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THE PROBLEM OF THE EXTENSION OF D(4)-TRIPLE
{1, b, c}

Kouèssi Norbert Adédji, Alan Filipin and Alain Togbé

Abstract. In this paper, we study the extensibility of the D(4)-triple
{1, b, c}, where 1 < b < c, by proving that such a set cannot be extended
to an irregular D(4)-quadruple only for some values of c. For this study,
we will use the classical methods based on the resolution of the binary
recurrence sequences with new approaches in order to confirm a conjecture
of uniqueness of such an extension.

1. Introduction

Diophantus raised the problem of finding four (positive rational) numbers
a1, a2, a3, a4 such that aiaj + 1 is a square for each 1 ≤ i < j ≤ 4 and gave a
solution

{ 1
16 ,

33
16 ,

17
4 ,

105
16
}
. The first set of four positive integers {1, 3, 8, 120}

with this property above was found by Fermat. Replacing “ + 1” by “ + n”
leads to the following definition.

Definition 1.1. Let n be a nonzero integer. A set of m distinct positive
integers {a1, . . . , am} is called a D(n)-m-tuple (or a Diophantine m-tuple with
the property D(n), or a Pn-set of size m) if aiaj + n is a square for each
1 ≤ i < j ≤ m.

One of the most interesting and most studied questions is how large those
sets can be. In the classical case, first studied by Diophantus, i.e. when
n = 1, Dujella [7] proved that D(1)-sextuple does not exist and that there
are at most finitely many quintuples. Over the years many authors improved
the upper bound for the number of D(1)-quintuples and finally He, the third
author and Ziegler [14] gave the proof of the nonexistence of D(1)-quintuples.
To see details of the history of the problem with all references, one can visit
the webpage of Dujella [6].

Variants of the problem when n = 4 or n = −1 are also studied frequently.
In the case n = 4, similar conjectures and observations can be made as in the
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D(1) case. In the light of that observation, the second author and Trebješanin
have proven in [5] that D(4)-quintuple also doesn’t exist.

A D(4)-pair can be extended with a larger element c to form a D(4)-
triple. The smallest such c is c = a + b + 2r, where r =

√
ab+ 4 and such

triple is often called a regular triple, or in the D(1) case it is also called an
Euler triple. There are infinitely many extensions of a pair to a triple and
they can be studied by finding solutions of a Pellian equation

(1.1) at2 − bs2 = 4(a− b),

where s and t are positive integers defined by ac + 4 = s2 and bc + 4 = t2.
Then, for a D(4)-triple {a, b, c}, a < b < c, we define

d = d± = a+ b+ c+ 1
2

(
abc±

√
(ab+ 4)(ac+ 4)(bc+ 4)

)
,

and it is easy to check that {a, b, c, d+} is a D(4)-quadruple, which we will
call a regular D(4)-quadruple, and if d− ̸= 0 then {a, b, c, d−} is also a regular
D(4)-quadruple with d− < c. A famous and still open conjecture related to
the regularity problem is as follows.

Conjecture 1.2. If {a, b, c, d} is a D(4)-quadruple such that a < b <
c < d, then d = d+.

Results which support this conjecture in some special cases can be found
for example in [9], [11], [12]. But, in the framework of the proof of this
conjecture, Trebješanin [4] recently proved the following result.

Theorem 1.3. (See [4, Corollary 1.7]). Any D(4)-triple can be extended
to a D(4)-quadruple with d > max{a, b, c} in at most 8 ways. A regular D(4)-
triple {a, b, c} can be extended to a D(4)-quadruple with d > max{a, b, c} in
at most 4 ways.

It is interesting to observe that the problem of extending a D(4)-pair
{1, b} to a D(4)-triple {1, b, c} can be reduced to the solving of the Pellian
equation (1.1). Notice that in this particular case where a = 1, we have to
solve the following equation

(1.2) t2 − bs2 = 4(1 − b),

which has infinitely many solutions divided into classes of solutions. By the
arguments of Nagell [17, Theorem 108a], equation (1.2) has finitely many
fundamental solutions (so also classes of solutions). Also, there are at most
2ω(4(b−1)) classes of solutions with gcd(t, s) = 1, where ω(4(b − 1)) denotes
the number of distinct prime factors of 4(b − 1). All elements of one class
of solutions of equation (1.2) can be obtained from a fundamental solution
by multiplication with a power of the minimal solution in positive rationals
for the associated Pellian equation. Therefore, all positive solutions (t, s) to
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equation (1.2) which belong to the same class and induced by the fundamental
solutions (±2, 2) can be expressed as

(1.3) t+ s
√
b = (±2 + 2

√
b)
(
r +

√
b

2

)k
= (±2 + 2

√
b)(Tk +Uk

√
b), k ≥ 0,

where (Tk, Uk) is the k-th positive rationals solutions to the Pellian equation

T 2 − bU2 = T 2 − (r2 − 4)U2 = 1.

Note that, for some choices of b there are other fundamental solutions of the
equation (1.2). It is easy to show by induction that

T0 = 1, T1 = r
2 , Tk+2 = rTk+1 − Tk, k ≥ 0(1.4)

U0 = 0, U1 = 1
2 , Uk+2 = rUk+1 − Uk, k ≥ 0.(1.5)

So, by (1.3) we observe that

(1.6) (s, t) = (s(±)
k , t

(±)
k ) = (2Tk ± 2Uk,±2Tk + 2bUk)

and

(1.7) c
(±)
k = c = s2 − 4 = 4r2U2

k − 12U2
k ± 8TkUk.

Thus, we will study the extensibility of the D(4)-triples

{1, b, c(±)
k }, for k = 1, 2, . . .

To effectively study the extensibility of our previous D(4)-triple, we will
focus our attention on the following theorem which is the main result obtained
by Trebješanin [4]. In reality, this result will help us to have an idea of the
element c = c

(±)
k of the extension of D(4)-triple {1, b, c} to an irregular D(4)-

quadruple. So, for a fixed D(4)-triple {a, b, c}, denote by N the number of
positive integers d > d+ such that {a, b, c, d} is a D(4)-quadruple. We have
the next result

Theorem 1.4. ([4, Theorem 1.6]). Let {a, b, c} be a D(4)-triple with
a < b < c.

i) If c = a+ b+ 2r, then N ≤ 3.
ii) If a+ b+ 2r ̸= c < b2, then N ≤ 7.
iii) If b2 < c < 39247b4, then N ≤ 6.
iv) If c ≥ 39247b4, then N = 0.

