli-
able model for health condition assessment and operational safety 
management of the bridge. They mainly focused on the stiffness con-
ditions of typical joints of truss structures and concluded that adopting 
semi-rigid joints (using rotational springs) can most accurately represent 
the dynamic behaviour of the truss bridge. 

Many studies dealings with the application of the PSO algorithm in 
FEMU show that it can be used for both simple and complex damage 
detection models. Gökdaǧ and Yildiz [195] proposed a model update for 
damage detection of a Timoshenko beam using a particle swarm opti-
mization algorithm using the modal parameters. Marwala et al., [196] 
used PSO to perform model updating damage detection of simply sup-
ported beam and H-shaped structures. The damage detection performed 
and the comparison with GA and Simulated Annealing (SA) showed that 
PSO has better performance. In addition, the combination of Nelder- 
Mead’s simplex method (NM) and PSO has been shown to be very 
effective in damage detection, using PSO for global optimization and 
NM for local optimization. Jiménez-Alonso et al., [110] compared three 
optimization algorithms Harmony search, genetic algorithm and PSO by 
performing model updating of a laboratory steel footbridge. From the 
comparison, it was found that the accuracy of PSO and HS algorithm is 
similar and greater than that of GA. Mohan et al., [197] presented a 
robust finite element damage detection method using FRF as input 
response in the objective function and evaluated for beam and plane 
frame structures. Seyedpoor [198] proposed a two-stage method using 
modal strain energy and PSO to correctly detect structural damage in 
cases of multiple damage. In the first stage, the modal strain energy was 
calculated based on the modal analysis obtained from finite element 
modelling. Based on the data obtained in the first stage, the extent of 
damage was determined in the second stage using the PSO algorithm. 
The success of the method was investigated on a cantilever beam and a 
planar truss. Nanda et al., [199] used the particle swarm optimization 
algorithm to identify damage in a frame structure by varying the flexi-
bility and modal data. Zhang et al., [200] proposed a FEMU method for 
damage detection based on multivariable wavelet FEM method and PSO 
optimization. In the first step of the proposed method, the multivariable 
wavelet FEM method (MWFEM) was used to model the structure with 
the crack. In the second step, the values of the natural frequencies were 
obtained, which were combined using the PSO to determine the location 
and size of the crack. Gerist and Maheri [201] introduced a two-stage, 
structural damage detection using PSO optimization. In the first stage, 
preliminary identification of structural damage is performed using 
sparse recovers. The results obtained in the first stage are improved to 
the exact location and extent in the second stage using the micro-search 
(MS) embedded in the PSO search. The effectiveness of the proposed 

method has been tested on several different types of the model. Nouri 
Shirazi et al., [202] proposed an adaptive multi-stage particle swarm 
optimization (MPSO) method to detect damage based on changes in 
natural frequencies. In the proposed method, the PSO deals with real 
values of damage variables. Perera et al., [203] proposed a method to 
solve the multi objective finite element model for damage detection on 
frame-like structures when modelling errors. First, the formulation of 
the objective function was developed using the modal parameters sen-
sitive to modelling errors. Then, multi objective PSO (MOPSO) was 
applied to a multiobjective framework. 

Apart from using PSO for model updating and finding optimal values 
for unknown parameters and damage detection, other possibilities of the 
PSO algorithm have also been researched. Cancelli et al., [204] proposed 
a new approach to extract and analyse the vibration characteristics of 
the structure in order to obtain the condition assessment of the bridge 
girder. As part of the proposed approach, FEMU was performed using 
particle swarm optimization to fit the extracted reduce order stiffness 
matrix and modal properties. The proposed approach was found to be 
very effective in locating and quantifying damage along the beam with 
very high accuracy. Mthembu et al., [66] proposed the application of 
particle swarm optimization to the problem of selecting FEM, where an 
optimal model is the one that has the smallest number of updated pa-
rameters and the smallest deviation of the parameter variables from the 
mean material properties. To overcome the problem of local optimiza-
tion and premature convergence of traditional learning algorithms, 
Chatterjee et al., [205] proposed a particle swarm optimization based 

Table 5 
Review of the using computational intelligence PSO and its hybridization al-
gorithms for FEMU, damage detection and other purpose.  

Reported 
application 

Examples of 
related study 

Type of PSO Structure 

FEMU Tran-Ngoc  
[168] 

PSO Long span truss 
bridge 

Damage 
detection 

Gökdaǧ And 
Yildiz [195] 

PSO Timoshenko 
Beam 

Marwala et al., 
[196] 

Beam and frame  

Mohan et al.,  
[197] 

Seyedpoor  
[198] 

Beam and planar 
truss 

Nanda et al.,  
[199] 

UPSO (Unified particle 
swarm optimization) 

Frame like 
structure 

Zhang et al.,  
[200] 

PSO with MWFEM Beam 

Gerist and 
Maheri [201] 

PSO in combination with 
the Basis pursuit de- 
noising method 

Beam, Frame, 
Truss   

Nouri Shirazi 
et al., [202] 

Multistage MPSO   

Perera et al.,  
[203] 

MOPSO 

* Cancelli et al.,  
[204] 

PSO Bridge Girder 

** Mthembu 
et al., [66]  

Unsymmetrical H 
beam 

*** Chatterjee 
et al., [205] 

PSO-NN RC multi-storey 
building 

*-condition assessment. 
** -Selection the FE model. 
***- Selection of the optimal weights for the Neural Network classifier. 
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approach for training Neural Network (NN-PSO). In this method, PSO 
was used to select the optimal weights for the neural network classifier. 
The proposed method was evaluated on a multi-storey RC building and 
was found to be very effective in predicting structural failure. 

Previous studies which have dealt with PSO-based finite element 
model updating showed that it is a very efficient method to solve the 
optimization problem of finite element model updating. Moreover, it 
does not require any knowledge of the function, or its derivatives and it 
can explore multiple possible solutions in parallel manner in the same 
sequence. Since it is a global method, its performance does not depend 
on the initial population solutions. Notwithstanding the foregoing, these 
methods have also their drawbacks. The first is related to the solution 
obtained, i.e. there is no guarantee that it is more optimal than the other 
solution, nor is there convergence to the overall optimal value. The 
second one is related to the definition of the parameters, because all 
other algorithms require the definition of parameters that ultimately 
affect the final performance. 

The following table (Table 5) represents the sum of the previously 
mentioned research and studies on the implementation of the finite 
element model update for damage detection, condition assessment, 
model selection, selection of optimal weights, etc., using the different 
types of particle swarm optimization algorithms. 

Previous studies dealing with PSO-based finite element model 
updating have shown that it is a very efficient method to solve the 
optimization problem of finite element model updating. Moreover, it 
does not require any knowledge of the function or its derivatives and can 
explore multiple possible solutions in parallel manner in the same 
sequence. Since it is a global method, its performance does not depend 
on the solutions of the initial population. Notwithstanding the above, 
these methods also have their drawbacks. The first one is related to the 
obtained solution, i.e., there is no guarantee that it is more optimal than 
the other solution, nor is there convergence to the overall optimal value. 
The second one is related to the definition of the parameters, because all 
other algorithms require the definition of parameters that ultimately 
affect the final performance. 

6.3. Other optimization algorithms 

In addition to the aforementioned computer intelligence optimiza-
tion algorithms, GA and PSO, which are due to their availability in 
computational software, most commonly used, there are a number of 
algorithms developed for the purposes of FEMU. Most of them are nature 
inspired, such as harmony search [206], simulated annealing [207], 
grey wolf [208], colliding bodies [209], gravitational search [210], and 
several others [211]. In this paper, only some of them will be discussed 
and presented in detail, due to the simplicity, such as simulated 
annealing and harmony search. For some other nature inspired algo-
rithms’ researches and studies, readers are referred to the following 
reference [211]. 

6.3.1. Simulated annealing 
Simulated annealing is an optimization method proposed by Kirk-

patrick et al., [207]. It is a probabilistic algorithm used to approximate 
the global optimum of a function by searching for the global extrema of a 
constrained function around a certain configuration range. The basic 
concept of this approach comes from annealing in metallurgy. The metal 
is slowly heated and cooled under controlled conditions until the desired 
properties are achieved. The process of controlled slow cooling is called 
annealing. Through a cooling process that promotes diffusion, the metal 
progresses toward a state of thermal equilibrium, reaching a state of 
minimum energy. Rapid cooling keeps the metal in a metastable state 
and prevents the metal’s phase transition. Metropolis et al., [212] 
described how to simulate a group of molecules in thermal equilibrium 
at a constant temperature T. In a simulation, a randomly selected 
molecule is randomly shifted, after which the energy change ΔE [J] of 
the entire group is calculated. The most important result is the 

Metropolis acceptance criterion, which defines the probability of 
acceptance of a simulated energy change, Pr. 

Pr{ΔE} =

{
1,&ΔE ≤ 0

e− ΔE/KBT ,&ΔE ≥ 0 (17) 

According to the above equation (17), if the energy gain is negative 
the total energy of the system is accepted. On the other hand, if the 
change increases the total energy of the system, then it is accepted with 
the probability e− ΔE/KBT, where KB is the Boltzmann constant. If the 

Fig. 5. Flowchart of Simulated annealing optimization algorithm.  
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simulation is performed for a sufficient number of random motions, the 
final arrangement of the molecules is close to that in thermal equilib-
rium or steady state. This is the global minimum at temperature T[K]. 
The formal proof of convergence models the described simulation as a 
homogeneous Markov chain whose steady state is shown to correspond 
to thermal equilibrium. Theoretically, convergence is achieved only for 
an infinite number of simulations. The three assumptions under which 
thermal equilibrium is achieved according to the Metropolis algorithm 
are (1) Reversibility (symmetry) - the probability of choosing the next 
state is the same as the probability of returning from the next state to the 
current state (2) Ergodicity - the random displacements of the molecules 
are such that the molecules can reach any position in their configuration 
space (3) Convergence to the canonical distribution - the probabilities in 
the acceptance criterion are such that the ensemble weighs on average in 
the Boltzmann (Gibbs) distribution. The simulated cooling process is 
performed using the Metropolis algorithm which is performed through 
following steps: (1) Melt a system optimized to a high temperature; (2) 
At very high temperatures, all energy states are almost equally likely; (3) 
Slowly lower the temperature until the system freezes and there are no 
more changes; (4) At each temperature, the Metropolis simulation must 
be run until the system reaches a steady state at that temperature. The 
process of the simulated annealing optimization algorithm is shown on 
Fig. 5. 

Levin and Lieven [210] performed a comparison of two powerful 
optimizations genetic algorithms and simulated annealing- to perform 
the model updating in the frequency domain. Based on the performed 
comparison they found that the SA is better than traditional GA and that 
the accuracy of model updating is dependent on the appropriate selec-
tion of the updating parameters. Marwala [211] has done the compar-
ison of computational efficiency of Simulated Annealing, genetic 
algorithms and Response Surface method on an H-shaped structure. The 
comparison shows that the response surface method is 2.5 times faster 
than the genetic algorithm and 24 times faster than simulated annealing. 
Zhou et al., [82] presented ambient vibration measurements to develop 
a baseline modal for a newly constructed arch bridge over rives using the 
structural dynamic properties and performing the updating of numerical 
model with three algorithms including the simple genetic algorithm, the 
simulated annealing algorithm and genetic annealing hybrid algorithm. 
The SAA converged on an infeasible design because it began from a 
random point and then worked its way toward the minimum, meaning 
that a local minimum is more likely to be reached. Kourehli [212] 
proposed a damage detection method based on the simulated annealing 
using 3 different objective functions based on static and dynamic mea-
surements, which is verified on a four-story steel frame (IASC-ASCE 
benchmark structure). 

Some of the other authors work on the improving the computation 
efficiency of the finite element model updating process under the 
simulated annealing. Zimmerman and Lynch [213] increased the 
computational efficiency of SA, by dividing the annealing into a series of 
steps, each of which is executed on each computer node. The efficiency 
of the algorithm was tested on three-story structures, and it was found 
that the larger number of sensors in the network resulted in efficiency 
gains. There are studies in which the simulated annealing is used in 
combination with stochastic Bayesian model updating. Thus, Lam et al., 
[214] used the simulated annealing to propose a Bayesian finite element 
model updating damage detection based on structural dynamic prop-
erties. Huang et al., [215] use simulated annealing to obtain maximum a 
posteriori values of posterior PDF of design variables for characterizing 
damage and quantifying uncertainty. Green [216] proposes in his work a 
new MCMC algorithm: “Data Annealing”, which is based on the input of 
the likelihood of training data, so that its effects on the posterior are 
introduced gradually. Moreover, the proposed approach reduces the 
computational effort probability that local search will get stuck in local 
traps. Chiu and Lie [19] developed an algorithm based on simulated 
annealing to cope with the problem of finding the optimal sensor 
placement under the minimum cost limitation. 

