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Abstract: To identify the unknown values of the parameters of Burger’s constitutive law, commonly
used for the evaluation of the creep behavior of the soft soils, this paper demonstrates a procedure
relying on the data obtained from multiple sensors, where each sensor is used to its best advantage.
The geophysical, geotechnical, and unmanned aerial vehicle data are used for the development
of a numerical model whose results feed into the custom-architecture neural network, which then
provides information about on the complex relationships between the creep characteristics and soil
displacements. By utilizing InSAR and GPS monitoring data, particle swarm algorithm identifies
the most probable set of Burger’s creep parameters, eventually providing a reliable estimation of the
long-term behavior of soft soils. The validation of methodology is conducted for the Oostmolendijk
embankment in the Netherlands, constructed on the soft clay and peat layers. The validation results
show that the application of the proposed methodology, which relies on multisensor data, can
overcome the high cost and long duration issues of laboratory tests for the determination of the creep
parameters and can provide reliable estimates of the long-term behavior of geotechnical structures
constructed on soft soils.

Keywords: soft soil creep; Burger’s model; neural network; particle swarm optimization; remote
sensing; nondestructive testing

1. Introduction

Shortly after Terzaghi [1] developed his well-known soil consolidation theory, Buis-
man [2] proposed a creep law for soft soils based on observations that their settlements
could not be fully explained by classical consolidation theory. These ‘soft soils’ usually
include near-normally consolidated clays, clayey silts, and peats, which are characterized
by their high degree of compressibility. Since then, many researchers [3–5] have dealt
with the creep phenomenon. However, as Kaczmarek and Dobak [6] note, despite many
attempts to clarify this phenomenon, there is still no explanation of the reasons for soil creep
movement. This leads to the general definition of soil creep as increase of time-dependent
strains at the constant stress levels, meaning that soft soils continue to settle even after the
primary consolidation is deemed to be finished. Three main creep phases can be identified,
including the primary, secondary, and tertiary creep, Figure 1. While the major stress can be
small enough so that the creep change of the soil structure is decelerated (curve 1), the creep
stress could also lead to excessive deformation and eventually to the soil failure (curve 2).

Disagreements in the scientific community still arise when trying to explain the gen-
esis and the time occurrence of the creep phenomenon. Two hypotheses are discussed:
(1) where the creep phenomenon occurs from the beginning, along with the soil primary
consolidation and (2) where the creep phenomenon starts after the end of primary con-
solidation. Kaczmarek and Dobak [6] note that several studies have confirmed the first
hypothesis in which the soil void ratio is affected by the thickness of the soil layer and
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drainage conditions; however, due to the complexity in settlement calculation, the second
hypothesis is still mostly used in geotechnical practice as an initial approximation of the
creep behavior.
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The issues of soft soil creep usually come to the fore after the excessive settlements
or failures of geotechnical structures constructed on them. Back in the 1960s, Bjerrum [3]
noted that time dependency may be a significant contributor to the performance of geotech-
nical structures. According to Veremeer [7], substantial creep settlements in later years is
pronounced for road or river embankments on soft soils, whose construction yields large
primary compression, assuming that the secondary compression is a small percentage of the
primary compression. This was confirmed by several studies [8–10] on well-instrumented
embankments constructed on soft soils, which experienced large deformations long after
they have been constructed. These long-term deformations are one of the main reasons for
millions of dollars spent annually for the maintenance of the road embankments or other
geotechnical structures constructed on soft soils [11].

The development of the computers and numerical techniques during the 1990s signifi-
cantly eased practical implementations of constitutive models that incorporate creep effects.
This provided both researchers and practitioners with the possibility to predict the behavior
of the time-dependent and long-term behavior of soft soil. The constitutive models, which
include creep, overcame the incapacities of classical elastoplastic models to capture soil
creep behavior. Some of these viscoplastic (EVP)-based models are the soft-soil creep
model [12], creep-SCLAY1S [13], or modified Mesri creep model [14]. However, due to their
unconvincing benefits and the complexity, cost, and time associated with the analyses [11],
practical engineers appear reluctant to incorporate these models in practical field cases.
In addition, these models require knowledge of the creep parameters, which are usually
obtained by the high cost and long duration of laboratory tests. Moreover, very few of these
models [15–18] have been tested against long-term field monitoring data. Verifications of
the creep models on actual field cases are very important, since unlike primary compression,
secondary compression or creep is often underestimated [19]. The purpose of this study
is to demonstrate how can soil creep behavior be estimated by utilizing the continuous
on-site displacement measurements, thus overcoming the issues of laboratory creep tests
and nonreliability of empirical models. For this, a neural network (NN) tool will be used.
Due to their superiority over the traditionally used statistical and experimental methods,
NNs have been extensively used in field of geotechnical engineering [20–26]. Among
their numerous advantages, a remarkable information processing capability pertinent to
nonlinearity is of a highest benefit. As Reale et al. [27] note, by sharing information between
interconnected artificial neural network elements, complex relationships that are intuitively
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difficult to describe can be established. This is similar to the behavior of the human brain
and the nervous system, thus the name ‘neural network’.