Using the item iv) of Theorem 1.4, equation (1.3) and the inequality
b > 105 of [4, Lemma 2.2], we get

s2 ≥ (
√
b− 1)2 · bk−1,
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and for k ≥ 5 we obtain c = s2 − 4 > 39247b4. Consequently, we only need
to consider 1 ≤ k ≤ 4. Therefore, there are the following 8 cases to take into
account:

c
(±)
1 = r2 − 3 ± 2r,
c

(±)
2 = r4 − 3r2 ± (2r3 − 4r),
c

(±)
3 = r6 − 5r4 + 7r2 − 3 ± (2r5 − 8r3 + 6r),
c

(±)
4 = r8 − 7r6 + 16r4 − 12r2 ± (2r7 − 12r5 + 20r3 − 8r).

Since bc−
1 + 4 = b2 − 2br + r2 = (b− r)2 < b2, it follows that c−

1 < b. We set
r′ = r−1 in the case c−

1 . Then, the triple {1, c, b} is {1, r′2−4, r′2+2r′−3}. This
corresponds to {1, b′, (c′)±

1 }. Notice that in all other cases we have 1 < b < c±
k .

Also, it is easy to see that the D(4)-quadruple {1, b, c(±)
k , c

(±)
k+1} is regular.

The preceding observations allow us to state our main result, which is to
prove the following theorem.

Theorem 1.5. If {1, b, c(±)
k , d} is a D(4)-quadruple with d > c

(±)
k , then

d = c
(±)
k+1. More precisely, the D(4)-triple {1, b, c(±)

k } cannot be extended to an
irregular D(4)-quadruple.

Taking into account the observations mentioned above, Theorem 1.5 al-
lows us to deduce the following statement.

Corollary 1.6. If 4(b − 1) is a prime power, then any D(4)-quadruple
which contains the pair {1, b} is regular.

Remark 1.7. However, 4(b− 1) can be prime power only if b = 5. But it
should be noted that it is not only the case when we will have such sequences
of c’s that are extending our pair {1, b}. But we can also have some additional
c’s that extend our D(4)-pair {1, b}. For example, for b = 96, we have the
sequences:

c−
ν = 77, 7740, ...
c+
ν = 117, 11660, ...

while, for example c = 672 also extends the pair {1, 96}. That extension comes
from the fundamental solution (t0, s0) = (22, 3) of the equation t2 − 96s2 =
−380.

In order to prove Theorem 1.5, we will follow the methods described in
[13] by He, Pintér, the third author, and Yang. In Section 2 of this paper,
we will recall some useful lemmas and then we will transform the problem of
extending a D(4)-triple {1, b, c} to a D(4)-quadruple {1, b, c, d} into solving
a system of simultaneous Pellian equations, which furthermore transforms
to finding intersections of binary recurrent sequences. In Section 3, we will
use a linear form in three logarithms to obtain a lower bound for one of the
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index of the sequences. In Section 4, we will now give an upper bound to the
bounded index of the previous section through the application of a result due
to Laurent [15]. Section 5 of this paper will be devoted to the proof of our
main theorem. For this, we will apply a Matveev [16] result and then we will
end by applying the Baker-Davenport reduction method.

2. Some useful Lemmas and system of Pellian equations

In this section, we will recall or prove some useful lemmas that will be
used to prove Theorem 1.5. So, let us consider a D(4)-triple {1, b, c}. When
trying to extend D(4)-triple {1, b, c} to a D(4)-quadruple {1, b, c, d}, we have
to solve the system

d+ 4 = x2, bd+ 4 = y2, cd+ 4 = z2,

where x, y, z are positive integers. Eliminating d, we obtain the following
system of Pellian equations

z2 − cx2 = 4(1 − c),(2.1)
bz2 − cy2 = 4(b− c),(2.2)
y2 − bx2 = 4(1 − b).(2.3)

Each of equations (2.1), (2.2) and (2.3) has finitely many fundamental so-
lutions (z0, x0), (z1, y1) and (y2, x2), respectively. From these solutions, all
solutions (z, x), (z, y) and (y, x), of (2.1), (2.2) and (2.3), respectively, are, by
([7, Lemma 1] or [17, Theorem 108a]), given with

z + x
√
c = (z0 + x0

√
c)
(
s+

√
c

2

)m
, m ≥ 0,(2.4)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)
(
t+

√
bc

2

)n
, n ≥ 0,(2.5)

y + x
√
b = (y2 + x2

√
b)
(
r +

√
b

2

)l
, l ≥ 0.(2.6)

For any solution (x, y, z) of the system (2.1)-(2.2)-(2.3), we have z = vm = wn,
for some non-negative integers m and n, where the sequences (vm)m≥0 and
(wn)n≥0 are obtained using (2.4) and (2.5) and given by

v0 = z0, v1 = 1
2(sz0 + cx0), vm+2 = svm+1 − vm,(2.7)

w0 = z1, w1 = 1
2(tz1 + cy1), wn+2 = twn+1 − wn.(2.8)

Hence, we are solving the equation

(2.9) vm = wn,
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in n,m ≥ 0. The initial terms of these equations were determined by the
second author in [10, Lemma 9] and recently improved by Trebješanin in the
following Lemmas:

Lemma 2.1. ([4, Theorem 1.3]). Suppose that {a, b, c, d} is a D(4)-
quadruple with a < b < c < d and that wm and vn are defined as before.

i) If equation v2m = w2n has a solution, then z0 = z1 and |z0| = 2 or
|z0| = 1

2 (cr − st).
ii) If equation v2m+1 = w2n has a solution, then |z0| = t, |z1| = 1

2 (cr−st)
and z0z1 < 0.

iii) If equation v2m = w2n+1 has a solution, then |z1| = s, |z0| = 1
2 (cr−st)

and z0z1 < 0.
iv) If equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s and

z0z1 > 0.

Moreover, if d > d+, case ii) cannot occur.