Based on the literature review conducted on the use of Simulated 
Annealing (Table 6) to perform model updating and closely related 
processes such as damage detection and optimal sensor placement, it can 
be highlighted that this method has not received as much attention as 
other computational optimization algorithms such as GA and PSO. This 
is mostly due to the SA requirements of a large number of annealing 
cycles and a slow convergence speed. These problems question the 
limitations of the applicability of SA to complex types of structures. 
However, it can be seen in the literature that authors are making efforts 
to solve this problem and combine the advantages of SA to develop some 
hybridization optimization algorithms by taking advantage of SA, such 
as its strength in solving combinational problems and good performance 
in hill climbing for the optimal solution. 

6.3.2. Harmony search 
Harmony search [221] is an optimization algorithm proposed by 

Geem et al., [222], primarily intended to imitate a simplified model of 
improvisation where there are no chords or modes, only notes or tones. 
Each tone represents a value of a design variable, and each musician 
represents a design variable. The vector for optimizing a particular 
objective function forms the entire harmony. Given the notes that the 
musician has already played, he chooses a new note to change the 
harmony. These changes can also be made by pitch or by playing an 
adjacent tone. The harmony search algorithm consists of three steps. In 

Table 6 
Review of the using computational intelligence SA optimization algorithm.  

Reported application Examples of related study Type of simulated annealing 
optimization 

Structure 

FEMU Levin and Lieven [213] SA and GA 2D cantilevered beam 

Marwala [214] SA, GA, RSB Unsymmetric H shaped structure 

Zhou et al., [85] SG, SA, GA Steel tubular arch bridge 

Haung et al [218] SA IASC-ASCE Phase II benchmark problems 

Kourehli [215] SA IASC- ASCE 

Lam et al., [217] Bayesian FEMU 
(SA for sampling scheme) 

Shear building model under laboratory condition 

Improving computational 
efficiency 

Green [219] Data Annealing Nonlinear dynamical system consist of aluminium rod with centre magnet and 
two outer magnet  

Zimmerman and Lynch  
[216] 

Parallel SA Three story steel structure 

Optimal sensor placement Chiu and Lie [220] SA Smaller and larger rectangular sensor fields  
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the first step, a random population of possible solutions is created, which 
is stored in the Harmonic Memory Matrix. In the second step, an 
objective function is evaluated for each of the possible solutions. In the 
third step, a new harmony is created at each iteration, the maximum 
number of which is determined by the maximum improvisation 
parameter (MI). The evaluation of the objective function for each new 
harmony is performed in the fourth step. By comparing the original and 
the new harmonies, the harmony memory matrix is updated in the fifth 
step. Until the convergence criteria are met, steps 3–5 are repeated. For 
the third step and the development of a new harmony, three mechanisms 
can be used. These include random selection, memory selection, and 
pitch adjustment [206]. Each design variable of the new vector can be 
determined from previous values stored in the harmony memory matrix 
HM or from a new random value. The probability of selecting the pre-
vious element of the harmony memory matrix is determined by the 
Harmony Memory Consideration Rate, HMCR. When the value is taken 
from the previous value, it changes according to the pitch adjustment 
rate, PAR, taking into account a predefined range of possible values. The 
complete process of harmony search is shown in the Fig. 6. This opti-
mization process is characteristic of single-objective optimization, while 
in multi-objective optimization, both the harmony memory consider-
ation and the pitch adjustment rate are used in each iteration to define a 
new value for the design variables. To rank the solutions of multi- 
objective optimization, non-dominant sorting [223] and crowding 

distance [224] are used. 
As for the application of the Harmony search algorithm in solving the 

finite element model updating optimization problem and the related 
global problem, there are few studies [119,225-228] in which it is used 
for this purpose. Most of the papers [119,226,227] focus on combining 
harmony search with other algorithms to improve the computational 
efficiency. When compared to the traditionally used optimization al-
gorithms (GA, PSO) [110] as standalone algorithms, it can be seen that 
HS is the most efficient among them when comparing the computational 
cost and accuracy of the adjustment. This subsection has served only as 
introduction for mathematical background and description of steps of 
the harmony search algorithm, while its application and examples of 
studies will be more discussed in the following section. 

6.4. Hybrid local–global optimization algorithms 

As can be seen from the previous subsections dealing with the 
implementation of model updating and closely related processes such as 
damage detection, the use of the discussed algorithms as stand-alone 
algorithms is very computationally intensive due to the solution of 
very complex mathematical problems. Moreover, the search for solu-
tions can often get stuck in local traps. To solve the above problems, 
many studies and research have proposed (Table 7, 8 and 9) hybrid 
local–global algorithms that can successfully solve this problem by 
combining the advantages and disadvantages of the standalone 
algorithms. 

As for the Genetic algorithm, their hybridization in order to perform 
model updating more efficiently, Jung and Kim [229] proposed a hybrid 
genetic algorithm (HGA) by combining GA with Nelder-Mead’s modi-
fied simplex method to improve the FE model of the bridge structure. 
Using a Kriging model, Qin et al., [169] proposed a hybrid algorithm to 
perform the FEMU of complex bridge structures. To increase the chance 
of finding the global minima and finding the minimum that best de-
scribes the system Shabbir and Omenzetter [172] used a combination of 
genetic algorithms and sequential niche technique which was tested to 

Fig. 6. Flowchart of Harmony search optimization algorithm.  

Table 7 
Hybridization of the finite element model updating genetic algorithm.  

Reported  

Application 

Examples of 
related study 

Type of GA Structure 

FEMU Jung and Kim [229] HGA Simply 
supported 
bridge  

Qin et al., [169] GA in combination 
with Kriging model 

Tied basket 
arch bridge  

Tran-Ngoc et al.,  
[168] 

SGA, GAHAA Steel truss 
bridge  

Shabbir and 
Omenzetter [172] 

GA and sequential 
niche technique 

Cable stayed 
footbridge 

Damage 
detection 

Boonlong [192] CCGA beam  

Cha and 
Buyukozturk [113] 

HGA 3D steel 
structures  

Shallan et al., [230] HGA + SQP + Inter 
point + Active Set 

Beam and 
Frame  

Raich et al., [170] IRR GA Beam and 
Frame  
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perform FEMU of simple laboratory structures and a full-scale pedes-
trian bridge. 

To deal with the damage detection, Boonlong [192] proposed a 
cooperative coevolutionary genetic algorithm (CCGA) capable of solving 
an optimization problem with a large number of decision variables, as an 
optimizer for beam damage detection. In the proposed method, each 
population contains several types of subpopulations. Using the pop-
ulations, the proposed method explores the search space with a smaller 
number of generated solutions. As in the classical genetic algorithm, 
each species is independently involved. Cha and Buyukozturk [113] 
proposed a damage detection approach using a multi objective hybrid 
genetic algorithm based on MSE to determine the exact location and 

extent of damage in 3D steel structures. Shallan et al., [230] used Hybrid 
GA in combination with sequential quadratic programming, interior 
point, and active set to minimize the objective function, and performed 
the localization and quantification of damage to beams and simple 
frames using static datasets from a limited number of sensors. Raich et al 
[170] presented the FRF-based damage detection method using the 
implicit redundant representation (IRR) GA, which identifies both the 
location and severity of the damage using the limited amount of mea-
surement information. The effectiveness of the proposed method was 
demonstrated on cantilever beams, two-span continuous beam, and 
frame structures. Since the application of the optimization-based ap-
proaches to damage detection is slow to converge and requires a large 

Table 8 
Hybridization of the finite element model updating particle swarm optimization algorithm.  

Reported application Examples of related 
study 

Type of PSO Structure 

FEMU Shabbir and 
Omenzetter [231] 

HPSO-NT Pedestrian cable stayed bridge 

Damage detection Luo and Yu [232] PSO based sparse regularization Beam  

Vakil-Baghmisheh et al., 
[233] 

PS-NM  

Saada et al., [234] Modified PSO  

Jena and Parhi [233] MPSO 

Kang et al., [235] IEPSO Beam, frame, truss  

Kaveh et al., [227] HPSO 

Alkayem et al., [171] PSO and a social version of sine–cosine 
optimization algorithm 

3D irregular shape structure 

Time-variant reliability-based 
design optimization 

Li and Chen [236] PSO-t-IRS Simply supported beam, two bar frame, six-bar indeterminate truss 
structure, 23-bar truss structure.  

Table 9 
Hybridization of the finite element model updating simulated annealing and harmony search optimization algorithms.  

Optimization 
algorithm 

Reported 
application 

Examples of related 
study 

Type of simulated annealing optimization Structure 

Particle swarm 
optimization 

Damage 
detection 

He and Hwang  
[237] 

New hybrid algorithm combining the GA 
and SA 

Damaged clamped beam, mild steel truss  

Rong and Shun  
[238] 

Hybrid algorithm that combines the GA and 
SA 

Helical spring optimization design case, auto regressive and 
moving average exogenous model  

Astroza et al., [239] Hybrid global optimization algorithm (SA 
+ UKF) 

3D 5-story 3-by-2 bay steel frame building 

Harmony 
search 

FEMU Lee and Geem  
[225] 

Harmony search meta-heuristic Different type of objective function 
Pressure vessel design 
Welded beam design 
10/18 bar plane truss  

Naranjo-Pérez et al., 
[119] 

Hybrid Unscented Kalman Filter-Harmony 
Search 

Laboratory footbridge  

Naranjo-Pérez et al., 
[226] 

Collaborative machine learning algorithm Bormujos footbridge 

Damage 
detection 

Kaveh et al., [227] Particle swarm-ray optimization with 
harmony search (HRPSO) 

Five story and four span frame, 52 bar space truss  
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amount of computation. 
The Particle swarm optimization algorithm is also successfully used 

to propose a hybrid local–global optimization algorithms to solve, most 
often, FEMU and damage detection method. As a combination of GA and 
sequential niche technique, Shabbir and Omenzetter [231] also pro-
posed a method that combine sequential niche technique with PSO. In 
this way, the authors made a possible a systematic search for multiple 
minima and confidence in finding the global minima was increased. In 
order to solve the damage detection problem, Luo and Yu [232] pro-
posed a sparse regularisation method based on particle swarm optimi-
zation to detect structural damage. The proposed method consisted of 
two steps. In the first step, the FEM is updated based on the sensitivity 
analysis while the damage location is determined by the PSO. In the 
second step, the possible damage location and PSO are used to deter-
mine the extent of damage in subsequent iterations. Numerical simula-
tions on a cantilever beam show the robustness and applicability of the 
proposed method. Vakil-Baghmisheh et al., [233] used a hybrid particle 
swarm Nelder Mead algorithm to perform damage detection in a 
cantilever beam by minimizing the objective function based on the 
differences in natural frequencies. Saada et al., [234] proposed a 
modified particle swarm optimization algorithm for damage detection in 
beam structures to facilitate the performance of FEMU in accordance 
with experimentally determined natural frequencies. The main idea of 
the modified method was to identify multiple optima by running the 
algorithm a predetermined number of times, each time identifying an 
optimal location. Jena and Parhi [233] modified the PSO technique 
(MPSO) with the strategy of squeezing the physical domain of the search 
space to perform an inverse analysis of damage identification based on 
natural frequency. Kang et al., [235] improved a PSO by combining it 
with the artificial immune system and developed a new immunity-based 
particle swarm optimization (IEPSO) algorithm for model updating 
damage detection. Compared with the classical PSO algorithm and 
various evolutionary algorithms, the proposed method showed better 
performance in determining the location and extent of damage to simply 
supported beams and truss structures. Kaveh et al., [227] proposed a 
mixed particle swarm ray optimization combined with harmony search 
for model updating damage detection of the 3D structure of a five-story 
frame and space truss structure. To solve the damage prediction problem 
for structures with irregular shape, Alkayem et al., [171] combined PSO 
and the sine–cosine (SCO) optimization algorithm and developed a new 
hybrid optimization algorithm. Using the social interaction between 
PSO and SCO, the highly nonlinear and multimodal optimization 
problem of FEMU -based damage detection was overcome. The reli-
ability of the developed approach was tested on irregularly shaped 3D 
modular structures and proved to be very effective and efficient. Li and 
Chen [236] proposed a PSO-t- IRS to study time-varying reliability- 
based design optimization problems, which are also associated with high 
computational cost and difficulty in modelling. This method combines 
the PSO and the enhanced instantaneous response surface (t- IRS). 
Enhanced instantaneous response surface was used to construct the 
extended surrogate model for the instantaneous response, while the PSO 
was integrated with the extended surrogate model and used to find the 
optimal solution for the time-varying reliability-based design optimi-
zation. The effectiveness of the proposed approach was demonstrated in 
several examples, including a simply supported beam, a two-bar frame, a 
six-bar indeterminate truss structure, and a 23-bar truss structure. 