Many authors have recognized the benefits of using the NNs to determine creep
related parameters of both soft rocks [26,28,29] and soft soils [30–33], thus overcoming the
mentioned issues of laboratory tests. For example, Zhang et al. [30] proposed a hybrid
surrogate intelligent model for predicting the soft soil creep index (Cα), motivated by
the fact that current empirical models for Cα determination are not sufficiently reliable.
Within this study, the authors collected datasets of four input soil parameters determined
by the simple laboratory tests and defined Cα as the NN output parameter. The developed
models demonstrably outperformed empirical methods, featuring as they do lower levels
of prediction error. Liu et al. [31] demonstrated that the creep models can avoid artificial
assumption of complex constitutive equation and can reflect nonlinear creep properties of
soft soil objectively. Further, Chen et al. [32] developed an NN-based model, by utilizing the
creep data of a laboratory direct shear experiment. The modeling method was validated on
the creep experimental data of soft clay of Shanghai, where the study clearly demonstrated
that the rheological model can effectively describe the nonlinear creep of soft clay. To assess
the soil creep susceptible areas, Lee et al. [33] used several machine learning classifica-
tion methods, namely the k-nearest neighbor (k-NN), naive bayes (NB), random forest
(RF), and support vector machine (SVM) models, where results from almost 5000 field
surveys were utilized for the development of the classification models. The benefit of the
NNs is also evident in the studies for predicting the compressibility parameters of the
soils, which govern the soft soil behavior before it reaches the creep phase. For example,
Kurnaz et al. [34] suggested the prediction of compressibility parameters from basic soil
properties, concluding that the proposed NN model is successful for the prediction of the
compression index, with less accuracy in prediction of recompression index values.

This study predicts the creep parameters for a constitutive model based on a combi-
nation of multisensor data that feed into the numerical model. The numerical simulation
input–output datasets were then used for the development of the NN, which provides
information about the complex relationships between the creep characteristics and soil
settlements and where the continuous on-site displacement measurements enabled identifi-
cation of the most probable set of creep parameters. The overall methodology was validated
in a case study of an Oostmolendijk embankment in the Netherlands, as a well-known
example of a continuously settling geotechnical structure, where the validation procedure
included the implementation of a developed NN for the prediction of the embankment’s
displacements based on the long-term InSAR and GPS monitoring data.

2. Methods and Methodology of Soil Creep Prediction Based on Multisensor Data

The focal point of the methodology is in estimation of the soft soil creep parameters
by using machine learning supported with the multisensor data, where each sensor can be
used to its best advantage in the different phases of methodology.

2.1. Constitutive Law Used for Numerical Modeling

The methodology is based on the numerical modeling and application of the classic
Burger’s creep viscoplastic constitutive model, Figure 2, represented by a series of spring,
dashpot, and plastic sliders that are connected in parallel and/or in series. More precisely,
the constitutive model consists of viscoelastic part, where Kelvin’s unit (characterized by its
shear modulus GK and viscosity ηK) and Maxwell’s unit (characterized by its shear elastic
shear modulus GM, viscosity ηM, and bulk modulus KM) act in series. In addition, a plastic
strain–rate part, which utilizes the Mohr–Coulomb failure criteria and is characterized by
the cohesion (c), friction angle (ϕ), and dilation (ψ), is connected in series with viscoelastic
part of model.
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To reliably describe the different elements of this constitutive model, their proper
evaluation is of the highest importance. While the strength and stiffness parameters can be
easily obtained by common laboratory tests or by utilizing established correlations with in
situ investigation results, determining Kelvin’s and Maxwell’s viscosity parameters (ηK
and ηM) is a challenging task. Therefore, these two parameters represent this study’s first
two constitutive unknowns. Further, several stiffness values are required by the Burger’s
model, and these include Maxwell’s bulk and shear modulus (KM and GM) and Kelvin’s
shear modulus (GK). By utilizing well-known equations:

GM,0 = ρ· v2
s (1)

KM,0 =
2·GM,0·(1 + ν)

3·(1− 2ν)
(2)

where GM,0 and KM,0 are Maxwell’s small-strain shear and bulk modulus (in Pa), respec-
tively, ρ (kg/m3) is soil density, determined in this study from continuous-by-depth CPT
procedure developed by Kovačević et al. [36], vs (m/s) is a soil shear velocity obtained in
this study from geophysical MASW investigations, and ν (-) is Poisson’s ratio. Since creep
mechanism involves large-strain moduli, which are lower than the small-strain values,
these could be obtained by introducing the so-called reduction radio (rd), which in fact
represents the percentage of small-strain modulus and can be defined as:

GM = rd · GM,0 (3)

KM = rd · KM,0 (4)

where GM and KM are Maxwell’s large-strain shear and bulk modulus (in Pa). Therefore, a
reduction ratio represents the third unknown of the creep estimation methodology, which
correlates with the required large-strain Burger’s moduli with the known values of small-
strain moduli. It should be noted that Kelvin’s shear modulus (GK) was assumed as zero
within this methodology since it acts in series with Maxwell’s shear modulus (GM), so
that the shear modulus dependence of the system could be assigned only to Maxwell’s
shear modulus.

To sum up, as an alternative to the high cost and long duration of laboratory tests,
which include creep testing, this study offers a solution for identifying constitutive model
creep unknowns of stiffness reduction ratio (rd), Kelvin viscosity (ηK), and Maxwell viscos-
ity (ηM), by utilizing the neural network along with the application of the particle swarm
optimization (PSO) algorithm.