Lemma 2.2. ([4, Lemma 2.13]). Let {vz0,m} denote a sequence {vm} with
an initial value z0 and {wz1,n} denote a sequence {wn} with an initial value
z1. It holds that v 1

2 (cr−st),m = v−t,m+1, v− 1
2 (cr−st),m+1 = vt,m for each m ≥ 0

and w 1
2 (cr−st),n = w−s,n+1, w− 1

2 (cr−st),n+1 = ws,n for each n ≥ 0.

By Lemma 2.1 and Lemma 2.2, we have to consider the following result.

Lemma 2.3. Assume that {1, b, c′, c} is not a D(4)-quadruple for any c′

with 0 < c′ < c±
k−1 and k ≥ 2. Then, neither v2m+1 = w2n nor v2m = w2n+1.

Moreover,

(i) If v2m = w2n has a solution, then z0 = z1 = ±2 and x0 = y1 = 2.
(ii) If v2m+1 = w2n+1 has a solution, then z0 = ±t, z1 = ±s, x0 = y1 = r

and z0z1 > 0.

Proof. The proof of this lemma is similar to that made by Baćić and the
second author in [1, Lemma 3] and also in [2, Lemma 2]. For the first part of
the lemma, if v2m+1 = w2n, define d0 := (z2

1 −4)/c. Then the proof of part (ii)
in [10, Lemma 9] implies that d0 > 0 and that {1, b, c, d0} is D(4)-quadruple.
On the other hand from the estimate for |z1| in [4, Lemma 2.5], it is easy to
conclude

(2.10) d0 = z2
1 − 4
c

= 1
c

(
z2

1 − 4
)
<

1
c

(
c
√
c√
b

− 4
)
<

√
c√
b
.
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Moreover, from (1.7) for k ≥ 2, we have Uk ≤ rUk−1 and Tk < rTk−1 and
therefore(
c

(±)
k−1

)2
= 16

(
r2U4

k−1(r2 − 6) + U2
k−1(4T 2

k−1 + 9U2
k−1) ± Tk−1U

3
k−1(4r2 − 12)

)
>

16
r2

[
U4
k (r2 − 6) + U2

k (4T 2
k−1 + 9U2

k−1) ± Tk−1U
3
k−1(4r4 − 12r2)

]
> 0

>
16
r2 c

(±)
k .

So we have (
c

(±)
k−1

)2
>

16
r2 c

(±)
k

and

(2.11)
√
c

(±)
k <

√
b+ 4
4 c

(±)
k−1.

From (2.10) and (2.11) we conclude

d0 <

√
1
16 + 1

4b · c(±)
k−1 < c

(±)
k−1

which contradicts the assumption of the lemma. Therefore, v2m+1 = w2n has
no solution. The case v2m = w2n+1 can be proven in the exactly same way.
For the second part of the lemma, (ii) is just Lemma 2.1, part (iv). As for (i),
if v2m = w2n, then we know by [10, Lemma 9], part (i) that z0 = z1. Suppose
that |z1| > 2 and define d0 := (z2

1 − 4)/c. Then we see that d0 > 0 and that
{1, b, c, d0} is D(4)-quadruple. On the other hand, as we have already seen
we have d0 < ck−1, which contradicts the assumption of the lemma. This
completes the proof of the lemma.

In other cases, we get the same intersections of sequences. For any solution
(x, y, z) of the system (2.1)-(2.2)-(2.3), we also have y = An = Bl, for some
non-negative integers n and l, where the sequences (An)n≥0 and (Bl)l≥0 are
obtained using (2.5) and (2.6) and given by

A0 = y1, A1 = 1
2(ty1 + bz1), An+2 = tAn+1 −An,(2.12)

B0 = y2, B1 = 1
2(ry2 + bx2), Bl+2 = rBl+1 −Bl.(2.13)

Thus, we have to solve the following equation
(2.14) An = Bl,

in n, l ≥ 0. Using Lemma 2.3 and [4, Lemma 2.2], we have the following result.

Lemma 2.4. Assume that {1, b, c′, c} is not a D(4)-quadruple for any c′

with 0 < c′ < c±
k−1 and b ≥ 105. Then, A2n = B2l+1 has no solution. More-

over, if A2n = B2l then y2 = 2. In other cases, we have y2 = ±2.
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Proof. From (2.12) and (2.13), by induction on n, l, we easily get

A2n ≡ y1 (mod b), A2n+1 ≡ ty1

2 (mod b),

B2l ≡ y2 (mod b), 2B2l+1 ≡ ry2 (mod b).

Since we know with certainty that t is even, in the continuation of our proof
according to the case, we can multiply the congruences by 2 in order to make
our transformations light. From [5, Lemma 8], we have

1 ≤ |y2| ≤
√

(r − 2)(b− 1)

and in the proof of [5, Lemma 10], we have the following bound on y2, i.e.
|y2| < b3/4.

If A2n = B2l, then we have y1 ≡ y2 (mod b). As y1 = 2 and |y2| < b3/4 <
b
2 for b > 105, then y2 = 2.

IfA2n = B2l+1, then 2 ≡ ry2
2 (mod b) so 4r ≡ r2y2 (mod b).As b+4 = r2,

then we get 4r ≡ 4y2 (mod b). Since, for b > 105, |4y2| < 4b3/4 < b
2 and

|4r| < b
2 , thus 4r = 4y2 and then y2 = r. In this case, from (2.3), we obtain

x2
2 = 1

b

(
y2

2 − 4 + 4b
)

= 5, which is not possible.
If A2n+1 = B2l, then from Lemma 2.3 we have rt

2 ≡ y2 (mod b). From
(1.6), we conclude that t = ±2Tk + 2bUk ≡ ±2Tk (mod b). It is easy to check
that Tk ≡ 1 (mod b) or Tk ≡ r

2 (mod b), where Tk is given by T0 = 1, T1 =
r
2 , Tk+2 = rTk+1 − Tk. We conclude that t ≡ ±2 (mod b) or t ≡ ±r (mod b)
and it follows that y2 ≡ ±2 (mod b) or y2 ≡ ±r (mod b). Notice that the
case y2 ≡ ±r (mod b) leads to a contradiction thus we consider only y2 ≡ ±2
(mod b). It follows that y2 = ±2.

