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Abstract: In the last few decades, the application of lightweight cold-formed composite steel–concrete
structural systems has constantly been increasing within the field of structural engineering. This can
be explained by efficient material usage, particularly noticeable when using cold-formed built-up
sections and the innovative types of shear connections. This paper summarises an overview of the
development of the cold-formed composite steel–concrete floor systems. Additionally, it provides
the background, planned activities, and preliminary results of the current LWT-FLOOR project,
which is ongoing at the University of Zagreb, Faculty of Civil Engineering, Croatia. The proposed
structural system is formed of built-up cold-formed steel beams and cast-in-place concrete slabs
that are interconnected using an innovative type of shear connection. Preliminary analytical and
numerical results on the system bending capacity are presented. Obtained results are mutually
comparable. The resistance of the fixed beam solution is governed by the resistance of the steel beam,
while pinned beam solution is governed by the degree of shear connection without the influence of
the increased number of spot welds in the steel beam.

Keywords: cold-formed built-up steel; spot welding; steel–concrete composite system; floor system;
finite element (FE) modelling

1. Introduction

One of the key strategies to reduce human impact on Earth is to completely rethink
our present lifestyle, especially the one led in industrialised countries. One of the critical
aspects of this new lifestyle is sustainability, including reducing raw material and energy
consumption. This can be achieved through innovations that will maximise the values
of the structural components and building materials during their lifecycle. Although a
widespread, systematic approach is still lacking, individual scientific projects are well
aware of this problem and provide relevant solutions. An excellent example of this is
the application of the composite cold-formed steel–concrete solutions that significantly
reduce material consumption and contribute to the aforementioned change of the present
unsustainable lifestyle.

The known fact is that composite steel–concrete systems are generally one of the most
cost-effective structural systems applied in multi-storey buildings. The main reason behind
this is that composite steel–concrete solutions integrate structural efficiency and the speed
of construction. The structural efficiency results from the effective usage of structural
materials, namely steel and concrete, thus omitting their inherent disadvantages. On the
other hand, construction speed is enhanced since propping and formwork installation can
be significantly reduced or even completely avoided.

However, despite all the advantages and benefits of composite structural systems, so
far, they have not had the chance to be applied to any greater extent, i.e., certainly not to
the extent that they deserve [1]. According to Ahmed et al. [2], the main forces driving
the research within the field of composite steel–concrete structural systems are related
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to the development of innovative construction methods and new structural products,
the best applications of new as well as underdeveloped materials, and considerations of
socioeconomic and environmental consequences towards sustainability and resilience. The
proposed structural flooring systems analysed in this work that use cold-formed steel (CFS)
profiles combined with concrete cover all the aforementioned research aspects.

The purpose of this paper is to provide an overview of the development of the cold-
formed composite steel–concrete structural systems. Furthermore, the paper gives insight
into the background, planned activities, and preliminary results of the current LWT-FLOOR
project, which is ongoing at the University of Zagreb, Faculty of Civil Engineering, Croatia.
The proposed structural system is formed of built-up cold-formed steel beams and cast-in-
place concrete slabs that are interconnected using an innovative type of shear connection.
Preliminary analytical and numerical results on the system bending capacity are presented.

2. Materials and Methods
2.1. Overview of the Cold-Formed Steel Application in Composite Steel–Concrete Structural
Systems

Generally, the interaction between steel and concrete has been widely used in structural
engineering due to multiple benefits that result from combining desirable mechanical
properties of each material. This explains why concrete is reinforced with steel rebars,
or composite steel–concrete structural systems are used when higher resistance values
or larger spanning capabilities are required. The advantages of structural steel are high
tensile strength and ductility, while concrete ones are high stiffness and high compressive
strength [3]. Therefore, using composite beams as structural flooring systems has a couple
of benefits over the non-composite ones [4]:

• Material savings between 30% and 50% of structural steel can be achieved.
• Increased stiffness can reduce beam height for the same span, which can lead to

benefits either as lower storey heights, decrease in cladding costs, more space for
mechanical services, and increased usable space for the same building height.

Today, the most common version of composite beam comprises a hot-rolled steel
beam and a floor slab, either concrete or composite steel–concrete, that interact through
the application of shear connectors. In this form, the floor slab enhances the resistance of
the steel beam by increasing its local and global stability. This observation can be further
implemented to optimise the structural steel material so that cold-formed steel sections
could be utilised instead of hot-rolled sections.

Application of cold-formed profiled steel sheeting has, for some time now, extensively
been used in the construction of structural floor systems, i.e., the composite steel–concrete
slabs [2]. Similarly, cold-formed steel profiles have also been investigated as soffits within
the composite steel–concrete beams and columns [5–7]. However, such structural systems
have not been applied to a greater extent. Nevertheless, the profiled steel sheeting used in
the proposed solutions becomes an integral part of a structural system where it performs
many different roles in the construction and the exploitation phases, such as [4]:

• Provides a working platform and protects the workers below;
• Supports the loads during construction and may eliminate the need for propping;
• Acts as permanent formwork for the concrete slab;
• If either mechanical or frictional interlock is being realised, the sheet can be considered

to contribute to the required area of the primary tension reinforcement calculated for
the slab;

• When through-deck welded stud shear connectors are used, the composite slab may
be considered to restrain the steel beams.

The stated facts show enormous potential for further development of composite
structural solutions using cold-formed steel elements and innovative shear connections.
This potential is the result of the engineering point-of-view and the socioeconomic and
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environmental point-of-view to develop a sustainable and resilient ecosystem related to
the built environment.

An extensive overview of the current development in composite steel–concrete beams
and flooring systems can be found in [2]. Cold-formed steel has seen extensive research
and application in composite slabs. However, it has not been extensively used in composite
beam solutions where the downstand beam is made of cold-formed built-up steel sections
and works together with the concrete flange, although such an idea has been around
for a couple of decades [8]. Some advantages of composite beams using cold-formed
built-up steel sections and concrete slabs are flexibility in architectural and beam cross-
section design, the possibility of shallow slab depths, easy adaptation to irregular geometry,
enabling reduction of self-weight, etc. However, the behaviour of such structural solutions
has not been, up until a recent couple of years, investigated to a greater extent.

Further optimisation of composite systems can also be achieved by reducing self-
weight with compact concrete with lightweight aggregates [9]. The authors of the paper [9]
conducted a parametric study and summarised the results of the numerical analyses on the
composite steel and concrete beams with standard and lightweight concrete slabs. In the
cases of reducing composite beam self-weight, systems tend to vibrate more easily under
human activities, and vibrational aspects of such systems are very important [10].