2.2. Methodology Phases

The overall methodology for the identification of the most probable set of identified
unknowns, included several phases, as indicated in Figure 3.
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The first phase included acquisition of multisensor data necessary for the develop-
ment of a reliable numerical model, including its geometrical and physical–mechanical
characteristics. Here, unmanned aerial vehicle (UAV) scanning of the area provided the 3D
point cloud of the terrain by means of the photogrammetry technique. By doing a relatively
simple scanning of the area, a lot of useful information could be obtained, including the
extraction of preferable cross-section of the terrain used for numerical model. In addition
to having the UAV topography information, it was of upmost importance to obtain infor-
mation on subsoil condition. This study utilized the cone penetration test (CPT) for the
classification of soil, as well for the determination of the soil’s physical and mechanical
characteristics relevant for the numerical analysis. Since CPT provides discrete information
(in one point), additional geophysical investigations of multichannel analysis of surface
waves (MASW) and electrical tomography (ERT) are utilized.

Once the numerical model was developed on the basis of acquired data, the second
methodology phase included the generation of a database with a large number (n3, with
‘n’ being the selected number of values for each parameter) of predefined input creep
parameters (rd, ηK, and ηM). The range of these parameters should be selected in such way
so that upper and lower boundary of each parameter range can be considered sufficient
to estimate the most probable parameter value in the subsequent phases. These sets of
parameters were applied to the numerical simulations, eventually resulting in n3 output
sets, representing soil displacement values over a certain predefined period of time. For
example, if five (5) possible values of three (3) unknowns were considered, this resulted
in 125 (i.e., 53) numerical simulations and 125 output displacements in each observed
period. It should be noted that the numerical simulations in this case were time-dependent
simulations, where a selection of time-step was necessary to ensure the stability of the
time-dependent numerical solution.

After obtaining the input–output datasets from the conducted numerical simulations,
the development of a NetCREEP neural network followed (‘net’ standing for ‘network’),
using the back propagation learning algorithm (third phase). After a certain number
of training iterations, the post-trained network was expected to approximate the afore-
mentioned numerical simulations, that is to establish a complex correlation between the
constitutive model creep unknowns and the time-dependent displacements. The iterative
process was necessary to develop an optimal architecture of the NN. Usually, the number
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of necessary input–output datasets for this procedure depends both on the complexity of
problem and on the complexity of the chosen algorithm.

The in situ long-term monitoring displacements, obtained in this study by the means
of InSAR and GPS measurements, were then implemented as an input in the developed
NetCREEP to determine the output as the ‘most probable set of creep (rd, ηK, and ηM)
parameters’. By utilizing the particle swarm optimization (PSO) algorithm in the fourth
phase, the best fitting curve, described by one set of parameters, was identified. This ‘most
probable’ set of creep parameters was implemented in a developed numerical model to
evaluate how the numerical model correlated with the obtained in situ measurement data.
Finally, after obtaining a reliable estimation of the constitutive model creep parameters, the
fifth phase of the methodology included a prediction of the long-term creep behavior of the
time-dependent numerical model for any user-defined period.

2.3. Development of NetCREEP Neural Network and PSO Optimization

To develop the relationship between the creep parameters and soft soil displacements,
a so-called multilayer layer perceptron (MLP) custom-made architecture was used within
this study. In this type of NN, the input layer, a hidden layer (or hidden layers) and an
output layer, each consisting of several neurons, were selected. The reader is directed to
relevant reference [37] on the techniques for the selection of appropriate number of hidden
layers and neurons, since this significantly influences NN performance. The assignment
and adaptation of the weighting to each neuron interconnection provided development
of the NN prediction capabilities. For this procedure to be successful, as proposed by
Hammerstrom [38], 70% of total ‘creep parameter input’ and ‘displacement output’ data
were used for training process in order is to find optimum neural weightings; 15% of total
data was used for the following validation phase, which included simulation of output data
with input data, and remaining 15% of total data was used for testing phase, conducted to
provide an unbiased evaluation of a final model fit on the training dataset. The developed
NetCREEP neural network provided information about the relationships between soil creep
parameters and soil time-dependent displacements.

While the NN input set consisted of ‘n’ values of selected creep parameters [rd1, rd2,
. . . , rdn]; [ηK1, ηK2, . . . , ηKn]; [ηM1, ηM2, . . . , ηMn], the output was determined through
the n3 displacements resulting from n3 numerical simulation. Therefore, the displacement
was defined by the form of [yt1, yt2, . . . , ytm]1; [yt1, yt2, . . . , ytm]2; . . . ; [yt1, yt2, . . . , ytm]n

3

with ‘y’ being the displacement, ‘t’ being the observed time, and ‘m’ being the largest
observed time. The developed NetCREEP consisted of four (4) hidden layers. The first
and second hidden layers consisted of three (3) nodes, while the third and fourth consisted
of two (2) nodes. In total, 30 distinct weightings were used, where a sigmoid activation
function was utilized for hidden neurons, and a linear activation function was utilized for
output, see Figure 4. The final number of hidden layers and the number of nodes in each
hidden layer, was determined through a ‘trial and error’ method. Several ‘trial and error’
rule-of-thumb methods are described in the relevant literature [37]. In this study, by using
the ‘trial and error’ method, 28 different NN architectures were analyzed, having a different
number of hidden layers and associated number of nodes in each hidden layer. The selected
architecture, from Figure 4, yielded largest values of R2, meaning that it established the
highest strength of the ‘creep parameter-time-dependent displacement’ relationship.