If A2n+1 = B2l+1, then by Lemma 2.3, we have tr
2 ≡ ry2

2 (mod b). This
implies that tr2 ≡ r2y2 (mod b). Since r2 = b + 4 and t ≡ ±2 (mod b) or
t ≡ ±r (mod b). Then y2 ≡ ±2 (mod b

gcd(b,4) ) or y2 ≡ ±r (mod b
gcd(b,4) ). As

b > 105, then it is easy to show that the case y2 ≡ ±r (mod b
gcd(b,4) ) gives a

contradiction and we obtain y2 = ±2.

Therefore, the fundamental solutions of equation (2.3) are (y2, x2) = (±2, 2).
Finally, we will determine the integer solutions (x, y, z) of the following

system {
y2 − bx2 = 4(1 − b),
z2 − cx2 = 4(1 − c).

From the above result, we have to solve the equation

(2.15) x = Pl = Qm,
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for non-negative integers l and m, where the sequences (Pl)l≥0 and (Qm)m≥0
are obtained using (2.4) and (2.6) and given by

P0 = x2, P1 = 1
2(rx2 + y2), Pl+2 = rPl+1 − Pl,(2.16)

Q0 = x0, Q1 = 1
2(sx0 + z0), Qm+2 = sQm+1 −Qm.(2.17)

Using again (2.4) and (2.6), we get

Pl = 1
2
√
b

[
(y2 + x2

√
b)αl − (y2 − x2

√
b)α−l

]
,(2.18)

Qm = 1
2
√
c

[
(z0 + x0

√
c)βm − (z0 − x0

√
c)β−m] ,(2.19)

where α = r+
√
b

2 and β = s+
√
c

2 are solutions of Pell equations T 2 − bU2 = 1
and W 2 −cV 2 = 1, respectively. In view of the above results, we also conclude
that there are two types of fundamental solutions as follows:
Type A: If l ≡ m ≡ 0 (mod 2), then z0 = ±2, x0 = y2 = 2 and x2 = 2.
Type B: If m ≡ 1 (mod 2), then z0 = ±t, x0 = r, y2 = ±2 and x2 = 2.

The next result will help us to determine a relation of indices l and m if
the equation Pl = Qm has a solution.

Lemma 2.5. If Pl = Qm has a solution (l,m) with m ≥ 1, then m < l.

Proof. The proof of this lemma is done in two parts taking into account
Type A and Type B. In the case of Type A, the proof is similar to that of
the second author, He and the third author in [12, Lemma 9]. Finally, in the
case of type B, we use the same strategy as [12, Lemma 9] by focusing on the
cases z0 = t and z0 = −t.

3. Linear forms in three logarithms

Using technique from [3], first we transform equation (2.15) into an in-
equality for a linear forms in three logarithms of algebraic numbers. So, we
will consider the following linear form in logarithms

(3.1) Λ = l logα−m log β + log γ,

where γ =
√
c(y2+x2

√
b)√

b(z0+x0
√
c) .

Lemma 3.1. If Pl = Qm has a solution (l,m) with m ≥ 1, then

0 < Λ < 1.0064β−2m.

Proof. Put

E = y2 + x2
√
b√

b
αl and F = z0 + x0

√
c√

c
βm.
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It is clear that E, F > 1 if m ≥ 1. Then equation Pl = Qm becomes

E + 4
(
b− 1
b

)
E−1 = F + 4

(
c− 1
c

)
F−1.(3.2)

Since c > b > 105, we have c−1
c > b−1

b . It follows that

(3.3) E + 4
(
b− 1
b

)
E−1 > F + 4

(
b− 1
b

)
F−1

and hence

(E − F )
(
EF − 4

(
b− 1
b

))
> 0.

So we get E > F . Moreover, by (3.3) we have

0 < E − F < 4
(
c− 1
c

)
E−1 < 4E−1 < 4F−1.

Therefore, we have Λ > 0 and

Λ = log E
F

= log
(

1 + E − F

F

)
<
E − F

F
< 4F−2.

Type A:

Λ < 4 c

(±2 + 2
√
c)2 β

−2m = c

(±1 +
√
c)2 β

−2m < 1.0064β−2m,

for c > b > 105.
Type B:

• The case z0 = t. We have

Λ < 4 c

(t+ r
√
c)2 β

−2m <
4
r2

c

(1 +
√
c)2 β

−2m < β−2m,

for c > b > 105 and r > 100.
• The case z0 = −t. From (3.2), we get

F = E + 4
(
b− 1
b

)
E−1 − 4

(
c− 1
c

)
F−1 > E − 4

(
c− 1
c

)
F−1

> E − 4
(
c− 1
c

)
> 0.

In above, we use the fact that F > 1. Thus,

F−1 <

(
E − 4

(
c− 1
c

))−1
.
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Furthermore,

E − F = 4
(
c− 1
c

)
F−1 − 4

(
b− 1
b

)
E−1

< 4
(
c− 1
c

)(
E − 4

(
c− 1
c

))−1
− 4

(
b− 1
b

)
E−1.(3.4)

Moreover in type B and for m ≥ 3, we have

F ≥ r
√
c− t√
c

β3 = r2c− t2√
c(r

√
c+ t) ·

(
s+

√
c

2

)3

>
4(c− 1)√
c · 2r

√
c

· (
√
c)3 > 4(c− 1),(3.5)

which implies E > F > 4(c− 1) and then

c− 1
c

(
E − 4

(
c− 1
c

))−1
< E−1.(3.6)

In fact, the case m = 1 in the equation Pl = Qm is the subject of further
study in the paper. Note also that inequality (3.5) holds if

√
c > 2r which is

true whenever c > r2 + 2r − 3. So, combining (3.4) and (3.6), we obtain

E − F < 4E−1 − 4
(
b− 1
b

)
E−1 = 4

b
E−1 <

4
b
F−1.

Therefore,

Λ = log E
F

= log
(

1 + E − F

F

)
<
E − F

F
<

4
b
F−2

and
4
b
F−2 = 4

b
· c

(r
√
c− t)2 β

−2m <
c2r2

b(c− 1)2 β
−2m.

Using c > b > 105, we get

r2 = b+ 4 < 1.00004b and c2

(c− 1)2 < 1.00003.

Hence, Λ = log E
F
< 1.0001β−2m. Considering all cases in types A, B, we have

Λ < 1.0064β−2m. This completes the proof of lemma 3.1.