Hanaour [8] was among the first to examine the behaviour of composite beams with
a cold-formed section using various shear connector types. Tests were conducted on
composite beams using a steel cross-section consisting of two cold-formed channel sections.
These channel sections were connected back-to-back by self-drilling screws with welded
or screwed channel shear connectors over which the concrete slab is cast. Additionally,
tests were conducted on composite beam with two cold-formed Z sections connected on
the bottom with a plate and on top with a concrete plank generating a box section using
10 mm post-installed bolts as shear connectors. The obtained results show high ductility
and capacity of beams when proper design and execution is applied.

Lakkavalli and Liu [11] conducted tests on twelve large-scale composite slab joists con-
sisting of cold-formed steel C-sections and concrete to investigate behaviour and strength
and to assess the effectiveness of the shear transfer mechanism. C-sections were partially
embedded into the concrete slab for all specimens, so that top flanges were set into the
concrete by the distance, which corresponded to half of the slab thickness. In addition to
variation of the shear connection type and its spacing, the C-section thickness was also
varied within the specimens. Results showed that the shear transfer mechanism using
bent-up tabs performed the best when ultimate capacity is compared, followed by drilled
holes and self-drilling screws. The results also showed that reduction of shear transfer
spacing did not result in capacity increase which may be a consequence of overlapping
of stress fields. Finally, the obtained experimental capacities of beam specimens were
approximately 19% higher than the theoretically calculated capacities based on push-out
test results.

Hsu et al. [12] proposed a new composite beam system consisting of a reinforced
concrete slab on a corrugated metal deck, back-to-back cold-formed steel joists, and a
continuous cold-formed furring shear connector. A shear connector is screwed to the joist
top flange through the metal deck. Conducted tests on composite beams showed that the
composite sections could reach ultimate strength without local shear or buckling failure
when the proposed furring shear connector is used. In addition, the paper proposed analy-
sis and design methods that can predict load-deflection behaviour and flexural strength of
the beams and shear strength of the fasteners.

In [13,14], authors studied the structural behaviour of composite beams that integrate
cold-formed steel with Ferro-cement slabs through a bolted-type shear connection. Para-
metric studies on several wire mesh variations in a Ferro-cement slab, the thickness of the
steel section, and bolt diameter were carried out. Results show that failure occurs due to
concrete crushing for thicker steel sections, while thinner steel sections fail due to sudden
buckling. The shear connectors proved to have adequate strength to provide full shear
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connection and to transfer longitudinal shear force without failure. An increase of wire
mesh layers resulted in greater strength capacity and improved crack formation. Finally,
according to the analysis results, the ultimate strength capacity of these composite beams
can be calculated by constitutive laws agreed by Eurocode 4.

Khadavi and Tahir [15] conducted research related to the bending resistance of encased
composite beams composed of closed steel profiles filled with concrete. These closed
profiles consist of two cold-formed C-sections oriented toe to toe and kept in place by a
profiled sheeting installed on the beam top to increase stability and bearing performance.
Shear connection is obtained using bent reinforcement bars. The proposed solution results
show that using closed shapes of steel profiles can improve the bending strength as the
confinement contributed by the concrete decreases the local buckling of the steel section. At
the same time, the use of reinforcement as shear connectors further increases the bending
and shear resistance and additionally stiffens the proposed beam. Similar composite cross-
sections were researched by Salih et al. [16]. The results showed that filled beams have
a higher bearing capacity than typical slender sections by reaching the yield stress. The
proposed methods used in research proved to be applicable for calculating the ultimate
limit state of the composite system according to the method from EC4. The continuous
shear connection helped to move the neutral axis upward in the composite cross-section,
which ensures that the steel top flange does not buckle under compression. Finally, research
has shown that a partially encased steel beam increases flexural capacity.

Leal and Batista [17,18] present the investigation on the behaviour of structural com-
posite floor system composed of cold-formed steel trusses and partially pre-cast concrete
slab, which are interconnected using innovative shear connector solutions. In one case, the
thin-walled channel connector is comprised of a lipped channel, single angle and reinforc-
ing plate, which are altogether connected using self-drilling screws to the top chord, while
in the other case, the thin-walled Perfobond rib connectors are composed of cold-formed
plates, which are crossed by reinforcing steel bars and connected over a reinforcing plate
to the top chord using self-drilling screws. The results of both specimen types showed
that shear connectors were able to provide full interaction and adequate shear capacity
up to a failure point. Analytical models based on the assumption of full yielding of the
composite cross-section for the calculation of bending resistance is in good agreement with
the experimental results.

Another interesting and innovative solution is presented in the paper [19]. The
proposed lightweight cold-formed steel floor system is based on cold-formed steel trusses
with a composite mortar. The trusses were formed with a U-shaped cross-section bottom
chord, C-shaped cross-section web members and hat-shaped cross-section top chord. The
paper presents the results of the bending tests on full-scale composite floor prototypes and
the development of FE models and proposals of a theoretical method for determining the
deflection and bearing capacity. The results show that the theoretical solutions were in
good agreement with both the experimental and FE model results.

In order to improve weak interfaces that occur between the slab and the lower part
(beam) and to achieve better composite behaviour, Liu et al. [20] proposed a new composite
steel–concrete system composed of cold-formed U-profiles and rib truss, which is referred
to as RCUCB. The system is characterised by two top varus flanges and rebar trusses in
the opening sections. The study results showed that three possible failure modes could
occur in such systems. In addition, tensile longitudinal reinforcement plays a significant
role in controlling cracks and deformations of the encased concrete, and a proper shear
stud placement can significantly improve ductility. Finally, the EC4 procedure can be used
to calculate bending capacity with the additional application of three modification factors.

In addition to enhancements of the individual parts comprising composite steel–
concrete structural systems by applying more adequate cross-section types or materials
with more favourable mechanical properties, shear connection providing interaction of
individual parts is another key parameter highly influencing the behaviour of composite
systems. Its behaviour is characterised by its strength which depends on the realised
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degree of the shear connection. The degree of shear connection is defined as the ratio
between the shear connection capacity provided by the interconnecting element used
and the capacity of the weakest component of the composite cross-section (either steel
beam or concrete slab) [3]. Although welded headed studs are still the most widely used
shear connectors, there are numerous other solutions available to realise adequate shear
connection in composite beams. Therefore, the research on shear connection solutions
is still very popular to improve existing solutions or develop new ones. Among these
solutions, the most interesting ones allow composite systems to be easily disassembled
in case of structure demounting during deconstruction or when modification or repair
is needed. Another reason to research demountable shear connection solutions is the
previously mentioned goal to obtain sustainable structural systems. In other words, the
ability to disassemble and reuse structural systems or their parts at the end of the building
service life is of great importance to our environment.