The developed NetCREEP was further used for the identification of the most probable
set of creep parameters through utilization of particle swarm optimization (PSO). The
application of PSO, as a heuristic search method inspired by the collaborative behavior of
biological populations, was first published by Kennedy and Eberhart [39], and it relies on
particles randomly moving from points to another set of points in a single iteration, where
the search procedures are improved using a combination of deterministic and probabilistic
rules. As such it has been used for inverse parameter identification in some previous
geotechnical studies [26,40,41]. In these studies, it was shown that particle swarms wee
a fast and efficient tool for finding unknown parameter sets to represent the measured
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reference data. For this study, algorithm code was written within the Matlab software [42],
where the PSO was applied to identify the most probable set of creep parameter values (rd,
ηK, and ηM), which matched the measured InSAR and GPS displacements. As described
by Jahed Armaghani et al. [43], the overall swarm size has large influence on the PSO
performance, where this study utilized the size of 60 particles.
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3. Investigation Methods and Multisensor Data

The multisensor data were obtained from the combination of several on-site investiga-
tion methods, which were predominantly remote and nondestructive.

3.1. Remote Sensing Data Acquisition

Remote sensing methods rely on the satellite or airborne-based sensors, utilized to
acquire information on the object or area being investigated.

3.1.1. Unmanned Aerial Vehicle (UAV) for Terrain Topography

To obtain the data on the topography of an investigated terrain in a rapid and efficient
manner, an unmanned aerial vehicle (UAV) was employed in this study. UAV provides
a privileged aerial point of view that cannot be obtained using terrestrial recordings,
which is especially useful along the linear infrastructure, such as flood protection system
networks [44], as well in flood management in general [45,46]. In addition, the application
of UAV and photogrammetry technology to deliver a high-resolution 3D point cloud is of
great benefit for engineering purposes. By taking a predefined number of photographs
of the area, which are overlapped in longitudinal and transverse direction, a point cloud
is derived.

From here, relevant cross-sections of a terrain or an asset can be easily extracted, which
enhances and accelerates the overall procedure of defining relevant sections for the numeri-
cal analysis. The investigation procedure included preparation of the autonomous flight
mission, Figure 5, by defining the area of interest, as well the parameters for flight, which
included height, angle of the camera view, longitudinal/side overlapping of the images,
and velocity, which were all important for determining the ground sample distance (GSD)
of the future model, as the distance between two consecutive pixel centers measured on the
ground. Higher GSD values imply lower spatial resolution of the image. When discussing
accuracy in aerial mapping, relative and absolute accuracy should be distinguished. While
the relative accuracy is linked by comparing features within a reconstruction, the absolute
accuracy is related to the true position of a reconstruction in a coordinate system. Since
this study overlapped the UAV data with the other spatial data, that is remote sensing mea-
surements, the absolute accuracy was of high importance. Usually, the relative accuracy is
considered acceptable if it is within one to three times the ground sampling distance (GSD),
while absolute accuracy should be within one to two times the ground sampling distance
(GSD) horizontally and one to three times the ground sampling distance (GSD) vertically.
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3.1.2. Satellite Monitoring of Ground Displacements

Radar measurements linked to ground-based stations [47,48] or satellites [49–51], have
been used in recent times to monitor displacements. The latter technology uses satellites
that continuously orbit the Earth, where radar sends a pulse down to Earth a few thousand
times per second, leading to their reflection from the Earth’s surface and their collection
with the satellite. As Mihalinec et al. [52] note, the large benefit of these technologies is
the possibility of utilizing them in all weather conditions. Several variants of the radar
technologies can be used: (i) synthetic aperture radar (SAR), (ii) InSAR (interferometric
synthetic aperture radar), and (iii) DinSAR (differential interferometric synthetic aperture
radar). The main difference among these is in the number of used antennas. SAR utilizes
one antenna to emit and receive the signal to create high resolution images, while InSAR
uses two antennas positioned on the same satellite, where one antenna emits the signal and
both antennas receive the return signal, therefore being more accurate than SAR technology.
DinSAR technology is more accurate than the previous two variants.

3.2. Geophysical Near-Surface Nondestructive Methods

Geophysical methods in general include a series of nondestructive methods to deter-
mine the geological–structural and physical–mechanical characteristics of the investigated
medium [53]. These methods offer a considerable cost-to-ratio advantage compared to
traditional methods, mainly because these investigations provide data of greater volume
of the investigated medium, along with relatively cheap instrumentation and speed of
the investigation on-site. However, it is important to note that the change in the physical
characteristics of the investigated medium must exist so that a particular geophysical
method can be considered as acceptable [54].