Put

λ =


0 if the solution (l,m) is of Type A,
2 if the solution (l,m) is of Type B, with z0 = t,

−2, if the solution (l,m) is of Type B, with z0 = −t.
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Lemma 3.2. If the equation Pl = Qm has a solution (l,m) with m ≥ 1,
then for r > 316, we have

(3.7)
∣∣∣∣(l − 1

2λ) logα−m log β
∣∣∣∣ < 2√

b
.

Proof. According to the definition of Λ in (3.1), we have
(3.8)∣∣∣∣(l − 1

2λ
)

logα−m log β
∣∣∣∣ =

∣∣∣∣Λ − log γ − 1
2λ logα

∣∣∣∣ ≤ |Λ| +
∣∣∣log(γα 1

2λ)
∣∣∣ .

Notice that one can easily get

(3.9) 0 < Λ <
1.0064
c

.

In order to estimate inequality (3.8), we will consider three cases according
to the values of λ. Let us start with the following first case.

Case I: If λ = 0, then the solution (l,m) is of Type A. Since, c > r2+2r−3
then we easily get

γ =
√
c(2 + 2

√
b)√

b(±2 + 2
√
c)

= 1 +
√
b√

b
·

√
c√

c± 1 > 1.

Thus, according to the basic inequality, for x ∈ (0,∞), log(1 + x) < x, we
have

0 < log γ ≤ log
(

1 + 1√
b

)
+ log

(
1 + 1√

c− 1

)
<

1√
b

+ 1√
c− 1 <

2√
b
,

which implies∣∣∣∣(l − 1
2λ
)

logα−m log β
∣∣∣∣ = |Λ − log γ| < max

{
1.0064
c

,
2√
b

}
= 2√

b
.

This completes the proof in case λ = 0.
Case II: If λ = 2, then the solution (l,m) is of Type B, with x0 = r,

x2 = 2, z0 = t and y2 = ±2. Here, we get

γ =
√
c(±2 + 2

√
b)√

b(t+ r
√
c)

.

Since

γα
1
2λ − 1 = γα− 1 = ±

√
c(r +

√
b) + (b

√
c− t

√
b)√

b(t+ r
√
c)

=
±

√
c(r +

√
b) − 4

√
b

t+
√
bc√

b(t+ r
√
c)

and
√
c(r +

√
b) − (t+ r

√
c) =

√
bc− t < 0, we see that∣∣∣γ · α 1

2λ − 1
∣∣∣ < 1 + 4

√
b

t+
√
bc

· 1
t+r

√
c√

b
.
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From c > r2 + 2r − 3 and b > 105, we get∣∣∣γ · α 1
2λ − 1

∣∣∣ < 1.00000003149√
b

<
1
51 .

Notice that | log(1 + x)| < 1.01|x|, for |x| < 1
51 . Then we have∣∣∣log(γ · α 1

2λ)
∣∣∣ =

∣∣∣log(1 + (γ · α 1
2λ − 1))

∣∣∣ < 1.01√
b
.

Using the above inequality and (3.8), we find∣∣∣∣(l − 1
2λ) logα−m log β

∣∣∣∣ < 1.0064
c

+ 1.01√
b
<

1.02√
b
<

2√
b

which prove the lemma in the case λ = 2.
Case III: If λ = −2, then the solution (l,m) is of Type B, with x0 = r,

x2 = 2, z0 = −t and y2 = ±2. So, we have

γ =
√
c(±2 + 2

√
b)√

b(−t+ r
√
c)
.

Thus, we get

γ · α 1
2λ − 1 = γ · α−1 − 1 = 4

√
c(±1 +

√
b)√

b(−t+ r
√
c)(r +

√
b)

− 1.

This implies that

γ · α−1 − 1 = ±
√
c(t+ r

√
c) +

√
b(r +

√
b) +

√
bc(t−

√
bc)√

b(c− 1)(r +
√
b)

.

Since

t−
√
bc = 4

t+
√
bc

and
√
bc

t+
√
bc
<

1
2 ,

then ∣∣∣γ · α 1
2λ − 1

∣∣∣ < 2√
b(c− 1)(r +

√
b)

+ 1
c− 1 +

√
c(t+ r

√
c)√

b(c− 1)(r +
√
b)
.

Moreover,
√
c(t+ r

√
c)

(c− 1)(r +
√
b)

− 1 =
r +

√
b+ 4

√
c

t+
√
bc

(c− 1)(r +
√
b)
, and

√
c

t+
√
bc
<

1
2
√
b
,

then we can see that√
c(t+ r

√
c)

(c− 1)(r +
√
b)

− 1 < 1.00001
c− 1 < 0.0000099.

So, we have∣∣∣γ · α 1
2λ − 1

∣∣∣ < 2√
b(c− 1)(r +

√
b)

+ 1
c− 1 + 1.0000099√

b
<

1.00317√
b

<
1
51 .
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Hence, we deduce that∣∣∣∣(l − 1
2λ) logα−m log β

∣∣∣∣ < 1.0064
c

+ 1.0132017√
b

<
1.0232017√

b
<

2√
b
.

This completes the proof of the lemma.

Put

(3.10) ∆ = l − 1
2λ− km.

Lemma 3.3. If Pl = Qm has a solution (l,m) with m > 1, then ∆ ̸= 0.

Proof. Assume that ∆ = l − 1
2λ − km = 0. For (1.4) and (1.5), by

induction, we get Tmk+2k = 2TkTmk+k−Tmk and Umk+2k = 2TkUmk+k−Umk.
Hence, from (2.16), we get Pmk+2k = 2TkPmk+k − Pmk. Also, it is easy to
show that Pk = y2Uk + x2Tk. Therefore, we have
(3.11) P0 = x2, Pk = y2Uk + x2Tk, Pmk+2k = 2TkPmk+k − Pmk.

Our proof will be in three parts according to the fundamental solutions.
Part I: λ = 0. This is Type A with x0 = x2 = 2, z0 = ±2, y2 = 2. We

have l = km. By (3.11) and (2.17), we get
(3.12) P0 = 2, Pk = 2Uk + 2Tk, Pmk+2k = 2TkPmk+k − Pmk

and
(3.13) Q0 = 2, Q1 = s± 1, Qm+2 = sQm+1 −Qm.