The other nature inspired computation algorithms advantages are 
also used to propose and develop some better, more computational 
effective hybrid local–global optimization algorithms. Thus, He and 
Hwang [237] combined Genetic algorithm and Simulated annealing in 
order to propose a new hybrid algorithm for finding actual damage. The 
results of the validation of the proposed hybrid method showed its ef-
ficiency when the measured data are free of error. When the measured 
data have an error that is acceptable, the proposed method provides less 
accurate but still acceptable and reasonable results. In order to increase 
the quality of the solution and the speed of convergence, Rong and Shun 

[238] proposed a new algorithm that combines the advantages of ge-
netic and the simulated annealing algorithm. The efficiency was tested 
on a helical spring optimization design case and system identification 
problem described by auto regressive and moving average exogenous 
model. Astroza et al., [239] combine simulated annealing with the un-
scented Kalman filter in their work to reduce the computational cost. 
The results show that the proposed combination saves significant 
computational time without affecting the estimation performance. 

To reduce the high computational time for model updating of com-
plex structures under the harmony search optimization algorithm, 
Naranjo-Pérez et al., [119] proposed a novel hybrid Unscented Kalman 
Filter- Harmony Search (UKF-HS). The performance of the proposed 
algorithm was tested on the benchmark footbridge under the context of 
single and multi-objective optimization and compared with three 
computational optimization algorithms. In another work, Naranjo-Pérez 
et al., [226] combine multi-objective harmony search, active set algo-
rithms, artificial neural network and principal component analysis to 
solve the problem of high computational time and uncertainties asso-
ciated with selecting the best updated model among all Pareto-optimal 
solutions. Kaveh et al., [227] proposed a new optimization algorithm 
for damage detection that combines mixed particle swarm ray optimi-
zation with harmony search. Miguel et al., [228] proposed a new vi-
bration based method that combines a time-domain modal identification 
technique with the evolutionary harmony search algorithm. The pro-
posed method was verified on a numerical example and three cantilever 
beams with different damage scenarios and noise levels. The results 
show that the proposed method can be efficiently used for structural 
damage detection and remaining life prediction. 

Fig. 7. FEMU using surrogate based method flowchart.  
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7. Surrogate based finite element model updating 

To reduce computational efficiency in finite element model updating 
problems, the finite element model was replaced by a mathematical 
model that approximates the relationship between the preselected in-
puts and outputs of the FE model. The main objective in developing the 
surrogate-based model updating method is to replace the original finite 
element model in order to obtain a surrogate that is analytically more 
practical and computationally more convenient. The use of surrogate- 
based optimization (SBO) replaces direct model optimization with an 
iterative process of creating, optimizing, and updating a fast and 
analytically tractable surrogate model. A locally defined surrogate 
model should have at least reasonable accuracy in representing a nu-
merical model. By optimizing the design of the surrogate model, a design 
is obtained that is verified by evaluating a numerical model, and its data 
is further used to update the surrogate model. Until the termination 
criterion is satisfied, the optimization process continues by applying a 
predictor–corrector [240]. Performing all operations on a defined sur-
rogate model reduces the duration and computational effort of the 
optimization compared to direct optimization. The procedure for per-
forming surrogate-based model updating is presented below (Fig. 7). In 

the first step, an initial surrogate model is generated. In the second step, 
an approximate solution to the nonlinear minimization problem is ob-
tained by optimizing the surrogate. Then, the model is evaluated based 
on the approximate solution computed in the previous step. In the fourth 
step, the new model is used to update the surrogate model. If the 
termination criteria are satisfied, the procedure is terminated. If the 
termination criteria are not satisfied, we proceed to the second step of 
the procedure. 

Main terms in surrogate-based optimization are surrogate models 
and surrogate based optimization technique (Fig. 8). For developing the 
surrogate model design experiments, surrogate modelling technique, 
model validation and surrogate criterion are necessary. Surrogate based 
optimization technique include the approximation model management 
optimization, space mapping, manifold mapping, and surrogate man-
agement framework. Surrogate model is a key component of surrogate- 
based method, and it can be classified as the physical and functional 
surrogate models [241]. Surrogate model developing include strategy of 
design of experiments, model data acquisition, data fitting and model 
validation (Fig. 9). 

Design of the experiment (DOE) is a strategy of assigning samples 
(points in the design space) that aim to maximise the amount of infor-
mation collected. Model estimation is performed at the assigned points 
in the design space to create a data set that is later used to construct a 
surrogate model. To explore a large region of the search space, classical 
DOE techniques such as factorial designs [242] applied to discrete 
design variables are used. By applying samples of possible combinations, 
called factorial design, once discretized continuous variables can be 
easily analysed. In a fully factorial design, the number of samples in-
creases exponentially with the number of design variables. When the 
number of design variables is large and model evaluation is expensive, 
fractional factorial designs [243] are used. In addition, to evaluate the 
effect and interaction among design variables, their quadratic effects 
and interactions, full two-level (2r) and three level (3r) design is applied 
such as a central composite design [106], star design [244] and Box 
Behnken design [245]. During the construction of the initial surrogate 
model, there is usually non prior knowledge about the objective func-
tion. Therefore, some of the DOE approaches mainly aim at uniform 
distribution of samples within the design space [246]. Therefore, Latin 
hypercube sampling (LHS) [247-250] is mostly used. In this approach, 
the design space is divided into bv bins, where b is the number of samples 
and v is the number of design variables. The samples are selected ac-
cording to the following criteria: (1) each sample is within a bin, and (2) 
in each bin there is exactly one sample for all one-dimensional pro-
jections of the p samples and the bin. The standard LHS may lead to non- 
uniform distribution. Therefore, approaches that provide a uniform 
distribution of samples have been proposed. There are several other 
approaches to sampling, including Monte Carlo sampling [251], Ham-
mersley sampling [132], and orthogonal array sampling [246]. 

The common DOE method used in the RS method refers to full- 
factorial experimental design [169], central composite experiments 
[252], orthogonal design [183], uniform design [253], etc. For low-order 

Fig. 8. Classification of the surrogate based models and their characteristics and main advantages.  

Fig. 9. Surrogate model construction flowchart.  

Fig. 10. Five requirements that design of experiment methods should fulfil.  
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RSM, orthogonal and uniform design are usually used. Full factorial 
experiment design requires too many calculations, although it could lead 
to relatively more accurate results. Central composite experiment [254] 
design and D-optimality [255] are applied to model updating of large 
RSMs, and they achieve almost the same accuracy as when a polynomial 
response surface is created [254]. Regardless of the DOE method chosen, 
the ideal DOE should fulfil the requirements shown in Fig. 10. 

After the design of the experiment has been appropriately selected 
and the data collected, an approximate model and fitting methodology 
are established below. 

The most popular surrogate modelling techniques include polynomial 
regression [252,256], radial basis function [252,257,258], Kriging pre-
dictor [184,249,259,260], neural network [261-263] and other methods 
based on the above [264-267]. For additional descriptions of previous 
methods, the authors refer the reader to some of the following references 
[264,266,268,269]. Some of these methods define a surrogate model and 
an estimate of the approximation error built into the process. These 
include the Kriging or Gaussian regression methods. Separately, there are 
methods that are used only to assess the predictability of a particular 
model. One of the simplest methods for validating a model is the split 
sample method [246]. In this method, the sample is divided into two 
subsets: a training subset and a testing subset. The training subset con-
tains the points from which the surrogate model is created. On the other 
hand, there is the cross-validation method [270]. In this method, the data 
sets are divided into L subsets. Each subset is used in turn to test the 
surrogate model developed based on the other L-1 subsets. In the case 
where the number of subsets L is equal to the sample size p, the cross- 
validation is called leave-one-out cross-validation [271]. The advan-
tage of this approach is that it is less biased compared to the split-sample 
method. However, the main disadvantage is that it requires the con-
struction of a surrogate model. Nevertheless, the robustness of the sur-
rogate model and the validation approach can be improved since all data 
are used simultaneously as training data and as test data. 

7.1. Response surface-based method 

In order to avoid model updating being trapped in local solutions 
that yield an unacceptable value of the objective function, in the initial 
phase of the surrogate-based model updating method, it is recom-
mended to use the surrogate model that is valid in the global search 
space [272]. Therefore, regardless of the method used, a correction of 
the surrogate model is performed to avoid the possibility that the global 
accuracy of the model may be useless for the further optimization pro-
cess. To improve the surrogate locally, two methods are used. The first 
one refers to the correction of the objective function [273] and the other 
one refers to the concept of space mapping concept [274]. The following 
is an example of studies in which some of the surrogate-based methods 
mostly the response surface based method applied to perform model 
updating, damage detection, or reliability analysis. 

Ren et al., [253] proposed a FEMU based on the RSB method using 
measured static structural responses. In addition, a technique to reduce 
the parameters for constructing the RSB model was proposed. The 
method was verified on a numerical beam and a full-scale continuous 
box girder bridge. It was found that the proposed method has the ad-
vantages of simple implementation, highly efficient cost, reasonable 
updating accuracy, and does not require FE calculation in each iteration 
of the optimization procedure during updating. Ren and Chen [154] 
proposed an application of the response surface-based finite element 
model updating for the simulation of a simply supported beam and a 
full-size continuous box beam, and discussed the main aspects of its 
implementation. Using simulation data from FEM, a quadratic poly-
nomial response surface was constructed and used to reduce computa-
tional costs. Comparison of FEMU with RSB using the sensitivity-based 
method showed that the RSB method is efficient and converges faster. 
The application of model updating using the response surface method is 
characterized by the difficulty of finding a suitable design, followed by a 