3.2.1. MASW for Determination of a Small-Strain Soil Stiffness

Multichannel analysis of surface waves (MASW) is a nondestructive geophysical
method for measuring the velocity of seismic shear waves. It utilizes dispersive character-
istics of Rayleigh’s R waves, which propagate to different depths when having different
wavelengths or frequencies [55]. As such, MASW is exceptionally useful in determining
the elastic modulus of soils at very small strains with respect to depth. During the investi-
gation, several geophones were placed along the investigation line at predefined intervals,
Figure 6a. After generating an artificial vertical mechanical impulse on the terrain surface,
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geophones measured the arrival time of the wave propagating through the soil. During the
interpretation phase, a signal collected by the geophones was transformed from the time
into the frequency domain [56], and this enabled the determination of the shear velocities
along the depth, as well the small strain shear modulus of soil, by utilizing Equation (1).
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3.2.2. Electrical Resistivity Tomography (ERT) for Determination of Deposit Thicknesses

Electrical tomography (ERT) provides a more exact picture of electrical resistivity of
soil, by registering changes in electrical resistivity in the vertical and horizontal directions.
When using the method, the soft clayey soils be identified by very low resistivity, even more
pronounced if they are saturated. Thus, the overall thickness of the soft soils, which has
high influence on the overall creep behavior, can be identified. The investigation procedure
includes positioning of the steel bars, Figure 6a, called electrodes, while the electricity is
released into the ground in a non-destructive manner. During the interpretation phase, a
2D electrical tomography profile of apparent resistivities, so-called pseudosections [57],
was developed.

3.2.3. Cone Penetration Testing (CPT) for Soil Classification and Determination of Its
Physical-Mechanical Parameters

As an alternative to the traditional soil drilling, sampling, and laboratory testing,
cone penetration testing (CPT) provides continuous and reliable information along the
investigation depth. The CPT is being more and more incorporated into the portfolio of
geotechnical engineers due to its major advances in speed of use, as well its repeatability
and reliability. This especially comes to the fore when investigating the soil below linear
infrastructure such as the embankment and riverbank network [58]. The method relies
on pushing a specially designed probe into the soil, Figure 6b, at a relatively fast rate
(20 mm/s), thus enabling continuous recording of the cone tip resistance (qc) and sleeve
resistance (fs), as well the groundwater pore pressure (u). Despite the standardized external
geometry of the cone, the measurement and transmission system used can vary consider-
ably from one device to another [59]. By utilizing raw CPT collected data, soil layers can
be identified using one of the classification procedures, such as [60], as well to provide
estimates of its in situ physical and mechanical properties, such as undrained strength,
compression modulus, friction angle, and unit weight. The latter correlation, developed
by Kovacevic et al. [36], was particularly useful in the present study for determining soil
density and for the calculation of small strain stiffness in combination with MASW results,
as given in Equation (1).
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4. Validation of the Methodology—Oostmolendijk Embankment
4.1. Description of the Case Study Area

To validate the proposed methodology based on the implementation of multisensor
data in machine learning process, an Oud-IJsselmonde–Oostendam flood protection section
in Netherlands was chosen, between Rotterdam and Dordrecht. This embankment section,
9.4 km long and consisting entirely of engineered soil slopes, protects the eastern part
of IJsselmonde against the influence of the North River, Figure 7. Particularly, a section
named Oostmolendijk was selected for the analysis as it was deemed to be critical due to
continuous long-term settlements of the levee crest and slopes.
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Figure 7. Location of the case study embankment Oostmolendijk.

The time-dependent settlement of the Dutch embankments is a well-known problem,
where Speijker et al. [61] note that these embankments slowly sink “away into the sea” due
to a combination of factors, such as soil settlement and relative sea level rise. To develop
appropriate embankment heightening protocols, the authors proposed the maintenance
decision model, validated on the problem of heightening of the Oostmolendijk. Jorissen and
Noortwijk [62] highlight the extreme settlement and subsoil consolidation of Oostmolendijk:
about 0.60 m in the period from 1969 (first elevation work) to 1981, and about 0.15 m in
the period from 1981 to 1989, with only these data available at the time. Second elevation
work was conducted in 1991 when the dike was elevated by 30 cm. However, after the
2013 reconstruction work, which included installation of the additional material on the
crest and downstream slope, the excessive settlement continued, leading to the present
state with many cracks along the road resting on the crest, as well on the slopes, Figure 8.
The fact that the embankment body is still in motion and is not stable, raises doubts on the
appropriateness of remediation work to increase the crest level, since additional material
fill will certainly yield additional loads on the soil.

Speijker et al. [61] estimated the trend of crest level decline by using both a linear
and nonlinear approach, for the purpose of calculation of expected costs of Oostmolendijk
heightening. Within this study, authors argued that although the assumption of expected
crest-level decline being linear in time is quite reasonable when data are lacking, the engi-
neering knowledge suggests the expected crest-level decline to be a logarithmic function of
time. Thus, while specifying a nonlinear decline of the embankment and crest, settlement
and subsoil consolidations were considered, however without considering effects of creep.
Further, the authors reported that for the period of 50 years, a crest height decrease of
approximately 1.30 m is expected of which 1.00 m is due to the embankment settlement,
and 0.30 m is due to the relative sea level rise.
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4.2. Conducted Investigations and Obtained Results