Let us remember that s = s
(±)
k = 2Tk ± 2Uk.

• Case of s = s
(−)
k . We have Pk = 2Uk + 2Tk > 2Tk − 2Uk ± 1 = Q1 and

P2k = 2Tk(2Uk + 2Tk) − 2 > (2Tk − 2Uk)(2Tk − 2Uk ± 1) − 2 = Q2. Before
doing the induction, let us notice that 2Tk − 1 > s and that (Pkm)m is an
increasing sequence. So, assume now that Pkm > Qm and Pkm+k > Qm+1.
Then we get

Pmk+2k = 2TkPmk+k − Pmk

= (2Tk − 1)Pmk+k + Pmk+k − Pmk > sQm+1 −Qm = Qm+2.

Thus, we have in this case Pl = Pkm > Qm, for m ≥ 1.
• Case of s = s

(+)
k and Q1 = s+ 1. We have Q1 = 2Uk + 2Tk + 1 > 2Tk +

2Uk = Pk and P2k = 2Tk(2Tk+2Uk)−2 < (2Tk+2Uk)(2Tk+2Uk+1)−2 = Q2.
We assume that Pmk < Qm and Pmk+k < Qm+1, which imply
Pmk+2k = 2TkPmk+k − Pmk

< 2TkQm+1 + (2UkQm+1 −Qm) = (2Tk + 2Uk)Qm+1 −Qm = Qm+2.

It should be noted that the above sequences (Qm)m≥2, (Tk)k≥0 and (Uk)k≥0
are in positive terms. Hence, we conclude that Pl = Pkm < Qm, for m ≥ 1.
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• Case of s = s
(+)
k and Q1 = s − 1. We get Pk > Q1. Notice that

P2 = 2Tk(2Tk + 2Uk) − 2 < (2Tk + 2Uk)(2Tk + 2Uk − 2) − 2 = Q2 and

Q3 − P2k = 16T 2
kUk + 24TkU2

k + 8U3
k + s2 − 4Uk > 0.

Therefore, we assume that Pmk < Qm and Pmk+k < Qm+1, then

Pmk+2k = 2TkPmk+k − Pmk

< 2TkQm+1 + (2UkQm+1 −Qm) = (2Tk + 2Uk)Qm+1 −Qm = Qm+2.

We have Pl = Pmk < Qm, for m ≥ 2. Thus, we obtain Pl = Pkm ̸= Qm in
Type A. This contradicts the fact that l = km.

Part II: λ = 2. We are in Type B with x0 = r, x2 = 2, z0 = t, y2 = ±2.
If ∆ = 0, then l = km+ 1. By (3.11) and (2.17), we get

(3.14) P0 = 2, Pk = 2Tk ± 2Uk, Pmk+2k = 2TkPmk+k − Pmk

and

(3.15) Q0 = r, Q1 = 1
2(rs+ t), Qm+2 = sQm+1 −Qm.

If m = 0, then l = 1, P1 = rx2+y2
2 = r ± 1 ̸= r = Q0.

If m = 1, then l = k + 1. It is easy to show that Pl = Pk+1 = r(Tk ±
Uk) + bUk ± Tk, Q1 = rs

(±)
k

+t(±)
k

2 = r(Tk ± Uk) + bUk ± Tk. We conclude that
when s = s

(±)
k , then we get

(3.16) Pk+1 = Q1.

So, by induction 2Tk ̸= s provides Pkm+1 ̸= Qm, for m ≥ 2. Notice that
if s = s

(+)
k and y2 = −2, then P2k+1 < Q2 and 2Tk < s imply Pkm+1 <

Qm;
if s = s

(−)
k and y2 = 2, then P2k+1 < Q2 and 2Tk > s imply Pkm+1 > Qm.

Therefore, Pkm+1 ̸= Qm. This contradicts the fact that l = km+ 1.
Part III: λ = −2. We are in Type B with x0 = r, x2 = 2, z0 = −t,

y2 = ±2. The proof is similar to that of Part II.

The following result gives us the lower bound for m for a solution (l,m)
of equation (2.15).

Lemma 3.4. If Pl = Qm has a solution (l,m) with m ≥ 1, then for
r > 316, we have

m > 0.983|∆|
√
b · logα.

Proof. From Lemma 3.2, we have
∣∣(l − 1

2λ) logα−m log β
∣∣ < 2√

b
and

then ∣∣∣∣ l − 1
2λ

m
− log β

logα

∣∣∣∣ < 2
m

√
b · logα

.
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Using that and (3.10), we further obtain

(3.17) |∆|
m

=
∣∣∣∣ l − 1

2λ

m
− log β

logα + log β
logα − k

∣∣∣∣ < ∣∣∣∣ log β
logα − k

∣∣∣∣+ 2
m

√
b · logα

.

As αk = ( r+
√
b

2 )k = Tk + Uk
√
b, β = s+

√
c

2 , with s = s
(±)
k = 2Tk ± 2Uk and

(3.18)
∣∣∣∣ log β
logα − k

∣∣∣∣ =
∣∣∣∣∣ log( β

αk )
logα

∣∣∣∣∣ =
∣∣∣∣∣ log(1 + β−αk

αk )
logα

∣∣∣∣∣ ,
then we have∣∣∣∣β − αk

αk

∣∣∣∣ =
∣∣∣∣∣ s+

√
c

2 − ( r+
√
b

2 )k

( r+
√
b

2 )k

∣∣∣∣∣ =
∣∣∣∣∣s− 2

s+
√
c

− (2Tk − 1
Tk+Uk

√
b
)

Tk + Uk
√
b

∣∣∣∣∣
=

∣∣∣∣∣±2Uk − 2
s+

√
c

− 1
Tk+Uk

√
b

Tk + Uk
√
b

∣∣∣∣∣ < 2Uk + 0.0063169
2Uk

√
b

<
1.0063169√

b
.

Hence we get

(3.19)
∣∣∣∣log

(
1 + β − αk

αk

)∣∣∣∣ < 1.01
∣∣∣∣β − αk

αk

∣∣∣∣ < 1.01638√
b

.