Recently, Jakovljević et al. [21] provided a detailed chronological overview of the
available demountable shear connection solutions that have been considered for use in com-
posite structural systems. For better understanding, the shear connectors were classified
according to their geometry and load-bearing mechanism, and the main results obtained
from the push-out and large-scale beam bending test were presented and compared. In [22],
a series of push-out tests on profiled steel sheeting and beams with demountable shear
connectors were carried out. Comparison to the beam test results with welded shear con-
nectors showed that the beam with demountable shear connectors has similar stiffness
and superior ductility. A few examples of demountable headed shear stud connectors are
shown in Figure 1. Solutions using friction-grip bolts are the ones that have been greatly
investigated, but mostly as post-installed solutions in bridge rehabilitation. It is worth not-
ing that complete code regulations are still lacking, and further research is needed. Bolted
solutions using shear connectors with or without nuts embedded in the concrete slab have
also been investigated. Due to tolerance of the hole for the bolts, the results exhibit lower
initial stiffness, which can cause serviceability issues due to more considerable composite
beam deflections.
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To some extent, preloading can also be applied to avoid this, but only to the solutions
that use embedded nuts. Such a solution leads to ultimate resistances close to the resistance
of welded studs, but with failure at a very low slip rate due to brittle failure of the bolts [23].
In addition to many other solutions for shear connectors described in [21], there are still
some significant issues regarding the resistance and ductility of the proposed solutions
that need to be addressed. Firstly, the resistance of bolted shear connectors cannot be
calculated according to Eurocode 3. The additional resistance provided through the nut to
flange friction and catenary effects in bolts themselves has been observed [23]. Secondly,
propositions of Eurocode 4 [24] for the determination of shear connector ductility cannot
be implemented for bolted shear connectors as they exhibit large slips before reaching
ultimate strength and therefore need to be modified [25].

On the other hand, research of the shear connection solutions between thin cold-
formed steel profiles and concrete slabs has not been extensive. First, shear connection
experiments were conducted by Hanaor [8], where two types of connectors, embedded
and dry, were tested. The embedded connectors used channel sections that were either
connected to the beam section using 6 mm diameter screws or were welded to it. The
obtained capacities were well above the values computed for fasteners in the cold-formed
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section using standards, pointing out that appropriate code provisions can be used in the
absence of test data. Lakkavalli and You [11] conducted research on four shear transfer
mechanisms to join cold-formed C-sections and concrete. Namely, these included surface
bonds, prefabricated bent-up tabs, pre-drilled holes, and self-drilling screws. As expected,
the surface bond specimens showed the lowest strength and stiffness, and the ones using
bent-up tabs performed best at both strength and serviceability limit states. Of the three
specimens with shear transfer enhancements, the ones using self-drilling screws resulted
in the lowest strength increase. Later, Irwan et al. [26] conducted experiments on shear
connections using bent-up triangular tabs. Wehbe et al. [27] examined the behaviour of
composite beams of concrete and cold-formed steel using stand-off screws 8 mm in diameter
as shear connectors. The results showed that such a solution is feasible for providing
composite action, where composite beams with such connections can be designed for ductile
flexural failure. Alhajri et al. [13] also used bolts of 12 mm diameter to ensure composite
action between the lipped C-channels to Ferro cement slab. Such connection proved to
have adequate strength to transfer forces from slab to slab beam section. Recently, Bamaga
et al. [28] proposed three different demountable shear connection solutions between the
cold-formed steel beam and concrete slab. Push-out tests of all three solutions showed
extremely ductile behaviour with adequate strength capacity.

In addition to the above presented discrete shear connection solutions, innovative
and promising shear connection solutions based on composite dowel rib connectors [29],
as shown in Figure 2, have also been developed. Such type of shear connector in cold-
formed composite beams is titled a continuous furring channel and has been presented
in papers [30,31]. The shear connection solution comprised a continuous cold-formed
furring shear connector connected through the metal deck on top of the steel beam using
self-drilling fasteners, providing horizontal and vertical interlock between steel–concrete
parts of the cross-section.
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From all the above results, it is clear that cold-formed steel sections and concrete slabs
can act compositely. However, the data on the behaviour and performance of cold-formed
sections in composite construction are still lacking. In addition, as one of the main reasons
for using composite sections and applying CFS built-up profiles are environmental and sus-
tainability concerns, the preference in selecting the shear connection type should be given
to the demountable solutions. The environmental impacts of the demountable and conven-
tional shear connections can be quantified using the Lifecycle Assessment (LCA) method.
The evaluation of environmental benefits obtained using the LCA method comparing de-
mountable systems, promoting disassembly and reuse, to the conventional monolithic ones,
destined for demolition and recycling, is presented [32]. As expected, the results are quite
encouraging for the demountable shear connector solutions. In papers [33,34], research
on such demountable headed shear stud connectors together with the use of ultra-high
performance concrete was carried out. The proposed connectors show excellent ductility in
comparison to traditional solutions. The push-out tests were conducted for various types
of fasteners, changing their shape, diameter and bolt class, and the obtained results showed
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that the average slip was close to the value required by the EN 1994-1-1 [24]. However,
when designing for demountability, it is necessary to keep in mind that one needs to limit
the fasteners’ deformations during use and avoid the plastic response of the element to
allow the reuse of parts of the structure. Some guidelines on this issue have been analysed
for bolted joints with embedded nuts, considering the optimal ratio of beam span and
depth of the demountable steel–concrete beam [35].

Developing a new type of shear connection requires experimental testing of the
proposed connection type. Examples of the push-out tests on headed studs and composite
dowel rib connectors are shown in Figure 3a,b, respectively.
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The presented overview of the application of cold-formed sections in steel–concrete
floor systems leads to some advantages such as [8]:

• The possibility of reducing overall slab depth by using lighter sections at closer spacing.
• Easy variation of the cross-section for irregular layouts.
• Freedom in the design of cross-sections, i.e., cold-formed sections are made from flat

sheets and can be designed and manufactured to order. It is relatively easy to produce
built-up members from sections and flat strips screwed or spot welded together.