To obtain data necessary for the implementation of the methodology, several in situ
investigation methods were supplemented by the CPT data from the open-source database
DINOloket [63]. The layout of geotechnical and geophysical investigation work is shown
in Figure 9, while the obtained data, along with lengths, depths, locations, etc., are shown
in Table 1.
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After obtaining the UAV data, a complete 3D point cloud was developed. In addition
to the data given in Table 1, it should be noted that the UAV built-in camera has a sensor
width of 13.2 mm and a focal length of 8.8 mm with 5472-pixel image width, all leading
to the GSD of 0.83 cm for the flight height of 30 m and camera pointing down to a −90◦

(with 0◦ being the horizontal position of a camera). On the ground, three ground control
points (GCP) were used for placing model to a local coordinate grid (Amersfoort/RD new,
EPSG:28992). Mean absolute error of the investigation was 6 × 10−6 m and 1.1 × 10−4 m
in horizontal (X and Y directions, respectively) and 1.2 × 10−4 m vertically (Z direction),
providing satisfactory absolute accuracy of the reconstructed model. The development of a
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point cloud enabled extraction of the relevant cross-section, marked CS in Figure 9, used in
the subsequent numerical analysis. Two CPTs were conducted from the Oostmolendijk crest
level, while two were conducted on the downstream side. For every CPT investigation, data
were continuously recorded with a vertical resolution of 2 cm. This CPT raw data, obtained
from the DINOloket [63], were mostly consistent as they point to the clayey material depths
up to 15–16 m from the crest level overlying the sandy layers to the investigation depths.
The clayey layers showed extremely low values of qc in the clayey layers, up to 1 MPa, while
for the sand deposits qc values were in a range from 10 to 20 MPa, Figure 10. By using the
Robertson [60] classification and soil layering algorithm developed by Kovačević et al. [58],
a soil profile was developed.

Table 1. Overview of the Oostmolendijk investigation methods and displacement monitoring.

Soil Layering/Parameters

Type
Total no. of

investigation
profiles or points

No. of profiles
(points) on the

crest

No. of profiles (points)
upstream/downstream

Length of each
profile

(m)

Depth of
investigation

(m)
Source

MASW 4 2 1/1 100 26 In situ
ERT 4 2 1/1 75 15 In situ
CPT 4 2 0/2 - 20 [63]

Terrain Topography

Type Flight height (m) Scanned area
(m ×m)

Photo
overlapping No. of photos

No. of 3D
points

(million)

GSD
(cm) Source

UAV 30 70 × 130 front 70%
side 70% 87 63.6 0.83 In situ

Displacement Measurement

Type Measurement
period Satellite Point ID from database [56]

Coordinates
(EPSG:28992) of

measurement
point *

No. of mea-
surements Source

InSAR from May 2015
to June 2020 WEST-1 L00019660P00016545 N 102968.0

E 430885.0 251 [64]

GPS from June 2020
to June 2021 - - N 102969.6

E 430885.8 3 IM **

* GPS monitoring point was chosen within the GPS database as the one closest to the InSAR monitoring point
(4.1 m distance between GPS and InSAR monitoring point). ** provided by the courtesy of Infrastructure Manager
Waterschap Hollandse Delta.

Geophysical investigations were conducted on four profiles in a longitudinal direction,
as indicated in Figure 9. Each MASW profile consisted of 40 geophones on 2.5 m separation,
whereas the each ERT profile utilized 32 electrodes on 2.5 m separation. The ERT inves-
tigations showed that the subsoil is formed mostly of the clayey materials with very low
resistivities up to 12 to 15 m, below which there is an increase in soil resistivities, attributed
to the presence of sand formations, see Figure 11a for profile P1. The ERT profiles on the
downstream side also picked up the presence of sandy layers down to a depth of 2 m,
which corresponds to the additional material filled during the 2013 rehabilitation work.
The MASW results for same profile P1, Figure 11b, show very low vs values (clay) to the
depths of 10–15 m below which there is a vs increase (sands).

It was also interesting to observe MASW measurements at four single points, along
the selected cross-section, marked CS. On all four 1D profiles, Figure 12, a slight decrease
of shear velocities can be observed at depths from 7 to 11 m below the embankment toe,
which can be eventually attributed to the presence of even softer peat layers within the
clay layers.
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4.3. Long-Term Monitoring Data

The InSAR data on long-term monitoring of the Oostmolendijk was obtained from the
open-access database [64]. By performing mathematical operations on the pulses emitted
from the satellite radar and received after their reflection on the Earth’s surface, an image of
the settlements containing ten thousand measurements per square kilometer was obtained,
covering the whole of the Netherlands. As indicated in the database, the satellite radar
looks at the Netherlands from six different positions in space, and the corresponding map
layers in the database are called West, Middle, and East; Oostmolendijk monitoring belongs
to the West layer. As shown in Table 1, the open database contains measurements from
May 2015 to June 2020 and is shown as red points in Figure 13. For this measurement
point, displacement data were obtained every 6 days, therefore the point database consisted
of 251 measurements. Since reconstruction work by filling additional material ended in
the 2013, this marked the starting reference displacement point for the creep analysis.
The InSAR measurements from the database [64] usually have a precision of the order
of a millimeter. This could, however, vary depending on the location and on location-
related noise. The observed point is located on the crest of the Oostmolendijk where the
asphalt layer is located, meaning that there is a small influence of the point position to the
measurement precision. Regardless, the measurements are of sufficient precision in order
to be used in the methodology.