From (3.17), (3.18), and (3.19), we obtain

|∆|
m

≤ 2
m

√
b logα

+ 1.01638√
b logα

=
1.01638 + 2

m√
b logα

and then
1.01638m+ 2 ≥ |∆|

√
b logα.

Therefore, we get
m ≥ 0.983|∆|

√
b · logα.

This is the end of the proof.

4. Linear forms in two logarithms

As in [13, Lemma 8], we apply a result due to Laurent (see [15,
Corollary 2]) on linear forms in two logarithms. For any non-zero algebraic α
of degree d over Q, whose minimal polynomial over Z is a0

∏d
j=1(X − α(j)),

we denote by

h(α) = 1
d

log |a0| +
d∑
j=1

log max
(

1,
∣∣∣α(j)

∣∣∣)


its absolute logarithmic height.
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As started in Section 1, we only need to consider the extensibility of the
D(4)-triples {1, b, c(+)

1 } and {1, b, c(±)
k }, for 2 ≤ k ≤ 4. Assume that r > 316

and Pl = Qm has a solution (l,m) with l,m ≥ 1. We have
Λ = l logα−m log β + log γ.

In order to apply the result due to Laurent, we put ∆ = l − 1
2λ − km and

rewrite Λ into the form

(4.1) Λ = log
(
α∆+ 1

2λγ
)

−m log
(
β

αk

)
= m log

(
αk

β

)
−log

(
α−∆− 1

2λγ−1
)
.

Lemma 4.1. For a D(4)-triple {1, b, c(±)
k }, (1 ≤ k ≤ 4), if Pl = Qm has a

solution (l,m), with m ≥ 1 and r > 316, then we have

(4.2) m < 66972
(∣∣∣∣∆ + 1

2λ
∣∣∣∣+ 2k + 3

)
· logα+ 186091.

Proof. Let α1 = αk

β and α2 = α∆+ 1
2λγ. Then, α1 is a zero of the

polynomial
X4 − 2sTkX3 + (4T 2

k + c+ 2)X2 − 2sTkX + 1,
whose all roots are

2(Tk + Uk
√
b)

s+
√
c

,
2(Tk − Uk

√
b)

s−
√
c

,
2(Tk − Uk

√
b)

s+
√
c

, and 2(Tk + Uk
√
b)

s−
√
c

.

Since α1 is an algebraic unit and γ is not an algebraic unit then we conclude
that α1 and α2 are multiplicatively independent. Here we have a linear form
(4.1) in two algebraic numbers α1 and α2 over Q. We note that at most two
conjugates of α1 are greater than 1, depending on whether αk > β or αk < β.
So, we get

h(α1) ≤ k

2 logα or h(α1) ≤ 1
2 log β.

Also, it is easy to see that h(α∆+ 1
2λ) = 1

2
∣∣∆ + 1

2λ
∣∣ · logα and

h(γ) = h

(√
c(y2 + x2

√
b)√

b(z0 + x0
√
c)

)
≤ h

(
y2 + x2

√
b√

b

)
+ h

(
z0 + x0

√
b√

c

)

≤ 1
2 log(4b− 4) + 1

2 log(rc+ t
√
c) < 1

2 log(8bcr)

<
3
2 logα+ log β + log 4.

Therefore, we obtain

h(α2) = h
(
α∆+ 1

2λγ
)

≤ h
(
α∆+ 1

2λ
)

+ h(γ)

≤ 1
2

(∣∣∣∣∆ + 1
2λ
∣∣∣∣+ 3

)
logα+ log β + log 4.
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By (3.19), we get
∣∣logαk − log β

∣∣ < 0.003. So we take

h1 = k

2 logα+ 0.003 > h(α1),

h2 = 1
2

(∣∣∣∣∆ + 1
2λ
∣∣∣∣+ 3 + 2k

)
logα+ 1.389 > h(α2).

Further, since by (4.1) b1 = m, b2 = 1 and D = 4, we have |b2|
Dh1

=
1

2k logα+0.012 < 0.087. Let us define

(4.3) b′ = m

2(
∣∣∆ + 1

2λ
∣∣+ 3 + 2k) logα+ 5.5572

+ 0.087.

If log b′ + 0.38 ≤ 30
D , then b′ ≤ 1236. Otherwise, we have

(4.4) log |Λ| ≥ −17.9 · 44(log b′ + 0.38)2h1h2.

Moreover, from Lemma 3.1, it is easy to get log |Λ| < −1.9988m log β. Thus,
we have

1.9988m log β < 17.9 · 44(log b′ + 0.38)2h1h2.

Since log β > logαk − 0.003 > 2h1 − 0.009, then
1.9988m < 17.9 · 44 · 1.002 · 0.5(log b′ + 0.38)2h2.

It follows that
b′ − 0.087 = m

4h2
< 287.15(log b′ + 0.38)2.

Using Maple, we obtain b′ < 33486.41. So, from this and inequality (4.3) we
get the result of Lemma 4.1.

We use Lemma 3.4 and Lemma 4.1 to get the following proposition.

Proposition 4.2. For a D(4)-triple {1, b, c(±)
k }, (1 ≤ k ≤ 4), if r >

68131(2k + 5) + 32889, then the equation Pl = Qm has no solution (l,m)
satisfying m > 1.

Proof. Assume that r > 316. Since ∆ ̸= 0, then ∆ ≥ 1. By Lemma 3.4
and Lemma 4.1, we have

0.983|∆|
√
b logα < 66972

(∣∣∣∣∆ + 1
2λ
∣∣∣∣+ 3 + 2k

)
logα+ 186091.

This implies

r − 2 <
√
b <

66972
(∣∣∆ + 1

2λ
∣∣+ 3 + 2k

)
0.983|∆|

+ 186091
0.983|∆| logα

< 68131(5 + 2k) + 32887.
Therefore, this completes the proof of Proposition 4.2.
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5. Proof of Theorem 1.5

In this section, we will use another theorem for the lower bounds of linear
forms in logarithms which differs from that in above section and the Baker-
Davenport reduction method to deal with the remaining cases. We recall the
following result due to Matveev [16] (see also Lemma 10 in [13]).