• Flexibility in assembling the sections and attached components in the workshop
and/or on-site.

• The technology for manufacturing cold-formed sections is available and straightfor-
ward in regions and countries where a large selection of hot-rolled profiles is not
available on short order, particularly for small or medium size projects.

As in the case of the shear connection for the system’s overall behaviour, the con-
necting technique related to built-up cold-formed steel elements also has a vital aspect. A
comprehensive experimental investigation on laser-welded connections based on lap-shear
and tension tests is presented in [36]. In paper [37], a comparative resistance study was con-
ducted of self-pierce riveting, resistance spot welding, and spot friction joining, identifying
the resistance of spot welding as the most favourable option. Guenfoud et al. [38] tested
welded specimens fabricated through one, two or four layers of thin steel sheets using the
shear resistance and tension resistance of multi-layer arc spot welds.

2.2. Background to the LWT-FLOOR Structural System

Corrugated web beams represent a relatively new structural system that has emerged
in the past two decades and was developed for various applications, i.e., the mainframes of
single-storey steel buildings, secondary beams of multi-storey buildings, etc. Due to the
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thin webs, from 1.5 mm to 3 mm, corrugated web beams allow significant weight reduction
compared to hot-rolled profiles or welded I-sections. The main benefits of this type of beam
are that the corrugated webs increase the beam’s stability against local and lateral-torsional
buckling and against web crippling, which may result in a more effective design from both
technical and economic points of view.

The corrugated web does not participate in the longitudinal transfer of bending
stresses. Therefore, in static terms, the corrugated web beam behaves like a lattice girder, in
which the bending moments and applied forces are transferred only through the flanges.
In contrast, the shear forces are transferred only through the diagonals and verticals of
the lattice girder. Consequently, the girder’s flanges provide the flexural strength of the
girder with no contribution from the corrugated web, which provides the girder’s shear
capacity. Furthermore, the use of thinner webs without stiffeners results in lower material
cost, with an estimated cost savings of 10–30% compared to conventionally fabricated
sections and more than 30% compared to standard hot-rolled beams [39,40]. For instance,
the buckling resistance of 1 mm thick sinusoidal corrugated sheet web corresponds to
buckling resistance of a plain flat web of 12 mm thickness or even more.

In developed solutions from the literature, already available on the construction
market, the flanges are flat plates welded to the sinusoidal web sheet, requiring a specific
welding technology [41,42]. Almost all the research on this kind of girder was devoted to
studying bending and shear capacity [43–47]. The dimensioning of corrugated web beams
is ruled by Annex D of the EN 1993-1-5 [48–50].

The main benefits of build-up corrugated web elements using fixed supports have
already been summarised and demonstrated through research investigation on such types
of beams connected with screws [40,51,52], spot welding (SW) and Cold Metal Transfer
(CMT) techniques [53–55]. CMT, mainly developed in the last years, is a new connection
technology for building steel structures. Since the technical solution of such types of beams
enables standardisation of design detailing and fabrication, both SW and CMT welding
techniques are appropriate for application in automated fabrication. Therefore, besides the
structural advantages of such a system, the potential for automated series fabrication of the
new technological solutions is another great advantage.

In research [53–55], for the purpose of full-scale tests, two beam specimens were built-
up applying the SW connection technique, i.e., CWB SW-1 and CWB SW-2. The components
of the built-up beam specimens, which were 5157 mm long and 600 mm high, are shown in
Figure 4.
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Compared to the solution with built-up beams using self-drilling screws [40,51,52],
it can be seen that the beams connected using the spot weld technique possess higher
stiffness and higher load-bearing capacity. The intermittent spot welding technique avoids
the difficulties of traditional arc welding and specific technologies, thereby significantly
increasing the fabrication speed. The numerical parametric research on the calibration
and validation of the numerical models with additional experimental tests considering the
influence of web openings have resulted in several papers [56–58]. These studies confirmed
the excellent behaviour of SW built-up corrugated web beams.
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2.3. LWT-FLOOR Project

Based on built-up cold corrugated web cold-formed steel beams and other previously
mentioned facts, it is possible to develop the new composite floor system. LWT-FLOOR
system represents such innovation that maximises the values of each building component
and used materials. The system is being investigated within the research project LWT-
FLOOR at the University of Zagreb, Faculty of Civil Engineering, Croatia.

The LWT-FLOOR project integrates state-of-the-art knowledge in new, fast and pro-
ductive spot welding technology and innovative cold-formed steel–concrete composite
solutions proposing a new construction method as a combination of built-up cold-formed
steel members and cast-in-place concrete slab. This potentially cost-effective and sustain-
able floor system could offer vital benefits in a high degree of prefabrication, reusability,
and suitability for larger spans.

In order to investigate and validate components and the proposed system, extensive
experimental, numerical and theoretical research is planned. Within the research, a particu-
lar focus is given to spot welding connections and innovative types of shear connections
with the possibility for demountability and the potential for reuse or recycling at the end
of the product design life, which are additionally evaluated through the application of
lifecycle analyses. Calibrated and validated numerical models based on experimental tests
of the system and its components allow evaluation of the system suitability for larger
spans. All the accumulated knowledge, including the support of probabilistic methods,
will be the basis for further structural detailing and the possibility of mass production.
Analyses and performance evaluation of the proposed floor system solution will be crucial
for establishing the first analytical proposal for design recommendations of this new system
within the European standards.

The proposed solution is partially made of steel, which is highly recyclable, and cold-
formed products use a high percentage of recyclable steel [59]. Because of the design for
demountability in one of the proposed shear connection types, the system has the potential
for future reuse and recycling of products and components. Spot welding technology
proved its economic effectiveness, compared to laser welding and conventional techniques,
and sustainable performance in terms of consumption of welding materials, energy, work-
ers’ health and safety issues, and elimination of inert shielding gases and particle emissions
in the environment. The system will be durable under climate change effects and in an
aggressive environment due to high protection from corrosion and the fact that all com-
ponents are galvanised. It is easy to manipulate, transport and erect components of the
system because of the reduced weight and safe connection technology. This can contribute
to the safety of workers in the shops and building sites, cleaner activity on working sites,
reduced energy consumption and lower emissions of greenhouse gasses. In the case of
inner-city projects, construction speed and lack of on-site storage require a high level of
prefabrication, which the proposed system can provide [60]. The proposed structural
system falls into the category of adaptive building technology, following environmental
and climate change requirements.