In addition to InSAR data, the additional terrestrial GPS measurement data (blue in
Figure 13), were provided courtesy of Waterschap Hollandse Delta, as the infrastructure
manager responsible for Oostmolendijk. Even though only three measurements were
performed, the obtained data present a continuation of the InSAR database and also point
to a clear and continuous ongoing settlement of the embankment. If linear regression is
used on a complete dataset, including both InSAR and GPS data, the resulting R2 is 0.8911,
while the RMSE has value of 0.5628.
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4.4. Results and Discussion

Once the in situ data were collected and having the displacement measurement
database on disposal, the implementation of the research methodology on the Oost-
molendijk followed.

4.4.1. Implementation of NetCREEP and PSO

To form a database for the development of a NetCREEP network, many numerical
simulations were conducted. Precisely, 125 simulations were carried out with the range
(sets) of input parameters. Therefore, the selected ranges were following: (i) for reduction
radio rd = [0.10; 0.15; 0.20; 0.25; 0.30]; (ii) Kelvin’s viscosity, ηK = [10,000; 20,000; 40,000;
60,000; 80,000]; and (iii) Maxwell’s viscosity, ηM = [200,000; 250,000; 300,000; 350,000;
400,000]. These 125 sets (i.e., 53 being the possible number of combinations, where ‘5′

represents a number of predefined values for each creep parameter and ‘3′ represents the
number of creep parameters) of input parameters, when used in numerical simulations,
resulted in 125 displacements of the crest displacement. The displacement of a crest is
marked as relevant for the implementation of methodology since it is exactly at this location
where the Oostmolendijk displacements were monitored by InSAR and GPS.

Based on the data obtained from investigation works—UAV for terrain topography,
shear velocities from MASW and unit weight/density from CPT for small-strain stiffness
values, CPT for soil classification and strength parameters, and ERT for thickness of soft clay
layers—a numerical model was developed, Figure 14. A sensitivity analysis was performed
to check for boundary effects, and a finite difference numerical model, developed in
FLAC [35], being 80 m wide and 20 m high was found to satisfy the requirements. Despite
the fact that the model divided soft clays into two layers, by introducing a peat layer
in between, it should be noted that the same parameters were assigned for upper clay,
peat, and lower clay, meaning that the same set of predefined creep parameters were
introduced to each layer. Therefore, the division of soft clay in several layers was merely
visual, while the assigned parameters were the same. This can be justified by the fact
that the peat and soft clays demonstrated similar mechanical behavior. Variations of the
qc, shown in Figure 10, were relatively insignificant down to the depth of sand layers.
When Robertson’s 2016 [60] soil classification was used, which classifies soils based on
its behavior, the entire layer was classified as ‘clay-like contractive material’. The case
was similar when Robertson’s 2009 [65] soil classification was used, which relies on the
textural-based descriptions and where the entire profile up to sand is classified as ‘clay’. It
was only when the Dutch modification of Robertson’s 2009 classification was implemented,
that some thin layers were classified as peat. This is due to fact that a soil behavior type
index (Ic) in the Dutch modification, with a value of 3.6, is slightly shifted toward higher Qt
values in the Qt–Fr chart. Therefore, it can be stated with great certainty that the mechanical
behavior of the soft clay and peat is the same and that these can be evaluated as a single
layer in this study. Also, the vs values from Figure 12 show an insignificant decrease in
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values at depths of 5 to 11 m, yielding the small influence on obtained small strain shear
modulus values.
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The input–output pair, provided by the one numerical simulation, is called one dataset.
Therefore, by running 125 simulations, 125 input–output pairs were utilized for NetCREEP
development, whereas the input was considered as one (rd, ηK, and ηM) set, and out-
put was considered as a displacement of the crest in 31 observed time (every 3 months
from December 2013 to June 2021.). The total number of crest displacements calculated
is 3875 (31 observation periods × 125 calculations). The overall matrix output has the
form [ycrest

1, ycrest
2, . . . , ycrest

31]1; [ycrest
1, ycrest

2, . . . , ycrest
31]2; . . . ; [ycrest

1, ycrest
2, . . . ,

ycrest
31]125. Figure 15 shows that R2 values for the target-output evaluations for training,

validation, testing, and overall datasets are equal to unity. This confirms that the developed
NetCREEP established strong correlation between time-dependent crest displacements and
creep parameters and that the chosen number of input combinations is representative.
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By having the NN with the architecture adapted to specific problem and by using
the particle swarm optimization (PSO) algorithm code, implemented in MATLAB [42],
monitoring data from Figure 13 were used to estimate most probable (rd, ηK, and ηM) set,
which would yield observed measurements. The PSO was used for minimizing the sum
square error between the network output and the desired output obtained by InSAR and
GPS displacement measurements. In the case of Oostmolendijk, the minimum of estimation
function (fmin) equaled to 1.6915× 10−6, whereas the identified values of Burger’s unknown
parameters were: (i) rd = 0.2112 (meaning that the large-strain stiffness is 21% of obtained
small-strain stiffness), (ii) ηK = 48,050, and (iii) ηM = 320,000. When these values were
implemented in the numerical model, Figure 16, results show that the numerically obtained
crest displacement trend correlates well with the crest monitoring results for the period up
to June 2021, and this validates the overall methodology.
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4.4.2. Prediction of Oostmolendijk Long-Term Behavior