series of trials and errors with different dimes and subset models. To 
overcome this limitation, Shahidi et al., [245] proposed a generalized 
response surface based method. To extract as much data as possible from 
the measured signals and to compensate for the error that often occurs in 
regression models, the formulation of the MU problem in the time 
domain was also proposed. The efficiency of the proposed method was 
demonstrated on a steel frame structure. Marwala [214] presented a 
finite element model updating method in which the response surface 
equation of the finite element model is approximated by a multilayer 
perceptron. The updating parameters were determined by optimizing 
the objective function using a genetic algorithm. Verification of the 
proposed approach was performed on an asymmetric H-shaped struc-
ture. It showed that the proposed approach is 2.5 times faster than the 
genetic algorithm and 24 times faster than simulated annealing. To in-
crease the influence of the sample points near the prediction point on its 
prediction value and solve the coefficients of the response surface 
polynomial, Chakraborty and Sen [275] combined the moving least 
square methods and response surface methods. The effectiveness of the 
proposed method was verified on a 10-member truss and a masonry 
culvert. Zong et al., [254] presented an application of the RS method on 
model updating of a bridge structure. By implementing the third order 
polynomial function, the response surface model of the bridge was 
created. In their work, the authors considered important aspects for the 
implementation of model updating, such as experimental design, 
screening of parameters, construction of a high-order polynomial RS 
model, optimization methods, and verification of the accuracy of the RS 
model. Compared with the traditional sensitivity-based model updating 
method, the proposed method was shown to be more efficient and 
converge quickly. Zhou et al., [252] validated the effectiveness of the 
radial basis function (RBF) based response surface method where an RS 
model was constructed using quadratic polynomials. The model updat-
ing procedure was demonstrated on a theoretical structure, a laboratory- 
scale bridge model, and a real structure using static and dynamic test 
results and SHM data. The focus was on the selection of updating pa-
rameters and responses for updating. The results showed that RMS can 
be easily implemented for updating complex structures such as long 
span cable-stayed bridges. Yu and Ou [189] combined the substructure 
method with the response surface model updating method using SHM 
data to reconstruct the actual operating condition of the Aizhai sus-
pension bridge. The time-domain based RSM was obtained by 
comparing the characteristics of the time-domain response of the tests 
and their FEM counterparts and establishing the functional relationship 
between the time-domain response and the structural parameters. The 
unknown structural parameters of FEM are modified by optimization 
calculations based on the response surface method. Deng and Cai [276] 
proposed the response surface based method combined with GA to up-
date the bridge model to obtain the explicit relationship between the 
structural responses and the parameters from the simulation results. By 
using second or higher order polynomials, the RSM can model the cur-
vature effects between the responses and the parameters that the 
sensitivity-based methods cannot represent. In the proposed method, the 
first step is to select the updating parameters. The experimental design 
for the selected parameters was optimized using RSM. The structural 
responses were selected according to the purpose of model updating, 
while the minimization of the objective function was performed using 
GA. Using the regression method, the RSF for structural responses can be 
obtained, while the objective function can be developed using the re-
siduals between the measured and predicted responses from the gener-
ated RSF and optimised using GA to obtain the updated structural 
parameters. To investigate the accuracy of the RSM based on the time 
domain, Han and Yang [277] conducted an experiment on a simply 
supported beam where the frequency response and modal parameters 
were obtained. Han and Yang compared the results with those obtained 
by applying the FEMU based on the frequency response function and 
modal characteristics and concluded that the time-domain based RSM 
can reduce the computation time and improve the efficiency of the 
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FEMU and can be used for further damage detection and condition 
assessment. Kriging model prediction is a modelling method based on 
the Gaussian process, which has been shown to be compact and effective 
in solving optimization problems. Su et al., [278] developed a Gaussian 
Process (GP) surrogate model to assess probabilistic seismic perfor-
mance of a pile-supported wharf structure. GP was used as a substitute 
for the computationally intensive model. In terms of computational cost, 
the approach based on the surrogate model GP is far superior to the 
brute-force MCS. To address the challenge from the perspective of the 
Kriging model, Shan et al., [279] proposed a new method to update the 
finite element model by combining the substructure with the response 
surface method. The effectiveness of the proposed method was verified 
on a laboratory-scale cable-stayed suspension bridge. Moravej et al., 
[280] integrated a modular Bayesian approach to structural reliability 
analysis and proposed a structural performance evaluation approach 
using Gaussian process surrogate models. By substituting the finite 
element model and the associated discrepancy function for the Gaussian 
process surrogate model, efficient calculation and comprehensive un-
certainty quantification were ensured. The proposed method was tested 
on a large box girder bridge at laboratory scale in undamaged and 
damaged conditions. On this basis, FEMU has been shown to be a robust 
and computationally efficient tool for calibrating structural properties 
under uncertainty. Wu et al., [247] proposed an update of the finite 
element model based on the combination of the Kriging model and Latin 
hypercube sampling to perform the model update for different bridge 
types. The Kriging model was used as a surrogate model, while the Latin 
hypercube sampling was applied to the preselected samples defined to 
predict the relationship between the predicted and actual structural 
behaviour. Comparing the computational cost of the proposed method 
with that of the Genetic Algorithm, the proposed method shows better 
performance. To reduce the computational cost of the large number of 
iterations required for Bayesian model updating, Mao et al., [249] used 
the Kriging predictor to build the surrogate model of the suspension 
bridge. The Latin hypercube sampling method was used to generate the 
experimental data sets. In addition, the authors investigated four types 
of correlation functions: the Gaussian, exponential, linear, and spline 
functions. The comparison of the correlation functions showed that the 
spline and linear correlation functions generate a much larger validation 
error than the Gaussian and exponential functions, while the error of the 
Gaussian correlation function is smaller than that of the exponential 
function. Based on the performed model update of the cable-stayed 
bridge, it was proved that using the Kriging predictor to update the 
large complex structure reduces the computational cost and ensures the 
accuracy. Wang et al., [184] proposed a multi-scale finite element model 
updating method using the kriging metamodel as a surrogate for the 
multi-scale model to perform the finite element model updating of the 
laboratory model of a transmission tower. The review of the proposed 
method has shown that it can improve the accuracy of the multiscale 
model in both local and global structural response. Bassoli et al., [166] 
performed the update of the finite element model of a masonry tower 
using a surrogate-assisted differential evolution algorithm to reduce the 
computational cost. To further reduce the number of objective function 
evaluations, a filling sampling strategy was introduced in the applied 
algorithm. The accuracy in the optimal region through local and global 
exploration was increased by selecting candidate points. Based on the 
research conducted, it was found that a fully characterised structure can 
be used to achieve a consistent description of the dynamic behaviour of 
the structure using numerical modelling. Aruna and Ganguli [21] per-
formed a model update on a cantilever beam to solve the problem of 
understanding a reaction surface based multi-fidelity model and quan-
tifying the uncertainty associated with free vibrations. Based on the 
conducted study, it was found that the responses obtained with the 
multi-fidelity model are very close to the responses obtained with the 
high-fidelity model. Moreover, when compared with the Monte Carlo- 
based quantification of uncertainty, it was found that the multi- 
fidelity model requires little computational time and is as accurate as 

the high-fidelity model. 
Qin et al., [169] combined the Kriging model with a genetic algo-

rithm in a hybrid finite element model updating method. Based on 
sampled data regression, a Kriging model was developed between the 
updating parameters, frequencies and displacements. The analytical 
values of frequency and displacement in the objective function are 
predicted by the kriging model and solved by the genetic algorithm. 

In addition to the previous study, where the surrogate model is used 
to update the finite element model, it can be successfully used for 
damage detection and reliability analysis. Fang and Perera [255] pro-
posed a FEMU method for damage detection based on the RSB method 
and the optimal D-design using only the natural frequency values. The 
authors used the D-design to establish response surface models and 
perform the screening out non-significant updating parameters because 
it requires a smaller number of samples than a standard design such as 
CCD and allows for an irregular design space. The proposed method was 
verified on the numerical model of a beam, a RC frame, and a full-scale 
bridge, and it was concluded that the linear RS model proved to be 
suitable for the purposes of SDI. Bucher and Bourgund [281] proposed a 
new adaptive interpolation scheme that provides a factual and accurate 
representation of the system behaviour through the response surface. To 
obtain the desired reliability estimates, the response surface was used in 
conjunction with advanced Monte Carlo simulation techniques. The 
effectiveness of the proposed method was verified using two examples 
that included an SDOF system and a three-bay five-story frame. Das and 
Zheng [282] proposed a method for cumulative formation of the 
response surface proposed a cumulative response surface function 
method to perform reliability analysis of a stiffened plate structure, 
which is very time consuming. The proposed method includes three 
main steps: search, improvement, and verification. In the first two steps, 
the iteration process reduces the distance between the central point and 
a sample point. The third step, the verification step, is performed based 
on the sample points already obtained. The proposed method has been 
verified on several examples with a 3 and 12-story frame. To determine 
reliability and obtain moderate computation time, Gaspar et al., [248] 
combined a response surface model based on second-order polynomials 
with a first-order reliability method. By combining the adaptive inter-
polation scheme and the Latin hypercube sampling technique, an iter-
ative definition of the response surface model was performed in the 
space of basic random variables that contribute most to the probability 
of failure. The case study was performed on plate elements, and the 
effects of considering constrained or restrained boundary conditions and 
corroded plate elements on the reliability analysis results were observed. 
Li et al., [258] proposed a sequential surrogate reliability method based 
on radial basis functions. In the proposed method, the optimization 
problem is solved iteratively to update a surrogate model of the limit 
state function. By using new points and updating the surrogate model, 
the surrogate model of the limit state function becomes more accurate in 
the important region that has a high probability of failure and at the 
boundary of the limit state function. The main objective of the optimi-
zation is to find a new point that maximizes the probability density 
function. The proposed method was verified on several numerical ex-
amples and showed the accuracy of the surrogate model in the important 
regions with a smaller number of samples. To estimate the failure 
probability in each iteration, Monte Carlos simulation was used to 
obtain a sequence of approximate failure probabilities. Li et al., [250] 
proposed a new instantaneous response surface method (t- IRS) for time- 
dependent reliability analysis. The proposed method does not need to 
build and update the surrogate models separately for each time node. It 
uses the expansion optimal linear estimation method to discretize the 
stochastic process into a set of independent standard normal variables 
along with some deterministic functions of time. The initial samples are 
then generated by applying Latin Hypercube Sampling (LHS). The cor-
responding response values are used to construct the Kriging surrogate 
model of the instantaneous response. To update the Kriging surrogate 
model, the active learning method is used until satisfactory accuracy is 
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achieved. Using Monte Carlo simulation, the surrogate model for the 
instantaneous response is used to calculate the time-dependent reli-
ability. Rutherford et al., [283] presented the possibility of using 
response surface metamodels to identify damage in the form of changes 
in stiffness and damping coefficient. The advantage of the proposed 
approach is that it requires a relatively small data set and can detect 
changes in parameters and locations in some nonlinear problems. The 
effectiveness of the proposed method for damage detection was 
demonstrated on a simple linear and nonlinear 5DOF system. Dey et al., 
[284] proposed a method to predict the crack parameters (location and 
depth) from the measured natural frequencies based on the integration 
of the finite element response surface method and the genetic algorithm. 
The verification of the proposed method was performed on a thin-walled 
channel section cantilever beam. The sum of the previously mentioned 
research works based on the application of the surrogate-based method 
to solve finite element model updating problems, indicating the appli-
cation and the type of structures and models to which it was applied, can 
be found in Table 10. 

Based on the literature review conducted, it can be concluded that 
replacing the finite element models with an analytically feasible and 

computationally cheaper surrogate can successfully reduce computation 
time. In addition to updating the finite element model to determine the 
unknown structural parameters, surrogate models can be successfully 
used for damage detection and reliability analysis. They can also handle 
complex optimization problems, which usually have a computationally 
expensive objective function. The application of model updating using 
the response surface method is characterized by difficulties in finding a 
suitable design, followed by a series of trials and errors with different 
dimensions and submodel. 

7.2. Artificial neural network 

Artificial neural networks are an artificial replica of the human brain 
that attempts to simulate the learning process and tries to implement 
simplified models that make up the biological neural network. It consists 
of a series of interconnected simple process elements, units, or nodes 
whose functionality is based on a biological neuron. The processing 
power of the network is stored in the strength of the connections be-
tween its individual connections, i.e., neurons. Data processing is per-
formed by parallel operation of neural network nodes. The most 

Table 10 
Review of the using surrogate based method for FEMU, damage detection and reliability analysis.  

Reported 
Application 

Examples of related study Types of SB method Structure 

FEMU Ren et al., [253] RS based on the measured static structural 
response 

Numerical beam, full-scale box-girder bridge 

Ren and Chen [154] RS Beam, full-size precast continuous box girder bridge 

Shahidi et al., [245] GRSMU Steel frame structure 

Marwala [214] RS + GA H-shaped structure 

Chakraborty and Sen  
[275] 

MLSM - RS 10 member truss, masonry culvert 

Zong et al., [254] A third order polynomial RS Long span prestressed continuous rigid frame bridge 

Zhou et al., [252] RS method based on the RBFs Cable stayed bridge 

Yu and Ou [189] RS method using SHM Suspension bridge 

Deng and Cai [276] RS + GA Simply supported concrete beam, Prestressed concrete slab on girder 
highway bridges 

Han and Yang [277] RS based on time domain Beam 

Shan et al., [279] Substructure method in combination with RS Cable stayed suspension bridge 

Moravej et al., [280] Gaussian Process surrogate model Large lab-scale box girder bridge 

Su et al., [278] Gaussian Process surrogate model Pile-supported wharf structure 

Wu et al., [247] Kriging Model and Latin Hypercube Sampling 
method 

Truss bridge and an arch bridge 

Mao et al., [249] Kriging predictor Cable stayed bridge 

Qin et al., [169] Kriging model + GA Complex bridge structures 

Wang et al., [184] Multi scale model updating using Kriging-meta 
model 

Transmission tower 

Bassoli et al., [166] Second order surrogate + DEA Historical masonry structures 

Aruna and Ganguli [21] Multi fidelity response surfaces Beam 

Damage detection Fang and Perera [255] RS (First order response surface models) Simply supported beam, RC frame, full scale bridge 

Rutherford et al., [283] RS meta-models Simple linear and nonlinear 5DOF system 

Dey et al., [284] RS + GA Thin-walled channel section cantilever beam. 