For the final applicability of the system in buildings, more knowledge about the
behaviour in fire situations is required as well. Additionally, the system can also be applied
in bridges; however, a detailed analysis of the fatigue behaviour is necessary.

Mentioned benefits of the system are investigated through experimental and numerical
research with the support of probabilistic methods and lifecycle analyses by means of
a holistic approach combining Lifecycle Assessment (LCA), Lifecycle Costs (LCC) and
Lifecycle Performance (LCP) analyses.

The technical (mandatory O1 and O6) and scientific (O2 to O5) objectives with expected
results (ER1 to ER6) of the LWT-FLOOR project are presented in Figure 5.
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Experimental research is divided into five phases. Experimental research of LWT-
FLOOR system materials and spot welds between different cold-formed sheet thicknesses
are performed in the first two phases. Because of the great importance of the shear connec-
tion between the steel and concrete part of the system, the third phase includes experimental
tests on the shear connection.

The results from the push-out test are implemented in the numerical models for their
calibration, and the obtained models are used as the input before the experimental bending
test of large-scale specimens of the overall system are conducted.

In Figure 6, two proposed solutions for shear connections are presented.
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able headed shear stud connectors.

The solution in Figure 6a is based on extending the corrugated web of steel beam to
form a shear connection. The solution in Figure 6b uses demountable shear connectors,
which should ensure the demountability of the floor system at the end of its service life.

Within phases 4 and 5 of the experimental research full-scale LWT-FLOOR system is
tested. The span of tested elements are approximately 6 m, corresponding to typical spans
of floor systems in multi-storey buildings. In the first phase of experimental research, to
understand the behaviour of corrugated built-up cold-formed girders without and with
web openings, tests of the girders without concrete slab are conducted, Figure 7.
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Based on obtained results for optimal shear connection and steel girder solution, the
experimental tests of the composite LWT-FLOOR system are performed. Figure 8 shows
the proposed test set-up for the LWT-FLOOR beam.
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Based on calibrated numerical models, the numerical part of the research allows
parametric research of the proposed solution. In the first phase, the numerical models
of shear connection in combination with probabilistic analyses provide a selection of the
optimal solution of the shear connection. The second phase of numerical research is
numerical modelling of built-up corrugated web beams without and with web openings.
Calibrated numerical models are the base for parametric studies to find the optimal solution
for larger spans and different configurations of web openings.

Finally, calibration of a numerical model for composite LWT-FLOOR system and nu-
merical parametric studies in combination with probabilistic analyses ensure the validation
of the suitability of such system for larger spans and determine optimal dimensions of
particular system components by taking into account different configurations of the shear
connection and boundary conditions.

Based on probabilistic analyses and lifecycle analyses, the analytical proposal is be
evaluated for analysed types of shear connections, steel girders with and without web
openings, and composite LWT-FLOOR systems without and with web openings.

2.4. Analytical Model

Since cold-formed steel cross-sections are usually class 3 and 4, their plastic resistance
in bending cannot be achieved. However, plastic resistance can be achieved in a compos-
ite beam with a full shear connection, but the cross-section’s neutral axis position must
be considered.

The neutral axis can be located in the concrete flange, at the interface between the
concrete flange and the steel beam, or within the steel beam. Within steel beam means
either in the flange or in the web of the steel beam.

Thus, taking into account the position of the neutral axis in the cross-section of the
composite beam, and when the neutral axis is located in the concrete flange or at the
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interface between the concrete flange and the steel beam, the steel cross-section will be
completely or mainly in tension. Therefore, the bending resistance of the composite cross-
sections, which consists of either class 3 or class 4 steel cross-section, can be calculated in
the same way as the resistance for the class 1 or class 2 cross-section.

Investigated cross-section geometry is presented in Figure 9. The thickness of the
concrete flange is 90 mm, and its effective width is 1000 mm with the concrete class C25/30.
Built-up cold-formed steel beam consisted of four C120 sections with a thickness of 2.5 mm,
flange width of 47 mm and height of 120 mm, and corrugated web and shear plates of
1.2 mm thickness with an overall height of 400 mm. All steel parts were considered to be
made of steel grade S350. The span of the beam is 6 m. For the presented geometry and in
the case of a full shear connection, the plastic neutral axis is located in a concrete flange.
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The plastic bending resistance Mpl,Rd in the case of full shear connection is calculated
using Equations (1) and (2) or Equations (3) and (4), which depends on what part of the
cross-section is considered, i.e., the concrete or the steel part, see Figure 9.
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where: Nc,f is the design value of the normal compressive force in the concrete flange
with full shear connection, a is the distance according to Figure 9, beff is the total effective
width of concrete flange, xpl is the distance of the neutral axis from the upper edge of the
concrete slab, fcd is the design value of concrete compressive strength, h is the depth of the
corrugated web structural steel section, hc is the thickness of the concrete flange, Aa is the
cross-sectional area of the cold-formed structural steel C-section, fyd is the design value
of the yield strength of structural steel, b1 and b2 are the centroids distances according to
Figure 9, ha is the depth of the cold-formed structural steel C-section.

In the case of partial shear connection, the bending resistance MRd in the case of
plastic structural steel cross-section can be calculated using Equation (5) according to EN
1994-1-1 [24].

MRd = Mpl,a,Rd +
(

Mpl,Rd − Mpl,a,Rd

)
× η, (5)

where: Mpl,a,Rd is the plastic bending resistance of the structural steel section, and η is the
degree of shear connection calculated according to Equation (6).

η =
n × 2 × PRd,min

beff × 0.85 × fcd × xpl
, (6)
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where: n is the number of shear connector pairs and PRd,min is the minimum design value
of the shear resistance of a single connector. Bolts with 12 mm diameter and 8.8 steel grade
were considered in this paper for calculation of PRd,min.

When using cold-formed corrugated web structural steel cross-sections, the following
modified expression given in Equation (7) is proposed for the calculation of the composite
cross-section bending resistance:

MRd = Mel,a,Rd +
(

Mpl,Rd − Mel,a,Rd

)
× η, (7)

where: Mel,a,Rd is the elastic bending resistance of the cold-formed corrugated web struc-
tural steel cross-section.