Once the methodology is validated and the most probable creep parameters are
identified, a numerical model can be used for prediction of the Oostmolendijk behavior for
any required period. Here, the required observed period extends up to 2030, Figure 17. It
should be noted that each simulation requires significant long-term computational efforts.
While the calculated settlement in June 2021, when the last in situ measurements were
conducted, is 8.9 cm, the model predicts the increase of settlement to a value of 16.5 cm by
2030, which is an increase of 85%.
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When compared to the different regression functions, used only on monitoring (In-
SAR and GPS) data, the difference between these functions and the numerically predicted
function increases with the increase of observed time. These simple forecasting functions
are usually applied in the data analysis to predict a value based on existing values along a
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predefined trend. This “extrapolation” beyond the “scope of the measured data” is merely
to demonstrate what could be expected in terms of time-dependent displacement if only
measured data are analyzed. All utilized regression functions, namely linear, logarithmic,
and polynomial, have the large R2 meaning that there is a clear trend of measured dis-
placements in time. However, once they are extrapolated to 2030, the regression functions
overestimate the numerically predicted displacement by 20% (logarithm function), 23%
(linear function), or 34% (polynomial function), respectively. Apart from providing more
reliable displacement prediction, having the fully defined numerical model means hav-
ing the fully defined soil stress state for any desired period, something which cannot be
obtained by simple extrapolation of the regression functions. Therefore, at some point a
soil failure will occur due to excessive deformations and this, unlike with the fully defined
numerical model, cannot be predicted by simply extrapolating the measurement data
regression functions.

When comparing the numerically obtained results with those from Speijker et al. [61],
who estimated the Oostmolendijk long-term crest decline using simplified models with
several assumptions, some differences can be observed. By using the linear assumption,
Speijker et al. [61] estimated 2.6 cm per year in Oostmolendijk’s crest decline. Here, authors
highlight that the expected crest decline in a period of 50 years is 1.30 m, out of which 0.30 m
is due to relative sea level rise, and 1.00 m is due to settlement and subsoil consolidation.
Since the latter is of interest for this study, it could be concluded that the settlements will
occur at a rate of 2 cm per year. When put in context of this study’s analysis, where 2013 is
highlighted as the starting observation period after the reconstruction work, by the year
2030, Oostmolendijk would settle up to 34 cm, which is more than twice the value estimated
by this study.

The continuous displacement monitoring is of upmost importance for the presented
methodology of inverse creep parameter identification. By having a larger monitoring
database at our disposal, a more reliable estimation of creep parameters could be obtained,
since these are calibrated against the monitoring data. It should be therefore stressed that
the continuous monitoring of an embankment not only provides information on its current
state and behavior, but also provides a reliable estimate of its future performance.

5. Conclusions

The paper presents the methodology for inverse creep parameter identification nec-
essary for a reliable representation of Burger’s constitutive law. In order to predict the
long-term creep behavior of soft soils, the methodology consists of several phases, with the
overall aim to develop a neural network optimized by the particle swarm algorithm, so that
most probable creep parameters are identified, overcoming the issues of costly and time-
consuming laboratory creep tests. A NetCREEP network is trained, validated, and tested on
the large number of input–output sets obtained from the numerical analyses, whereas the
input for the development of a numerical model was obtained by multisensor data, namely
UAV for terrain topography, shear velocities from MASW and unit weight/density from
CPT for small-strain stiffness values, CPT for soil classification and strength parameters,
and ERT for thickness of soft clay layers. Once the numerical model was defined, the prede-
fined sets of Burger’s unknown parameters, stiffness reduction ratio (rd), Kelvin’s viscosity
(ηK), and Maxwell’s viscosity (ηM) were assigned to the model. The obtained numerical
input–output datasets provided the basis for the development of NetCREEP, which, after
several iterations, consisted of ten nodes distributed within the total of four hidden layers.
By utilizing the PSO, the most probable set of creep parameters was identified where the
methodology took full advantage of the database consisting of the continuous monitoring
of long-term soil displacements, obtained by InSAR and GPS. The overall methodology
was verified on a case study location of an Oostmolendijk embankment in the Netherlands,
well-known for its extreme settlements. The developed and PSO-optimized NetCREEP
provided a set of creep parameters, which enabled the numerical simulation of a monitoring
database, as well the prediction of the long-term behavior of an embankment. Within this
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procedure, PSO yielded sufficiently low values of minimum of estimation function. It was
shown that the prediction model provides 20–35% lower values of long-term settlements
when compared to traditional statistical regression functions extrapolated to the desired
period. When compared to some previous studies on the embankment settlements, this
study yields twice the lower values. A fully defined numerical model, with a best estimate
of input creep parameters, also provides the insight into long-term soil stress state, which
cannot be obtained by simple extrapolation of the regression functions used merely on
monitoring data. The study also demonstrates the huge benefits of having the continuous
monitoring of the embankment, not just for the current assessment of its behavior, but also
for reliable prediction of future performance. For this purpose, remote sensing InSAR data
can be extremely beneficial.
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