Reliability analysis Bucher and Bourgund  
[281] 

RS SDOF system and three bay five story frame 

Das and Zheng [282] Improved RS 3 bay 12 story frame 

Gaspar et al., [248] RS Deck plate element 

Li et al., [258] Sequential surrogate reliability method beam, circular pipe structure, speed reducer shaft, cantilever tube, nonlinear 
oscillator 

Li et al., [250] t-IRS Corroded beam structure, Cantilever Tube Structure, 2D Truss structure  
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commonly used network topology, the multilayer perceptron (MLP), 
consists of an input layer, an output layer, and a number of hidden 
neuron layers. Its parts are interconnected in such a way that the 
transmission of information is one-way - a neuron sends the information 
to other neurons without receiving information from them. Such a 
general configuration of a neural network and a multilayer perceptron is 
shown in the figure. To ensure and maintain the accuracy of the neural 
network, it is important to choose the right number of hidden layers and 
neurons in each layer. The selection of the number of neurons is done by 
the trial-and-error method [285] or by applying empirical relations 
[286]. To obtain the output of the neurons, a nonlinear procedure of 
transforming the weighted sum of the inputs is performed. The back-
propagation is determined by the connections between the neurons, the 
activation function they use, and the learning algorithm that determines 

the weight adjustment process. During backpropagation, the learning 
algorithm goes through two phases. In the first phase, the training input 
pattern is displayed by the input layer of the network. The grid is 
distributed from layer to layer by the input pattern, and the output layer 
is generated by the output pattern. If the output pattern deviates from 
the desired output, an error is calculated and then propagated backward 
through the network from the output layer to the input layer. According 
to the error propagation, the value is modified. Based on the above, it 
can be concluded that learning with multilayer perceptrons (Fig. 11 b)) 
can be conceptualised as a nonlinear minimization problem that can be 
solved by applying a gradient-based algorithm. On this basis, the set of 
the optimal weights are obtained that provide a minimum error value 
between the neural network outputs and the actual values [286]. The 
procedure for using artificial neural network in performing finite 

Fig. 11. Neural network a) flowchart b) graphical representation of multi-layer perceptron.  
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element model updating is presented on Fig. 11 a. This method are 
popular in structural application for model updating and monitoring of 
frame buildings, bridges and trusses [287]. In this paper some of the 
studies in which authors have used Neural network for model updating 
damage detection and improving the computational efficiency of exist-
ing methods are singled out. 

Kim et al., [108] used the neural network to update the boundary 
conditions of long span bridge using the static data. After its identifi-
cation, it was assumed that boundary conditions were fixed, and the 
stiffness of the structure was updated by dynamic FEMU. In this way, 
authors improved the parameter identifiability and addressed the limi-
tation of the conventional FEMU method related to using heterogeneous 
data in FEMU. Sabamehr et al., [176] used Neural network combined 
with genetic algorithm to find the correlations between the structural 
frequencies and changes in the sectional properties of the bridge seg-
ments. The outputs of these models are compared with outputs obtained 
by performed the matrix based FEMU method. It was found that the 
matrix-based method has a better performance in identifying the modal 
properties. But the main disadvantage of the matrix based FEMU method 
is its difficult to implementation. Naranjo-Pérez et al., [226] took 
advantage of individual FEMU methods and approaches, particular 
harmony search, active set algorithms, machine learning technique and 
statistical tool in order to propose a new collaborative algorithm and 
solve the problem of computational efficiency and solving of the addi-
tional decision making problem. The validation of the proposed algo-
rithm was performed on the Bormujos footbridge, and it is obtained that 
the proposed method reduces the simulation time required to perform 
the optimization of FEMU problem without compromising the accuracy 
of the solution. The ANN method properties are used to meet the 
requirement of defining the Pareto optimal front as a convex function. 
When it comes to uncertainties in the measured data and the developed 
numerical model, the reliability of the ANN method is questioned. For 
this reason, several studies [27,288,289] have developed a probabilistic 
approach for ANN that has led to a promising solution, but due to the 
complexity in solving practical engineering problems, it is not possible 
to obtain an unbiased probabilistic distribution of uncertainties. To 
solve this problem of uncertainties in damage detection using structural 
dynamic parameters, Padil et al., [261] proposed a non-probabilistic 
ANN method. 

The ANN can be successfully used in order to perform the damage 
detection of different type of structure using different structural dy-
namic properties. Yuen [71] dseleescribe the process of damage 

detection under the ANN using the structural dynamic properties. This 
process consists of two steps. In first step damage locations are identified 
using an ANN with damage signatures as the inputs, while in the second 
phase, the severity of damage forms the first step is estimated by another 
ANN with structural dynamic properties and the inputs. Both ANNs are 
design using the Bayesian model class selection method. In their study, 
Hakim et al., [290] proposed an application of ANN for the prediction of 
damage severity and location on I-beam structures using natural fre-
quencies and mode shapes. Based on the obtained results, they 
concluded that ANN can be successfully used to detect single damage 
and that the combination of natural frequencies and mode shapes is a 
better option than using them individually. 

In addition to the classical structural dynamic parameters (natural 
frequencies and mode shapes) it has been shown that the damage 
detection under the ANN algorithm can be performed using the fre-
quency response function [291]. This type of data sets can ensure that 
the numerical simulations do not need to be performed if the ANN are 
completely and properly trained. The authors with their study show that 
several advantages of using FRFs together with the ANN in damage 
detection over the modal parameters. Most commonly, as several studies 
show, using the natural frequencies and mode shapes to perform damage 
detection are limited to quantifying the single damage and large error 
may be introduced when quantifying multiple damage [263]. Tan et al., 
[263] proposed in their work a damage detection method for early stage 
single and multiple damage scenarios on steel beam based on ANN. The 
proposed method uses the modal strain energy based index to deal with 
the single damage scenario. On the other hand, the ANN incorporates 
the modal strain energy based index as the input layer in order to 
quantify the multiple damage scenarios severities. In order to reduce the 
dimension of the initial FRF data and transforms it into new damage, 
Bandara et al., [90] in their study presented the damage detection under 
the ANN using the frequency response function The artificial neural 
network is also used to detect different levels of nonlinearities. They 
showed that the ANN trained with the summation FRF give higher 
precise damage detection than those ANN trained with individual FRF. 
This opens the potential of use the proposed method for structural health 
monitoring application. As the antiresonant frequencies can be identi-
fied more easily and accurately than the natural frequencies and mode 
shapes, Meruane and Mahu [292] developed a real time damage 
detection under the ANN using the antiresonant frequencies. They 
verified the proposed method on the steel beam of rectangular cross 
section. 

Fig. 11. (continued). 

S. Ereiz et al.                                                                                                                                                                                                                                    



Structures 41 (2022) 684–723

710

Based on the literature review of finite element model updating and 
closely related applications using the ANN method (Table 11), it can be 
concluded that this method is successfully applied. Moreover, it is also 
successfully used to solve the problem of uncertainties in the measured 
data and the developed numerical model. Due to the ability to model the 
nonlinear relationship between the structural dynamic properties and 
the location and intensity of damage, ANN has also proven to be a very 
effective method for damage detection. In addition to the classical 
structural dynamic properties - natural frequencies and mode shapes - it 
can be successfully used for not only damage detection but also struc-
tural health monitoring using the frequency response function. Some of 
the advantages of ANN over some conventional traditional algorithms 
are very good estimation of nonlinear relationship, ability to work with 
ambiguous or deficient data and detect patterns, robustness to data er-
rors, working with many variables or parameters, formulation of 
knowledge based on experience, etc. The main problem of ANN is the 
large amount of training set required to properly train the network, 
based on which the process of model updating, and closely related 
processes can be performed as accurately as possible. 

8. Bayesian finite element model updating 

The basic principle of the Bayesian method is that uncertainty pa-
rameters, modelling error, and measurement error are modelled as 
design variables. The probability density function for the measurement 
error and modelling error is defined and parameterized with parameters 
whose values account for both errors. These parameters are added to the 
parameters of the numerical model of the structure by forming a set of 
general parameters. This is equivalent to adding the probabilistic model 
classes to the design model class parameterized with parameters that 
include model parameters, measurement parameters, and error param-
eters. This procedure is commonly referred to as stochastic embedding 
[3]. 

As mentioned earlier, the probability density function reflects the 

situation where the model class, M m, and the experimentally obtained 
data set are known. Most often, it is selected based on engineering 
judgement and determined independently of the measurement results. 
Due to the significant influence of the PDF on the results, the problem of 
arbitrariness and subjectivity arises. When dealing with real construc-

Table 11 
Review of the using artificial neural network for FEMU, damage detection and reliability analysis.  

Reported 
application 

Examples of related 
study 

Type of simulated annealing optimization Structure 

FEMU Kim et al., [108] ANN Long span bridge  

Sabamehr et al.,  
[176] 

ANN + GA Bridge segments  

Naranjo-Pérez et al.,  
[226] 

HS + active set algorithm + machine learning 
+ statistical tool 

Bormujos footbridge 

Damage 
detection 

Padil et al., [261] Non probabilistic ANN Experimental and numerical model of frame  

Yuen [71] ANN Five storey building  

Hakim et al., [290] ANN I-beam structures  

Hakim et al [291]. ANN + FRF Experimental and numerical structure of two-storey steel framed, 38-storey tall 
building model, cantilevered beam model  

Tan et al., [263] ANN + MSE Steel beam  

Bandara et al., [90] ANN + FRF Three-story bookshelf structure  

Meruane and Mahu  
[292] 

ANN + antiresonant frequencies Eight DOF spring mass system, steel beam, with a rectangular cross-section  

Fig. 12. Finite element model updating under the Bayesian method.  
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tions and real systems, the calculation of joint and marginal PDFs in-
volves a large number of parameters. This leads to high-dimensional 
integrals for which approximate measures or sampling methods, such 
as the Markov Chain Monte Carlo method, are used to solve. If a conjugate 
prior is used, the posterior probability density function can be deter-
mined numerically. If the number of parameters is limited, the posterior 
PDF can be determined analytically. After the posterior PDF is calculated, 
estimated, or approximated, it can provide information on how much the 
uncertainty of the parameters decreases relative to the observed data and 
the available prior information. The posterior probability density func-
tion can be approximated in a number of ways, including the Gaussian 
distribution, asymptotic approximations, or sampling techniques. If both 
the prior PDF and the likelihood function are Gaussian, the posterior PDF 
will also have a Gaussian distribution [127]. Asymptotic approximations 
are used when a large amount of data is available. The most popular 
Markov chain Monte Carlo method is used to sample the posterior PDF 
and improve the convergence speed. Fig. 12 shows a flowchart of finite 
element model updating under the Bayesian approach, while in the 
following, the applications of Bayesian method in solving various prob-
lems of finite element model updating are discussed. 