According to Equation (7), the bending resistance of the analysed system will be
equal to the elastic bending resistance of the cold-formed corrugated web structural steel
cross-section Mel,a,Rd when the degree of shear connection η = 0. In the case of full shear
connection, η = 1, the plastic bending resistance of composite cross-section, Mpl,Rd can
be achieved.

Calculated bending resistance for full shear connection and solutions with the shear
connectors distance of 300 mm (η = 1) and 600 mm (η = 0.55) were compared with the
results of FE simulations in Section 3.

2.5. Numerical Model
2.5.1. Boundary Conditions and Finite Element Mesh

The numerical FE model is based on a static system with four concentrated forces as
load, as presented in Figure 10. Figure 10a shows the static system of the beam with pinned
supports, while Figure 10b shows an alternative solution with fixed supports. Because
of the system’s nonlinear behaviour and redistribution of moments at the supports, the
analytically calculated bending resistance is compared with the resistance of the composite
cross-section in the beam midspan. The bending moment from FE models is assumed to be
based on a simply supported beam, Figure 10a. This assumption means that the bending
moment in the beam midspan is equal to 4F multiplied by 0.75 for both cases, pinned and
fixed solution.
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The model of the analysed composite beam in Abaqus/CAE software [61] is presented
in Figure 11. Figure 11 also shows two analysed solutions of spot weld configurations, i.e.,
solutions with 2 and 3 spot welds (SW2 and SW3, respectively).
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Figure 11. FE model in ABAQUS/CAE with the definition of 2 SW and 3 SW configurations.

According to [56,58], the beam loading was defined as a vertical displacement in a set
of multipoint constraints (MPC) that forms a leverage system to transmit the deflection to
the four loading points, see Figure 11. A kinematic coupling constraint defined the link
between the control points and the pressure elements for all DOFs. RB3D2 elements were
used as a rigid body for load transfer and multipoint constraint beam (MPC beam) for DOF
coupling between groups of specified nodes. The total force, 4F, is obtained by monitoring
the reaction force on the node where vertical displacement is applied.

Due to the complicated geometry and multiple contact interactions between different
components, the “explicit” solving method was utilised to avoid the numerical convergence
difficulties, which is often encountered in the “implicit” solving method. The loading speed
is defined by ramping up the velocity smoothly over the analysis step. To increase the
speed of performed analyses, loading velocity is increased, ensuring minimal inertia effects.
This is ensured by maintaining kinetic energy at a small value throughout the analyses
(mainly below 5% of all energy) and by limiting loading velocity to less than 1% of the wave
speed of the used materials. However, several drops in the resulting curves of moments
and forces can be observed. The authors believe that such drops result from spot weld
failures and buckling of the steel beam components.

General contact with the following parameters between all elements in the model
was used, i.e., normal direction—hard contact, transverse direction—a friction coefficient
of 0.1 and separation was allowed after the general contact takes place.

Geometric and material nonlinear analyses, including the effects of initial imperfec-
tions (GMNIA), were performed. The numerical modelling consists of two steps. In the
first step, the initial imperfections are modelled by performing static analysis, which results
in desired imperfection shape—with the magnitude of the shell thickness. In the second
step, the dynamic, explicit analysis is used to run the load-displacement analysis of the
beam, including imperfect geometry obtained from previous analysis and all contacts and
material nonlinearities.

In order to carry out dynamic analysis, the density of the material needs to be speci-
fied. The density of steel components is set to 7850 kg/m3, while the density of concrete
is 2400 kg/m3.

Each part of the built-up steel beam was defined as a 3D shell element S4R, while solid
C3D8R elements were used to model concrete flange. The FE mesh density is 20 mm for
steel sections and 30 mm for the concrete flange.
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2.5.2. Material Model for Spot Welds, Steel Beam and Headed Shear Studs

The material and spot weld properties from the research of Ungureanu et al. [53,54]
were used for corrugated beam components and their assembly with spot welds.

The spot welds (SW) between different parts of the built-up beams were defined in
function of the tensile-shear tests of the simple specimens according to [58]. Attachment
points were defined on each part where SW was applied. The connection between the at-
tachment points was defined using Point-Based Fasteners with the connector response [61]
of the SW initially calibrated from the tensile-shear test results from [53,54]. The connector
was considered using the elasticity, plasticity, damage and failure parameters. Bushing
connector elements were used to model the SW. This type of element provides a connection
between two nodes that allows independent behaviour in three local Cartesian directions
that follow the system at both nodes and that allows different behaviour in two flexural
rotations and one torsional rotation [61].

In order to obtain realistic results from the finite element nonlinear analyses, plastic
strains were included in the material definition, according to EN 1993-1-5, Annex C [45]. The
measured stress–strain curves based on tensile tests on coupons cut from the cross-section
of component elements were included in the model. The static engineering stress–strain
curves obtained from tensile coupon tests were converted to true stress vs. logarithmic true
plastic strain curves in the plastic analysis. The true stress σtrue and true plastic strain εtrue
were calculated using Equations (8) and (9) as follows:

σtrue = σengineering
(
1 + εengineering

)
, (8)

εtrue = ln
(
1 + εengineering

)
, (9)

In order to include plasticity, the stress–strain points past yield must be input in
the form of true stress and logarithmic plastic strain. The logarithmic plastic strain was
calculated with Equation (10) as follows:

ε
plastic
ln = εtrue −

σtrue

E
, (10)

where σtrue/E is the elastic strain and E is Young’s modulus.
The shear connection is taken into account using three different solutions, i.e., full tie

connection between concrete flange and steel beam, shear connectors modelled by wire
elements spaced at 300 mm (degree of shear connection is 1) and 600 mm (degree of shear
connection is 0.55). The connectors section was defined using the bushing connection type
with defined elasticity, plasticity damage and failure parameters based on calculated resis-
tances of the analysed shear stud connectors, i.e., bolts with 12 mm diameter and 8.8 steel
grade. After obtaining experimental results, more detailed definitions of shear connectors
will be considered. Examples of shear connectors definitions with local interactions and
damage initiation can be found in the literature [62–64].

2.5.3. Material Model for Concrete

The concrete damaged plasticity model (CDP) was used to model the concrete slab.
This model is primarily based on two main failure mechanisms of tensile cracking and
compressive crushing of concrete [64]. The yield (or failure) surface evolution is controlled
by two hardening variables linked to failure mechanisms under tension and compression
loading, respectively [61]. This paper took the dilation angle as 40◦ according to [64], while
default values were assumed for all other plasticity parameters.