Lemma 5.1. Denote by α1, . . . , αj algebraic numbers, not 0 or 1, by
logα1, . . . , logαj determinations of their logarithms, by D the degree over
Q of the number field K = Q(α1, . . . , αj), and by b1, . . . , bj integers. Define
B = max{|b1|, . . . , |bj |}, and Ai = max{Dh(αi), | logαi|, 0.16} (1 ≤ i ≤ j),
where h(α) denotes the absolute logarithmic Weil height of α. Assume that the
number

Λ = b1 logα1 + · · · + bn logαj

does not vanish; then

|Λ| ≥ exp{−C(j, χ)D2A1 · · ·Aj log(eD) log(eB)},

where χ = 1 if K ⊂ R and χ = 2 otherwise and

C(j, χ) = min
{

1
χ

(
1
2ej
)χ

30j+3j3.5, 26j+20
}
.

Now, we apply the above lemma with j = 3 and χ = 1 for

Λ = l logα−m log β + log γ.

Here, we take

D = 4, b1 = l, b2 = −m, b3 = 1, α1 = α, α2 = β, α3 =
√
c(y2 + x2

√
b)√

b(z0 + x0
√
c)
.

From the computations done in the previous section, we put

h(α1) = 1
2 logα, h(α2) = 1

2 log β.

We see also that α3 is a zero of

b2(c− 1)2X4 − 4b2c(c− 1)x0x2X
3

− 2bc
(
(b− 1)(c− 1) − 2b(c− 1)x2

2 − 2c(b− 1)x2
0
)
X2

− 4bc2(b− 1)x0x2X + c2(b− 1)2.
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This implies

h(α3) ≤ 1
4

[
log(b2(c− 1)2) + 4 log max{|

√
c(y2 ± x2

√
b)|}

min{|
√
b(z0 ± x0

√
c)|}

]

= 1
4

[
log(b2(c− 1)2) + 4 log

√
c(2 + 2

√
b)√

b(−t+ r
√
c)

]

≤ 1
4 log

[
r4c4(1 +

√
b)4

(c− 1)2

]
≤ log(c ·

√
2b ·

√
2b) = log(2bc).

Hence we take

A1 = 2 logα, A2 = 2 log β, A3 = 4 log(2bc).

Using Lemma 5.1, we have

(5.1) | log Λ| > −1.3901 · 1011 · 162 · logα · log β · log(2bc) · log(4e) · log(el).

By (3.1) and Lemma 3.1, we get the following inequalities

(5.2) l logα < 2m log β and log |Λ| < −1.9988m log β.

Also it is easy to see that

(5.3) log β < 1
4 log(2c2).

Combining (5.1), (5.2), and (5.3), we get the following inequality

(5.4) l

log(el) < 2.12427475 · 1013 · log2(2c2).

As c = c
(±)
k ≤ c

(+)
k , k ≤ 4 and r ≤ 68131(2k + 5) + 32889, then we have

c < 4r8 < 2.03 · 1048.

Solving inequality (5.4), we get a bound of l that we summarize in the follow-
ing result.

Lemma 5.2. If Pl = Qm has a solution (l,m) with m ≥ 1, then we have
l < 5 · 1019.

In order to deal with the remaining cases, we will use a Diophantine ap-
proximation algorithm called the Baker-Davenport reduction method. The
following lemma is a slight modification of the original version of Baker-
Davenport reduction method (See [8, Lemma 5a]).

Lemma 5.3. Assume that M is a positive integer. Let p/q be a convergent
of the continued fraction expansion of κ such that q > 6M and let

η =∥ µq ∥ −M · ∥ κq ∥,
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where ∥ · ∥ denotes the distance from the nearest integer. If η > 0, then there
is no solution of the inequality

0 < lκ−m+ µ < AB−l

in integers l and m with
log(Aq/η)

logB ≤ l ≤ M.

Dividing 0 < Λ < 1.0064β−2m by log β and using the fact that we have
β−2m < α−l leads us to the inequality
(5.5) 0 < lκ−m+ µ < AB−l,

where
κ := logα

log β , µ := log γ
log β , A := 1.0064

log β , B := α.

We apply Lemma 5.3 to the inequality (5.5) with M = 5 · 1019.
For the remaining proof, we use Mathematica to apply Lemma 5.3. For

the computations, if the first convergent such that q > 6M does not satisfy
the condition η > 0, then we use the next convergent until we find the one
that satisfies the conditions. After at most 2 steps of reduction, in all cases,
we are able to prove that l ≤ 13. However, in some cases, we are not able
to furthermore sharpen this bound applying the above mentioned reduction.
Thus, we have to see what is happening for small indices l, i.e. l ≤ 13. We
check all cases and find no solution to Pl = Qm, for 2 ≤ m < l ≤ 13. So, we
have the following result.

Proposition 5.4. For a D(4)-triple {1, b, c(±)
k }, (1 ≤ k ≤ 4), if r ≤

68131(2k+5)+32889, then equation Pl = Qm has no solution (l,m) satisfying
m > 1.

Proposition 5.4 allows us to deduce that if Pl = Qm has a positive integer
solution (l,m), then m ≤ 1. In fact, from (3.16) we know that a solution
comes from m = 1, l = k + 1 and z0 = t. Using equations (1.4) and (1.5), it
is easy to show by induction that

Uk = 1
2(rUk+1 − Tk+1) and Tk = 1

2(rTk+1 − bUk+1).

Thus, we have
x = Pk+1 = Q1 = (r ± 1)Tk + (b± r)Uk

= 2Tk+1 ± 2Uk+1.

Therefore, we obtain
d = x2 − 4 = (2Tk+1 ± 2Uk+1)2 − 4

= ±8Tk+1Uk+1 + 4(r2 − 3)U2
k+1 = c

(±)
k+1.
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This completes the proof of Theorem 1.5.
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Problem proširenja D(4)-trojki {1, b, c}

Kouèssi Norbert Adédji, Alan Filipin i Alain Togbé

Sažetak. U ovom članku promatramo proširenje D(4)-
trojki oblika {1, b, c}, gdje je 1 < b < c. Dokazali smo da taj
skup ne može biti proširen do neregularne D(4)-četvorke za neke
oblike broja c. U dokazu koristimo standardne metode bazi-
rane na rješenjima binarno rekurzivnih nizova, zajedno s nekim
novim pristupima kako bi potvrdili slutnju o jedinstvenosti takvog
proširenja.
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