Li et al., [293] studied the Runyan suspension bridge in detail based 
on a series of field vibration data. They used a probabilistic FEMU to 
update the stiffness of the pile foundation. In order to minimize the error 
function, where both natural frequencies and mode shapes were selected 
as target responses, they performed the updating procedure using the 
Bayesian algorithm based updating software FEMtools. Altunişik et al., 
[40] performed the Bayesian model updating on the historical timber 
mosque based on vibration testing to minimize the differences between 
numerical and experimental results. FEMU was used to perform the 
linear time history analysis and structural behavior evaluation before 
and after model updating. Based on the results, they concluded that 
model updating is very effective in reflecting the actual behavior of the 
structure and obtaining its response. In another study [42], the same 
author also performed Bayesian finite element model updating using 
ambient vibration, but in this case for a historic masonry structure to 
reduce the differences between the actual and predicted structural 
behavior. The study concluded that the locally updated model appears 
to be better able to provide accurate predictions for structural behavior 
evaluation and that the model can be used as a starting point for SHM. 
Ponsi et al., [294] used Bayesian updating of the finite element model to 
perform the calibration of the complex FE model of a historic masonry 
fortress damaged by a seismic event. Fujita and Takewaki [295] pro-
posed a statistical update of the finite element model to determine the 
story stiffness of a shear bending model. In the proposed method, the 
probability distribution of floor rotation angle in the lowest mode is 
obtained for the identified shear bending model. By providing additional 
measurement data on the floor rotation angle, a conditional probability 
problem is applied. In order to determine the stiffness of the linkage 
between two parts of the coupled building, Hu and Yang [296] studied 
the coupled building with two linked shear buildings and updated the 
numerical model using also Markov Chain Monte Carlo based Bayesian 
model updating. Lam et al., [297] performed Bayesian model updating 
of a 20-story office building by performing a full-scale vibration test to 
determine the distribution of inter-story stiffness. This is made possible 
by applying Bayesian model updating using the Markov Chain Monte 
Carlo Bayesian model updating to explicitly address the uncertainties. 
Asadollahi et al., [63] proposed a Bayesian inference method using the 
Transitional Markov Chain Monte Carlo (TMCMC) algorithm to 
marginalize the prediction error precision. The proposed method was 
applied to update a long-span cable-stayed bridge using long-term 
monitoring data collected from a wireless sensor network (WSN). The 
proposed method was compared with constant error precisions [298] 
and updating error precisions [299]. The comparison showed that the 
prediction error precisions with marginalized treatment performed best 
in terms of more accurate inference of model parameters and quantifi-
cation of posterior uncertainty MU. In this way, more reliable 

predictions of model properties were achieved. Argyris et al., [300] used 
the TMCM to performed the high fidelity finite element model updating 
of the highway bridge. In their study, they proposed a likelihood 
formulation that included the mode shapes based on the probabilistic 
treatment of the MAC value. Sun and Büyüköztürk [301] proposed a 
new probabilistic model updating using incomplete modal data. To solve 
the modal matching problem in model updating, a new strategy for 
Bayesian model updating was proposed using a model reduction tech-
nique and MCMC with adaptive random walks. The effectiveness and 
capabilities of the proposed method were tested and confirmed on a 
nine-story building with synthetic measurements The application of the 
proposed approach does not require any adjustment of mode shapes, 
while it is realized by model reduction. Yuen and Ortiz [287] proposed a 
novel nonparametric general Bayesian regression method with multiple 
resolutions for MU using modal data. The FEMU problem is posed as a 
nonlinear regression problem from the modal data to the structural 
parameters. It does not require an explicit functional form but uses the 
input–output data to adaptively model the relationship. The proposed 
method was tested on a 20-storey shear building and a 3D truss. The 
results show that the method is very simple, effective, and computa-
tionally inexpensive. To solve the problem of updating the model of a 
nonlinear dynamic system with nonclassical damping, Cheung and 
Bansal [302] proposed a new Gibbs-based approach to Bayesian model 
updating for linear dynamic systems. The proposed approach is based on 
the incomplete modal data including natural frequencies, mode shapes, 
and damping ratios. The results from the performed numerical examples 
showed that the proposed approach is useful only for globally identifi-
able and unidentifiable contribution sums of the corresponding mass 
and stiffness matrices from each prescribed substructure. In addition to 
performing FEMU with the aim of obtaining structural parameters and 
properties, the Bayesian method and its derivation are also used for 
damage detection. In order to estimate the joint posterior probability 
distribution of the updating parameters of a damaged four-story ma-
sonry reinforced concrete structure, Akhlaghi et al., [303] performed 
Bayesian model updating using ambient vibration data. Based on the 
conducted research, it was shown that the Bayesian finite element model 
updating method can detect and identify damage. Instead of a FEMU 
optimization problem that uses an objective function or modal fitting 
measures, Kernicky et al., [304] proposed an approach that solves the 
entire feasible parameter space while satisfying the constraints. They 
extended the application of nonlinear constraint satisfaction with in-
terval arithmetic to larger system models with multiple degrees of 
freedom based on the prior computation of a full set of feasible solutions. 
In this way, they enabled the identification of uncertain stiffness pa-
rameters and the exact identification of damage for all cases of severity. 
Moravej et al., [305] used for the first time the modular Bayesian 
approach to update the initial laboratory-scale numerical model of a 
concrete box for two states - an undamaged and a damaged state based 
on the results of an experimental modal analysis. In this study, the FE is 
replaced by a Gaussian process model as a metamodel. The main 
advantage of using the Gaussian process model is that it takes into ac-
count the main sources of uncertainty. Based on the previously stated, 
the results of the performed model updating performed are realistic. The 
results of the analysis show that the reduction of the stiffness in the 
damaged state is significant, and that this reduction corresponds to the 
cracks observed on the structure. In damage detection, the main prob-
lem is the amount of modal data, which is often insufficient to perform a 
model updating for damage detection, and its insensitivity to the loca-
tion of the damage. Therefore, Hou et al., [306] proposed a method for 
damage detection that solves the above problem and is based on addi-
tional virtual masses and Bayesian theory. The use of additional virtual 
masses was used to obtain a larger number of virtual structures and a lot 
of modal and statistical information. Bayesian theory was used to obtain 
the posterior probability density function to determine the damage 
factor. Astroza et al., [307] provided a tool for post-disaster damage 
identification and SHM using a Bayesian inference method and dynamic 
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input–output data recorded during an earthquake. The effectiveness of 
the proposed method was demonstrated on a RC frame building sub-
jected to bi-directional horizontal seismic excitation. The results showed 
that the updated FE model can be used to reconstruct the unmeasured 
responses from the local to the global level and to estimate the type and 
extent of damage to the entire structure. To include damping measure-
ments in the update, Das and Debnath [126] proposed a Bayesian finite 
element model updating based on a maximum a posteriori using the 
incomplete complex natural frequencies and mode shapes. In their 
study, in addition to the mass and stiffness, the damping parameters 
were also updated in the form of classical damping and non-classical 
viscous damping. Compared with Gibbs sampling technique and sensi-
tivity method, the proposed method showed better performance in terms 
of computation time, convergence rate and number of iterations. Using 
Bayesian FEMU in combination with input–output data obtained during 
small, medium, and high amplitude dynamic excitation, Ebrahimian 
et al., [308] proposed a framework for SHM and damage detection. The 
possibility of applying the proposed method in SHM and damage 
detection after an earthquake was ensured by extracting data on 
different manifestations of damage in parts of the updated structural 
model. The proposed method can also be used to locate, classify, and 

quantify damage at local and global levels of the structure. In addition to 
the data obtained by SHM and performing static and dynamic tests, the 
use of longitudinal guided wave signals was also noted. Thus, using 
guided wave signals, Ng [309] proposed a Bayesian model updating 
approach for quantifying damage in beam-like structures. The proposed 
method is applicable not only to laminar damage, but also to other types 
of damage or more complex engineered structures. This is possible by 
modifying the embedded spectral finite element model in the Bayesian 
framework. The proposed approach can accurately identify the damage 
even when the extent of the damage is small. In addition to the previous 
examples of studies where the Bayesian approach and its derivation 
have been used for finite element model updating and damage detection, 
it can also be used for model class selection. Chiachío et al., [65] used 
the Bayesian approach to select the most probable model class for fa-
tigue damage prediction in composite materials. On the other hand, 
Goller et al., [111] in his study proposed a method to select the weights 
of the probability density functions for the case where the likelihood 
function is formulated as the product of two probability density func-
tions related to different data sets. The proposed method is based on the 
performing the Bayesian model updating at the class level and was 
verified using simulated data for a 2 DOF system and using experimental 

Table 12 
Review of the using probabilistic method for FEMU, damage detection and model class selection.  

Reported 
application 

Examples of related 
study 

Type of probabilistic method Type of structure 

FEMU Li et al., [293] Bayesian method Runyan suspension bridge piles   

Altunişik et al., [40] Historical timber mosque   

Altunişik et al., [42], Historical masonry structure   

Ponsi et al., [294] Two floor frame, San Felice sul Panaro fortress 

Fujita and Takewaki  
[295] 

Subspace method SB model, 10 story plane building frame 

Hu and Yang [296] MCMC Coupled buildings   

Lam et al., [297] 20-storey office building 

Asadollahi et al., [63] TMCMC Cable-stayed bridges 

Argyris et al., [300] TMCMC of high fidelity finite element model Ravine highway bridge 

Sun and Büyüköztürk  
[301] 

Model reduction techniques and MCMC with adaptive 
random walks 

Nine-story shear type building 

Yuen and Ortiz [287] Multiresolution Bayesian nonparametric general regression 
method 

20-storey shear building, and 3D truss. 

Cheung and Bansal  
[302] 

Gibbs based approach for Bayesian model updating 4-DOF mechanical system, 120-DOF. Frame structure 

Damage 
detection 

Akhlaghi et al., [303] MCMC four-story masonry infilled reinforced concrete structure 

Kernicky et al., [304] Constraint satisfaction with interval arithmetic Planar truss 

Moravej et al., [305] Modular Bayesian method Lab-scaled concrete box girder bridge 

Hou et al., [306] Bayesian theory in combination with additional virtual 
masses 

3 story frame structure 

Astroza et al., [307] Bayesian inference methods RC frame building 

Das and Debnath  
[126] 

Bayesian method based on MAP Spring-mass-damper system ASCE benchmark structure 

Ebrahimian et al.,  
[308] 

Batch Bayesian estimation method integrated with mechanics 
based nonlinear FEM 

Cantilever steel column 2D moment resisting steel frame 

Ng [309] Bayesian method Beam like structure 

Model class 
selection 

Chiachío et al., [65] Bayesian method Composites element   

Goller et al., [111] 2 DOF system using simulated data and 2 DOF planar shear building 
using experimental data   

Simeon et al., [298] analytical example of simple linear regression, beam  
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data for a 2 DOF planar shear building. Simeon et al., [298] studied the 
effect of prediction error correlation on the results of a conductive model 
updating using the Bayesian method and also studied the effect of 
selecting a prediction error correlation structure. Based on a fair study of 
the analytical example of simple linear regression and the example of 
reinforced concrete beams, they concluded that the Bayesian class se-
lection model can be applied in solving the problem of selecting the 
appropriate prediction error correlation structure and that more realistic 
modelling and updating results can be provided. The sum of the exam-
ples of studies in which the probabilistic approach and its derivate used 
to perform finite element model updating, damage detection is shown in 
the following table (Table 12). 

In addition to those examples, in table the three examples of study in 
which the Bayesian approach was used to perform the model class se-
lection concerned with the mathematical hypothesis of the ability of the 
models to predict measured quantities is also given. Based on the liter-
ature review conducted on probabilistic (Bayesian) model updating, it 
can be concluded that it can be successfully used for solving various 
types of parameter estimation and model selection problems, more so 
than what was found in the literature cited in this paper. But, in addition 
to their successfully application those methods can often found to be 
complex, time consuming and computationally costly process. Those 
most often limit their application on large civil engineering application. 

9. Fuzzy finite element model updating 

Comparing with the Bayesian probabilistic finite element model 
updating method where the probability density function is defined, in 
fuzzy finite element model updating method, instead the probability 
density function, the fuzzy membership function is defined in order to 
define the uncertainty related to the measured outputs. In addition, at 
different level of the membership function, the interval finite element 
model updating is applied. Fuzzy method is based on three processes: the 
fuzzification process, the inference process, and the defuzzification pro-
cess. In the fuzzification process, the degree of membership of variables is 
calculated based on a certain membership function. All variables with 
possible values (sets) are within certain rules. In the process of inference, 
the variables are transformed for a particular situation. In the process of 
defuzzification, the values of variables are transformed into numerical 
values. In the process of updating the finite element model using the fuzzy 
method, the process begins with the initial estimation of the membership 
functions of an input parameter. Then, in the next step, the fuzzy mem-
bership function of the outputs is used. At different levels of the mem-
bership function, interval model updating is performed. In this way, the 
initial fuzzy membership of the input parameters is updated (Fig. 13). 

The following are examples of research where updating of fuzzy 
finite element model updating has been performed to improve numeri-
cal models of various types of structures, as well as simple and complex 
numerical and laboratory models based on various data sets obtained 
through experimental testing. 