The modulus of elasticity of concrete, Ecm, was calculated according to EN 1992-1-1:
2004 [65] as:

Ecm = 22
[

fcm

10

]0.3
, (11)

fcm = fck + 8, (12)
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where, fcm is the mean value of concrete cylinder compressive strength, and fck is the
characteristic compressive cylinder strength of concrete at 28 days.

In EN 1992-1-1 [65] the relationship between compressive stress, σc and shortening
strain, εc for short term uniaxial loading is described by the Equation (13):

σc = fcm × kη− η2

1 + (k − 2)η
, η ≤ εcu1/εc, (13)

with
k = 1.05 × Ecm × εc1

fcm
, (14)

η =
εc

εc1
, (15)

where εc is compressive strain, εc1 is the compressive strain in the concrete at the peak
stress fc, εc1 = 0.7·fcm

0.31 ≤ 2.8 × 10−3. Equation (13) is valid for compressive strain region
0 < |εc| < |εcu1| where εcu1 is the nominal ultimate strain. The strain at peak stress
εc1 = 2.25 × 10−3, and nominal ultimate strain εcu1 = 3.5 × 10−3 were adopted from EN
1992-1-1 [65].

The stiffness degradation dc on account of crushing of concrete was calculated with
Equation (16):

dc = 1 − σc

fcm
, (16)

Stress–strain behaviour of plain concrete in uniaxial compression defined in the EN
1992-1-1 [65] with concrete stiffness degradation in compression dc is presented in Figure 12.
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Figure 12. Parameters of concrete in compression: (a) stress–strain relation of concrete for structural
analysis based on EN 1992-1-1; (b) concrete stiffness degradation in compression.

As presented with Equation (13) and Figure 12, the plasticity curve in EN 1992-1-1 is
defined only up to nominal ultimate strain εcu1. In cases when high crushing strains are
expected, the extensions of the Eurocode model can be used as presented in the paper [23]:

σc(εc) =

{
fcm

[
1
β − sin(µαtD×αtEπ/2)

β×sin(αtEπ/2) + µ
α

]
, εcuD < εc ≤ εcuE

[fcuE(εcuF − εc) + fcuF(εc − εcuE)]/(εcuF − εcuE), εc > εcuE
, (17)

where µ = (εc − εcuD)/(εcuE − εcuD) is relative coordinate between points D–E and
β = fcm/fcu1. Point D is defined as εcuD = εcu1 and fcuD = fcu1 = σc(εcu1) from Equation (13).
Point E is the end of the sinusoidal descending part at strain εcuE with concrete strength
reduced to fcuE by factor α = fcm/fcuE. The linear descending part (residual branch) ends
in point F at strain εcuF with the final residual strength of concrete fcuF. In the paper [23]
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strain εcuF = 0.10 was chosen large enough not to be achieved in the analyses. Compres-
sion plasticity curve defined dependent on inelastic strain assuming that the concrete acts
elastically up to 0.4 × fcm is presented in Figure 13.
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The extension of the EN 1992-1-1 model does not change the presented models’ results,
which means that the compression strains are below strain εcu1.

The tension plasticity curve is defined as the function of cracking strain and tensile
stress. Tensile stress increases linearly along with modulus of elasticity, up to the peak
value ft. In this paper, the post-failure tensile behaviour is defined by using the exponential
function proposed by Cornelissen et al. [66]:

σ

ft
= f(w)− w

wc
f(wc), (18)

f(w) =

[
1 +

(
c1 × w

wc

)3
]

exp
(
−c2 × w

wc

)
, (19)

where w is the crack opening displacement, wc is the crack opening displacement at which
stress can no longer be transferred wc = 5.14 × Gf/ft, c1 is a material constant and c1 = 3.0 for
normal density concrete, c2 is a material constant and c2 = 6.93 for normal density concrete.

The value of fracture energy, the energy required to develop a unit area of a crack in
(N/mm), is [67,68]:

Gf = 73 × f0.18
cm , (20)

The degradation in tension dt was calculated with Equation (21):

dt = 1 − σt

ft
, (21)

The tensile stress versus cracking displacement relation using Equation (18) and tensile
damage versus cracking displacement relation, Equation (21), are shown in Figure 14.
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Figure 14. Parameters of concrete in tension: (a) tensile stress versus cracking displacement; (b) tensile
damage versus cracking displacement.

3. Results and Discussion

Figure 15 shows analytically calculated bending moment resistance based on Equations (5)
and (7) concerning the degree of shear connection for beam geometry from Section 2.4.
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Figure 15. Analytically calculated bending moment resistance based on Equations (5) and (7) con-
cerning the degree of shear connection.

Results of the numerical study are divided based on the beam supports definition.
The results of the beam model with pinned supports and beam model with fixed supports
are presented in the following subsections and compared with analytically obtained results
from Figure 15.

3.1. Beam with Pinned Supports

Figure 16 shows the differences in end slip between three analysed solutions depend-
ing on the shear connection, i.e., solutions with fully tied concrete flange to the steel beam
and solutions with shear connectors longitudinally spaced at 300 mm and 600 mm. The
300 mm shear connector spacing represents a full shear connection with the degree of shear
connection around 1. In contrast, the 600 mm shear connector spacing represents a partial
shear connection with the degree of the shear connection of 0.55. Figure 16a shows that the
end slip is completely prevented, while on the other hand, in Figure 16b,c the existence of
some end slip is observed.
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Figure 16. Differences in end slip between three analysed solutions of pinned beam: (a) full tie shear
connection; (b) shear connectors spaced at 300 mm; (c) shear connectors spaced at 600 mm.

The bending resistance of the beam in the cases of fully tied shear connection and
analysed spot weld solutions, i.e., SW2 and SW3, are presented in Figure 17. Both curves
in Figure 17a,b shows that the numerically obtained bending resistance is higher than the
analytically calculated bending resistance presented with a dashed horizontal line.
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Figure 17. Bending resistance of the pinned beam for a fully tied shear connection: (a) SW2; (b) SW3.

In the case of beams with shear connectors longitudinally spaced at 300 mm, the
reduced stiffness and bending capacity are observed compared to the full tie shear con-
nection results, as shown in Figure 18. Figure 18a shows the bending resistance of simply
supported beam in the cases when shear connectors are spaced at 300 mm with SW2
spot weld configuration while Figure 18b shows bending resistance when SW3 spot weld
configuration is used.