Khodaparast et al., [142] proposed a method for calculating the 
measured fuzzy membership function for experimental data and a 
method for extracting membership functions for histograms adopted to 
the data. The measured fuzzy functions were used to update a fuzzy 
model of a 3-DOF mass spring system and applied to a DLR AIRMOD 
structure. To consider the uncertainty of the measured modal data by 
using only a single modal test, Liu and Duan [144] proposed the fuzzy 
FEMU method to update the FE model of a practical bridge. Compared 
with the stochastic FEMU methods, it was shown that the proposed 
method does not require measured structural dynamic parameters ob-
tained from couples of structural dynamic tests. On the other hand, the 
proposed method requires more computational effort compared to the 
regular FEMU methods. In general, the fuzzy method is very computa-
tionally cost for dealing with the effects of uncertainties on the system 
behaviour. This problem is overcome by using metamodels (surrogate 
models), surface methods, neural networks and Kriging predictors 

[144]. Erdogan and Bakir [310] used fuzzy FEMU to represent the un-
certainties in the dynamic structural parameters caused by measurement 
noise. To minimise the objective function to obtain the membership 
function of the uncertain parameters, the authors used a genetic algo-
rithm. In another work, Erdogan et al., [106] used a fuzzy set-based 
approach to quantify the uncertainty to investigate the uncertainty 
variations in the model results of the two-span benchmark structure. To 
perform the more successful FEM calculations, they used the Gaussian 
process (GP) model as a surrogate model. Bulkaibet et al., [145] used 
fuzzy FEMU based on metaheuristic optimization algorithms to quantify 
the uncertainty associated with the modal parameters of a 5-DOF mass- 
spring system. To simplify the computational process by transforming 
the fuzzy calculations into a series of interval calculations, they used the 
α-cut method. They compared the proposed method with the PSO and 
Bayesian algorithm. The comparison showed that the ant colony opti-
mization (ACO) algorithm was able to achieve very good results with the 
few ants. Sun et al., [181] proposed an innovative model updating 
techniques for the evaluation of a cable-stayed bridge. In the first phase, 
a sensitivity analysis is used to select the updated parameters. In the 
second phase, a fuzzy outranking method is applied to evaluate the non- 
inferior solutions from the first phase. Moreover, the best compromise 
solution for updating the parameters is determined. Dominik and Iwa-
niec [311] proposed a new method for damage detection to electric 
pylon using the fuzzy logic method applied to the comparison of natural 
frequencies. Mojtahedi et al., [312] proposed a Fuzzy- Krill Herd algo-
rithm to perform SHM and model updating of a fixed jacket platform to 
perform damage detection. The proposed method is based on the Krill 
Herd analogy, which consists of three different actions: (1) motion 
introduced by other krill, (2) foraging activity and (3) random diffusion. 
Based on these three steps, the current position of each krill swarm can 
be determined. The objective function in the proposed methodology 
represents the smallest distance between the position of the food and the 
highest density of the herd. In addition, the authors performed a com-
parison of the proposed method with the traditional fuzzy genetic 
method. The comparison has shown that the fuzzy genetic algorithm is 
insignificantly better compared to Fuzzy Krill Herd algorithm, but both 
algorithms do not differ significantly. It has also been shown that the 
FKH algorithm requires a lower number of iterations in some cases and is 
more suitable for fuzzy coupling. 

Previous research in the non-probabilistic finite element model 
updating, i.e. fuzzy logic (Table 13) showed it successful application 
which can be used in order to quantify different type of uncertainties and 
their effect. In addition, its successful application for model updating 
and damage detection are also reported. This method is valuable source 
for modelling the uncertainties when, in addition to the interval bounds, 
the uncertain quantities are also available. The power of this method lies 
in the gradual description of membership interpret depending on the 
specific application. The use of fuzzy logic is a particular advantage in 
decision-making processes where description by algorithms is extremely 
difficult and criteria are multiplied. 

10. Regularization method 

The update of the finite element model and the related problem can 
be considered as an optimization problem aimed at finding the param-
eter vector that minimizes the difference between the measured and the 
calculated responses. The identified equation is typically an ill- 
conditioned inverse problem. To improve this problem and ensure 
that the obtained results have high robustness, the regularization 
method - Tikhonov (ℓ2-norm) and sparse (ℓ1-norm) regularization is 
used. Due to the possibility of obtaining a sparse solution, the sparse 
regularization method is most often used for structural damage detec-
tion. In general, regularization is a process in which an additional 
penalty function is introduced to solve an ill-posed problem or prevent 
overfitting of the model [315]. Essentially, this ensures that the finite 
element model does not overfit the measured data, to the expense of the 
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physics in the finite element model. Following the original idea, regu-
larization extends the objective function to new conditions that depend 
on updating the parameters rather than the measured responses. This 
optimizes the search domain that is assumed to belong to it. The problem 
that the regularization method tries to solve has the following form (Eq 
(17)): 

min
{θ}∊RN

‖r(θ)‖2
2 (18)  

where θ are the indices of the structural parameters, r(θ) is the residual 
or difference between the predicted and the actual structural behaviour 
and can usually be defined using the dynamic structural parameters. The 
residuals corresponding to small changes in a structural parameter can 
be linearly related to small changes in Δ θ as follows: 

r = SΔθ + ε (19)  

where ε is error vector which represent the effect of measurement and 

numerical error, while S is a sensitivity matrix defined as: 

Sij =
∂ri

∂θj
(20) 

The regularization term is added in the objective function as follows: 

min
{θ}∊RN

‖M(θ) − M̃‖
2
2 + β‖{θ}‖2

2 (21)  

where ‖M(θ) − M̃‖
2
2 is the residual normal which proposed the differ-

ences between the structural behaviour predicted by numerical model, 
M(θ), and its actual behaviour M̃, β is the regularization parameters 
while the ‖{θ}‖2

2 is the regularization term or norm solution. The pro-
posed equation is an example of the l2 regularization, while the l1 norm 
regularization is defined as: 

min
{θ}∊RN

‖M(θ) − M̃‖
2
2 + β‖{θ}‖1 (22) 

Fig. 13. Finite element model updating under the fuzzy method flowchart.  
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The most important thing when performing finite element model 
updating or damage detection using the regularization method is to 
choose the right regularization parameter β. The best way to define it 
correctly is to find a suitable compromise between data fidelity and 
sparsity solutions. In the Tikhonov regularization, the L-curve criterion 
is used, which satisfies the small norm of the solution and the small norm 
of the residual. For the ℓ1-regularization problem, the curves of the 
residual norms versus the solution norm do not have the form L and are 
therefore plotted in a linear scale, unlike the ℓ2-norm where they are 
plotted in the log–log scale. Since the ℓ1-norm does not have a smooth 
solution and the curvature of the L-curve is not identified, it cannot be 
expressed explicitly [316]. The main differences between the Tikhonov 
regularization and the sparse regularization are based on linearity, 
convergence to zero, regularization path, and sparsity [317]. Moreover, 
the l1 minimization requires more computational effort when 
comparing the computational efficiency and the obtained solution, and 
there is no closed-form solution. The Tikhonov regularization (ℓ2-norm) 
is a common approach to the insufficiency problem and provides an 
acceptable and smooth solution. It is somewhat more widely used due to 
its computational efficiency and ease of implementation. However, since 
the ℓ2-norm promotes smoothing of the solution, this solution is 
sometimes over-smoothed, especially when the number of sensors is 
limited. On the other hand, the solution of the inverse problem in the 
context of damage detection usually has sparse properties, since typi-
cally only a small number of structural components are damaged 
compared to the whole structure. In the following, an example is given 
where the regularization method is used to solve the problem of 
updating the finite element model in the context of damage detection 
and determining the optimal value of the structural parameters. 

In the context of the finite element model, the regularization method 
has been successfully used [318]. To solve ill-posed invers problem of 
finite element model updating of a bridge with two continuous spans, 
Rezaiee-Pajand et al., [99] proposed a new iterative and hybrid regu-
larization method based on the Krylov subspace theory [319] and the 
bidiagonalization process. The proposed method was compared with the 
least square minimum residual method (LSMR), Reg-LSMR (further 
development of the LS problem by adding regularization parameters), 
and hybrid LSMR (LSMR combined with the Tikhonov regularization 
method). The comparison showed that the proposed sensitivity-based 

strategy and the regularized solution method are influential and suc-
cessful in model updating under incomplete noisy data. Luo and Ling 
[232] proposed a particle swarm optimization based sparse regulariza-
tion approach for structural damage detection. Classical first-order 
sensitivity analysis and ℓ1/2-norm regularization were introduced to 
define an objective function solved by PSO. The proposed method was 
verified on a 10-element cantilever beam and was shown to be capable 
of detecting locations and accurately quantifying the extent of damage. 
Hernandez [317] provided a new theoretical basis for the identification 
of localized damage in structures in terms of stiffness reduction using 
incomplete modal information. Based on the study conducted, it was 
concluded that the l1-based sensitivity approach can accurately identify 
damage using noisy data. Zhou et al., [320] proposed a new l1 regula-
rization approach to identify damage using data from the first few fre-
quencies. The proposed method is mainly based on the sparse vector 
theory, since a sparse vector can be successfully recovered with a small 
number of measured data. The advantage of the proposed method is that 
the first few natural frequencies can be measured more accurately than 
the mode shapes. In addition, the authors conducted a study on the in-
fluence of damage severity, number of damages, number of measure-
ment data, and noise on the damage detection results and came to the 
following conclusions. The number of measurement data, measurement 
noise, and damage severity affect the accuracy of damage detection. 
More severe damage, less measurement noise, and more measurement 
data generally improve damage detection. If the frequency changes 
caused by the damage are significantly higher than the frequency 
changes caused by the noise, the damage can be detected correctly. Hou 
et al., [191] proposed a l1 regularization-based technique for model 
updating by utilizing the sparsity of structural damage and developing a 
strategy to select the regularization parameters for the l1 regularization 
problem. The effectiveness of the proposed method was demonstrated 
on a truss structure and a three-story steel frame. Hou et al., [321] used 
the l1-norm regularized damage detection for a cantilever beam and a 
three-story frame using optimal sensor data. The optimal sensor place-
ment was determined using the OSP method based on GA. To provide 
the best conditioned model updating scenario for the target structure, 
Garcia-Palencia et al., [322] proposed a regularization technique and 
frequency point selection protocol for updating the university of central 
Florida benchmark structure. In the initial phase, the model updating 

Table 13 
Review of the using non-probabilistic method for FEMU, quantification of the uncertainties, and damage detection.  

Examples of related 
study 

Type of non -probability method Reported application Structure 

Khodaparast et al.,  
[142] 

Fuzzy finite model updating Finite element model updating 3-DOF mass spring system; DLR AIRMOD structure    

Liu and Duan [144] Consideration the effect of the measured uncertainty 
of modal parameters on the updated model. 

Continuous prestressed concrete bridge 

Erdogan and Bakir  
[310]  

Quantification of uncertainties of the measured 
uncertainties of differently type of measured 
parameters 

Reinforced frame structure   

Bulkaibet et al.,  
[145] 

5-DOF mass-spring system   

Moens and 
Vandepitte  
[313,314] 

Plate with uncertain boundary conditions; Garteur 
benchmark problem; solar panel; COROT baffle 
cover 

Erdogan et al., [106] Fuzzy set-based uncertainty quantification 
approach 

Investigation the effect of uncertainties on the 
predicted response of structures 

Two-span benchmark structure 

Sun et al., [181] Two-phase FEMU method based on 
sensitivity analysis and fuzzy outranking 
method 

Assess the mechanical state of structure Cable-stayed bridge 

Dominik and Iwaniec 
[311] 

Fuzzy logic method based on the natural 
frequency comparison 

Finite element model updating for damage detection Electric pylon 

Mojtahedi et al.,  
[312] 

Fuzzy Krill Herd algorithm Finite element model updating for damage detection Offshore jacket platforms  
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was performed by changing the stiffness, mass, and damping parameters 
to obtain the initial undamaged numerical model. Then, the process was 
repeated in the damaged state, using the updated parameters of the 
initial model and the subsequent damaged state for damage detection. 
The updating of the model was also performed in two steps: In the first 
step, the stiffness was calibrated and in the second step, the damping 
was calibrated. According to the proposed approach, the frequency 
points for the first step of the procedure should be outside the resonance, 
anti-resonance and noisy regions in the experimentally obtained FRFs, 
while for the second step, when the identification of the damping is 
performed, the frequency points in the resonance are needed because 
the damping causes the significant changes in the response. Zahn and Xu 
[323] proposed an alternative method based on the sparse regulariza-
tion (ℓ1-norm regularization) to solve the problem related to the ill- 
posedness in response sensitivity based damage detection. The effec-
tiveness and superiority of the proposed method was tested on an 
overhanging beam. Shahbaznia et al., used sensitivity analysis and 
Tikhonov regularization methods to solve the inverse problem of model 
update and damage detection in the time domain of railway bridge 
without knowledge of the moving load. Pan and Yu [324] proposed a 
sparse regularization based method for damage detection in a beam 
bridge using only structural responses caused by an unknown moving 
force. To improve the ill-conditioned problem, Lp-norm sparse regula-
rization was used in the proposed method. Ding et al., [325] proposed a 
new non-probabilistic method based on Hybrid C-Jaya-TSA. In the 
proposed method, the authors used sparse regularization technique to 
solve the problem of limited number of measured data and performed 
damage detection on TV tower, truss model and cantilever beam. 
Entezami et al., [160] proposed a new regularization method, Regu-
larized Least Squares Minimal Residual (RLSMR), to solve the problem 
of damage detection based on sensitivity using incomplete data 
contaminated by noise. The proposed approach is based on the Krylova 
subspace and uses bidiagonalization and iterative algorithms to solve 
systems of linear equations. The comparison of the proposed approach 
with Tikhon’s regularization method has shown that the proposed 
approach gives better results in damage detection. Hua et al [326] 
addressed the determination of regularization parameters in the 
implementation of the Tikhonov regularization technique in finite 
element model updating. They formulated an adaptive strategy that 
allows varying the value of regularization parameters in different iter-
ation steps. The optimal value of the parameters is determined based on 
the minimum product criterion. The comparison of the proposed method 
with the L-curve method and the generalized cross-validation of the 

truss bridge has shown that the proposed strategy is more effective than 
the method that uses a constant value for the regularization parameters. 

Based on the literature review and previous studies (Table 14), it can 
be seen that model updating can be successfully applied using the reg-
ularization method. As has been previously reported in the literature, 
the regularization method is used particularly successfully when the 
data is contaminated with noise. For these datasets, the main problem is 
that they are sensitive to small fluctuations in outputs that lead to un-
reasonably large fluctuations in the values of the damage and design 
variable values during model updating. Another problem that can also 
be successfully solved by applying regularization methods is the prob-
lem of insufficient definition of a system of equations whose solution 
leads to an infinite number of solutions. A number of recent studies have 
shown that regularization methods can be successfully applied even in 
cases where the amount of vibration data is limited. They can provide a 
satisfactory solution for damage detection requiring a small number of 
measurement points. In addition, it was shown that the regularization 
method requires a lot of computational effort which is not justified by 
improving accuracy. 

11. Conclusion 

To better develop the numerical model of actual structural behaviour 
and make its predictions as credible as possible, it is increasingly com-
mon to combine numerical modelling with the results of experimental 
investigation of the structure. This article provides an overview of the 
process of updating finite element models based on the results of 
experimental investigations and the most used methods. Several rele-
vant conclusions can be drawn from the literature review and based on 
the wrote paper: 

1. Considering the actual behavior of the structure and the param-
eters that most credibly represent it, one can conclude that the 
numerical model of the structure can be improved based on the 
experimentally determined dynamic properties - natural fre-
quencies and mode shapes. The change in structural dynamic 
parameters is most associated in the changes of structural stiff-
ness in form of the damage. This prove that these parameters are 
in fact the first indicators of the occurrence of a damage on the 
structure.  

2. In addition to the use of the structural dynamic properties, the 
static data sets can also be used for updating the finite element 
model, especially for numerical modelling of complex structures. 

Table 14 
Review of the using regularization method for FEMU and damage detection.  

Reported application Examples of related study Type of regularization method Structure 

FEMU Rezaiee-Pajand et al., [99] Krylov subspace method Two story concrete frame, two span continuous steel truss 

Damage detection Luo and Ling [232] PSO based sparse regularization Cantilever beam 

Hernandez [317] L1 norm regularization Shear-beam, plate in bending   

Zhou et al., [320] Cantilever beam   

Hou et al., [191] Cantilever beam, three story frame   

Hou et al., [321] Planer truss, three story steel frame 

Garcia-Palencia et al., [322] Tikhonov regularization USF-Benchmark Structure 

Zahn and Xu [323] Tikhonov regularization and sparse regularization Planer truss, Overhang beam 

Shahbaznia et al., [31] Tikhonov regularization using L-curve Railway Bridges 

Pan and Yu [324] Sparse regularization Two span continuous bridge   

Ding et al., [325] TV Tower, truss model, cantilever beam structure  

Entezami et al., [160] Regularized Least Squares Minimal Residual Truss bridge 

Output error based FEMU Hua et al., [326] Tikhonov regularization in conjunction with MPC Truss bridge  
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The main problem with static measurements is the placement of 
the sensors and the errors they are subject to (size, position, 
orientation, thermal expansion, reading technique, or measure-
ment accuracy). While, in combination with the dynamic data 
sets and with the proper definition of the weighted factor values, 
their combination can give a very accurate and reliable numerical 
model of structure. 

3. Selecting the appropriate design variables have a significant in-
fluence on reducing errors and simplifying the finite element 
model. The best way to perform model parameterization is 
sensitivity analysis, which results in suppressing the problem of 
inadequacy. Based on this, the parameters that do not affect the 
output results are excluded from the model updating process. It is 
very important that the selected design variables represent the 
real structural behavior as well as possible.  

4. The finite element model updating methods currently represented 
in literature are divided in two main groups: direct (non-iterative) 
and indirect (iterative) methods. Direct methods straightly update 
the elements of the stiffness or mass matrix in one step and pro-
vides dynamic parameters corresponding to those obtained by 
experimental tests. The study addresses the limitation of the direct 
FEMU, although it reproduces the structural dynamic parameters 
without the guarantee that it accurately reproduces the actual 
values of the physical parameters of the structure  

5. The most studies have relied on iterative maximum likelihood 
method that is performed using the single or multi objective 
approach. The single objective approach obtains only a single 
solution, which is a subset of the set of possible solutions. 
Moreover, in this approach, the effect of the weighted factors on 
the defined single objective function had to be analysed. In 
contrast, in the multi-objective approach, one obtains a set of 
possible solutions, called the Pareto optimal front. Determination 
of the Pareto optimal front is very computationally intensive and 
time consuming. Moreover, the best possible solution can be 
found by solving the decision-making problem (best balanced 
solution), which allows updating the numerical model to better 
reflect the actual structural behavior. Finally, compared to the 
single-objective approach, the multi-objective approach shows 
better performance in solving the finite element model updating 
problem. 

6. Iterative sensitivity-based methods allow many updating pa-
rameters and measured outputs and many of them require a high 
computational effort. Moreover, the sensitivity equation is 
generally a nonlinear problem linking the input parameters of the 
numerical model and its output, so an iterative procedure must be 
performed. The literature identifies the convergence problem in 
determination of the updating parameters values. 

7. The iterative FEMU methods currently represented in the litera-
ture are divided into stochastic (Bayesian) and deterministic 
(maximum likelihood). The existing research has highlighted the 
advantage of the stochastic method, which provides the overall 
probability of the distribution of the physical parameters under 
consideration, while the main drawback is the time required to 
perform FEMU of complex structures. Compared to stochastic 
methods, deterministic method provides the point of estimation 
of the expected value. On the other hand, the reduced time 
required to calculate the FEMU of a complex structure has led to 
the deterministic method being widely used for practical appli-
cations in civil engineering. Therefore, several maximum likeli-
hood methods optimization algorithms have been proposed to 
deal with the FEMU problem. However, the Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO) are the most 
commonly used, since their code is usually integrated into nu-
merical computation software.  

8. The paper reviews the Harmony Search (HS) and Simulated 
Annealing (SA) optimization algorithm, where the previous 

studies have shown that the harmony search algorithm is the 
most efficient without compromising accuracy compared to GA 
and PSO. In addition to using optimization algorithms as stand- 
alone algorithms, their drawbacks are minimised by combining 
them with other methods in order to improve the computational 
efficiency. 

9. Surrogate-based finite element model updating shows good per-
formance by replacing the finite element model with a mathe-
matical model that is analytically more practical and 
computationally more effective. In order to improve the compu-
tational efficiency in FEMU, the literature discussed the impor-
tance of sampling in creating effective surrogate models. The 
main problem is to find a suitable design, followed by a series of 
trials and errors with different dimensions and submodels.  

10. The capabilities of the Artificial Neural Network method are also 
successfully used for solving various types of FEMU problems, 
especially when consider nonlinear relationship between the 
damage detection (location and severity) and the measured 
structural dynamic properties. Moreover, this method can also be 
used for Structural Health Monitoring by using the Frequency 
Response Function instead of the traditionally used structural 
dynamic parameters (natural frequencies and mode shapes). The 
main problem with this method is the data sets needed to prop-
erly train the network.  

11. The Fuzzy approach is a kind of stochastic approach in which the 
updating of model is represented as a non-probabilistic problem, 
in contrast to the Bayesian method (probabilistic problem). 
Therefore, the results obtained with these two methods could 
only be compared qualitatively. The fuzzy finite element model 
updating can provide results that are mostly easy and intuitive to 
interpret, and their further processing can provide information 
about the resulting uncertainties. In addition, the fuzzy approach 
does not take into account the dependence between the model 
parameters and/or the experimental data, while the Bayesian 
approach automatically incorporates the interaction between the 
two data sets.  

12. The regularization method is used to solve the problem of ill- 
conditioning and overfitting when the number of available 
measurement data is limited. The most important thing in this 
method is the proper definition of the regularization parameter. 
This method is especially successfully used in damage detection. 
On the other hand, when the number of sensors used for the 
experimental study is limited, the solution obtained by the reg-
ularization method can sometimes be over-smoothed. Also, the 
problem presents a situation where a small number of structural 
components are damaged compared to the whole structure which 
results in sparse properties of the solution. Although it can be 
successfully applied in improving the accuracy of the solution, it 
did not justify the required computational effort. 
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[102] Özer E, Soyöz S. Vibration-based damage detection and seismic performance 
assessment of bridges. Earthq Spectra 2015;31:137–57. https://doi.org/10.1193/ 
080612EQS255M. 

[103] Li J, Hao H, Chen Z. Damage Identification and Optimal Sensor Placement for 
Structures under Unknown Traffic-Induced Vibrations. J Aerosp Eng 2017;30: 
1–10. https://doi.org/10.1061/(asce)as.1943-5525.0000550. 

[104] Feng D, Feng MQ. Model Updating of Railway Bridge Using In Situ Dynamic 
Displacement Measurement under Trainloads. J Bridg Eng 2015;20:04015019. 
https://doi.org/10.1061/(asce)be.1943-5592.0000765. 

[105] Wang H, Li AQ, Li J. Progressive finite element model calibration of a long-span 
suspension bridge based on ambient vibration and static measurements. Eng 
Struct 2010;32:2546–56. https://doi.org/10.1016/j.engstruct.2010.04.028. 

[106] Erdogan YS, Gul M, Catbas FN, Bakir PG. Investigation of Uncertainty Changes in 
Model Outputs for Finite-Element Model Updating Using Structural Health 
Monitoring Data. J Struct Eng 2014;140:04014078. https://doi.org/10.1061/ 
(asce)st.1943-541x.0001002. 

[107] Sanayei M, Khaloo A, Gul M, Necati CF. Automated finite element model updating 
of a scale bridge model using measured static and modal test data. Eng Struct 
2015;102:66–79. https://doi.org/10.1016/j.engstruct.2015.07.029. 

[108] S. Kim N. Kim Y.-S. Park S.-S. Jin A Sequential Framework for Improving 
Identifiability of FE Model Updating Using Static and Dynamic Data Sensors 
(Switzerland) 19 2019 https://doi.org/doi:10.3390/s19235099. 

[109] Schlune H, Plos M, Gylltoft K. Improved bridge evaluation through finite element 
model updating using static and dynamic measurements. Eng Struct 2009;31: 
1477–85. https://doi.org/10.1016/j.engstruct.2009.02.011. 
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