In the case when shear connectors are spaced at 600 mm, similar results are obtained
as the ones when the spacing of 300 mm is applied. The obtained results are presented with
curves in Figure 19. From the curves in Figures 17–19, it can be observed that the solutions
with SW2 and SW3 spot weld configurations are in good correlation. The number of SW
does not govern the bending capacity of pinned beam solutions to a great extent.

3.2. Beam with Fixed Supports

Figure 20 shows end slip behaviour in the case of fixed end supports between three
analysed solutions of shear connection. From the comparison with the solutions of the
beam with pined supports, it can be observed that slip is prevented in the fixed beam, but
some separation between the concrete flange and steel cross-section exists.
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Figure 18. Bending resistance of the pinned beam for shear connectors spaced at 300 mm: (a) SW2;
(b) SW3.
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Figure 19. Bending resistance of the pinned beam for shear connectors spaced at 600 mm: (a) SW2;
(b) SW3.
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Figure 20. Differences in end slip between three analysed solutions of fixed beam: (a) full tie shear
connection; (b) shear connectors spaced at 300 mm; (c) shear connectors spaced at 600 mm.

In the case of fixed end supports, the stiffness of the beam is generally increased. The
behaviour in the cases of different degrees of shear connections is similar to the pinned
solution. Figure 21 shows the bending resistance of the beam with fixed supports and a
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full tie shear connection. Both curves in Figure 21a,b shows that the numerically obtained
bending resistance is higher than the analytically calculated bending resistance presented
with a dashed horizontal line.
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Figure 21. Bending resistance of the fixed beam for a fully tied shear connection: (a) SW2; (b) SW3.

Figure 22 shows the results in the 300 mm spacing between shear connectors, and
again, bending resistance is higher than analytically calculated resistance. Contrary to the
pinned beam case, the solution with SW3 configuration increases the bending capacity.
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Figure 22. Bending resistance of the fixed beam for shear connectors spaced at 300 mm: (a) SW2;
(b) SW3.

In the case of shear connectors being spaced at 600 mm, the results are presented
in Figure 23. As was the case in the previous solutions, the bending resistance is higher
than the analytically calculated resistance. In the cases of shear connectors being spaced at
300 mm and 600 mm, the solutions with SW3 and SW2 are different, which means that this
solution with fixed supports is governed by the number of SW, which was not the case for
the pinned beam solution.
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Figure 23. Bending resistance of the fixed beam for shear connectors spaced at 600 mm: (a) SW2;
(b) SW3.

3.3. Comparison of the Pinned and Fixed Solution

Figures 24–26 show comparisons of the force/displacement diagrams for the solutions
with SW2 and SW3 configurations. These comparisons clearly show that SW3 solutions
have a small influence compared to SW2 for the pinned solution of the beam. Additionally,
the stiffness and decrease of capacity are also evident from fully tied to partial shear
connection. If we compare pinned and fixed solutions of beam end supports, we can
conclude the following. The stiffness and the bending capacity are increased from pinned
to fixed solutions. Such behaviour, as already discussed, can also be captured from the
partial to fully tied shear connection.
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Figure 24. Force/displacement diagrams for 2 SW and 3 SW configurations of the pinned and fixed
beam with full tie shear connection.
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Figure 25. Force/displacement diagrams for 2 SW and 3 SW configurations of the pinned and fixed
beam with shear connectors spaced at 300 mm.
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Figure 26. Force/displacement diagrams for 2 SW and 3 SW configurations of the pinned and fixed
beam with shear connectors spaced at 600 mm.

4. Conclusions

Due to their efficiency, steel–concrete structural systems are increasingly used in the
construction industry and are still the subject of intensive research. This results from
their efficient material usage, especially with cold-formed built-up sections and innovative
shear connections. The popularity of such systems arose from their flexibility, adaptability,
and capacity for dismantling and reuse. This paper summarises an overview of cold-
formed steel–concrete composite floor systems developments. Additionally, it gives the
background, planned activities and recent results related to developing the new innovative
solution within research project LWT-FLOOR, which is ongoing at the University of Zagreb,
Faculty of Civil Engineering, Croatia. The LWT-FLOOR project investigates innovative
lightweight solutions that can result in new sustainable and resilient construction products
due to the holistic design approach integrating manufacturing, operation, maintenance and
reuse stages up to the end-of-life.

From the literature survey, the following aspects can be highlighted.
Shear connection mechanisms and mechanisms of the connections between steel

elements in built-up cold-formed steel beams greatly influence the behaviour of composite
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floor systems. These mechanisms are of vital interest to optimise components and produce
more economical and efficient floor systems. Integrating the floor system related to its
connection to the rest of the structure is another important issue. Simple and effective
connections of the floor system will result in carrying the vertical load and providing a
shear diaphragm, which is crucial for the performance of the overall structure.

The presented LWT-FLOOR project integrates state-of-the-art knowledge in a new and
productive spot welding technology and innovative cold-formed steel–concrete composite
solutions to develop a cost-effective and competitive floor system. The LWT-FLOOR system
can give vital benefits in terms of a high degree of prefabrication, reusability and suitability
for larger spans to maximise the values of building components and materials.

The proposed analytical solution for bending resistance of composite cross-section
is based on the elastic bending resistance of steel beams. The numerical parametric FE
analyses show that the bending capacity of the LWT-FLOOR beams made of cold-formed
steel and the cast-in-place concrete slab can be compared with analytical results.

Results of the parametric FE study show that the bending capacity of the LWT-FLOOR
beams made of cold-formed steel and the cast-in-place concrete slab is affected by the
resistance of the cold-formed steel components and by the degree of shear connection. In
the case of a fixed beam solution, the resistance of the LWT-FLOOR beam is governed by
the resistance of the steel beam, i.e., spot welds. In the cases with pinned beam solution,
the results show that the resistance of the LWT-FLOOR beam is governed by the degree of
shear connection. At the same time, the increased number of SW from two to three between
channel flanges and corrugated web does not influence the beam resistance. This means
that the beam resistance in the pinned solution is rather more affected by the stability of the
cold-formed steel components than the number of spot welds, with a significant influence
on the type and degree of shear connection.

Based on previous studies on steel built-up corrugated web beams, it is observed that
the resistance is dependent on the thicknesses of the corrugated web and the thickness of the
shear plate. Therefore, such solutions will be investigated in the extension of this research.
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