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Abstract

Let k be a positive integer. In this paper, we prove that if {k, k + 1, c, d} is a D(−k)-
quadruple with c > 1, then d = 1.

2010 Mathematics Subject Classification: 11D09, 11B37, 11J68, 11J86
Keywords: Diophantine m-tuples, Pellian equations, hypergeometric method, linear forms in
logarithms

1 Introduction

Let n 6= 0 be an integer. A set of m positive integers {a1, a2, . . . , am} is called a D(n)-m-
tuple (or a Diophantine m-tuple with the property D(n)), if aiaj + n is a perfect square for all
1 ≤ i < j ≤ m. A natural question regarding such sets is about their possible sizes. If n ≡ 2
(mod 4), considering congruences modulo 4, it is easy to prove that there does not exist a D(n)-
quadruple (see for example [3], [18]). On the other hand, Dujella [5] proved that if an integer n
does not have the form 4k+2 and n 6∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one
D(n)-quadruple. The conjecture is that if n ∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there does not
exist a D(n)-quadruple. In the case n = −1, it was proven by Dujella et al. [11] that there does
not exist a D(−1)-quintuple and that there are only finitely many D(−1)-quadruples. Also,
bounds for the number of D(−1)-quadruples have been significantly improved during the years.
But they are still too large to solve the conjecture of the non-existence of D(−1)-quadruples
completely. Furthermore, the most well-known and studied case especially in recent years is
when n = 1, where very recently He, Togbé and Ziegler [19] proved the folklore conjecture
saying that there does not exist a D(1)-quintuple. Their result is of great importance because
they have introduced some new techniques and ideas. However, in the case n = 1, there is an
even stronger conjecture stating that any D(1)-triple can be extended to a quadruple with a
larger element in a unique way. That conjecture is still open, and many mathematicians are
working on it. For general n, if we denote Mn = sup{|S|}, where set S has the property D(n),
Dujella [8], [9] proved that Mn ≤ 31 for |n| ≤ 400, and Mn < 15.476 log |n| for |n| > 400. The
whole history of the problem, with recent results and progress, can be found at [10].

In this paper we are interested in the problem of extending a D(−k)-pair {k, k + 1} for a
positive integer k. There are already some results in that direction in the case where k = K2

for a positive integer K. The third author [14] showed that if {K2, K2 + 1, 4K2 + 1, d} is a
D(−K2)-quadruple, then d = 1. Moreover, the third author and Togbé [15] proved, in an
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elementary and relatively simple manner, that if {K2, K2 + 1, c, d} is a D(−K2)-quadruple
with c < d, then c = 1 and d = 4K2 + 1 (in that case, 3K2 + 1 must be a square). Similarly,
with a few new ideas, the first two authors [1] have proven that if {2K2, 2K2 + 1, c, d} is a
D(−2K2)-quadruple with c < d, then c = 1 and d = 8K2 +1 (in which case 6K2+1 should be
a square). Our motivation for this paper is to generalize those results for any positive integer
k. However, that problem does not seem so straightforward in general. Thus, our main result
is the following Theorem:

Theorem 1.1. Let k be a positive integer. If {k, k + 1, c, d} is a D(−k)-quadruple with c > 1,
then d = 1.

The starting point for the proof of Theorem 1.1 is the fact that the problem can be reduced
to solving the system of Pell (or Pell-like) equations, even in the case where k is non-square.
While the hypergeometric method (see Theorem 4.2) is the main tool to get upper bounds for
solutions, which is standard in this area of research, we need a twist to get lower bounds for
solutions. In fact, it seems hard to get a lower bound for solutions in terms of k by using “the
congruence method” as in [6], [12], [14]. Instead, we use the property that the sequences {sν}
and {vν} attached to c and d, respectively, are exactly the same (see (2.3) and (2.6)), to obtain
absolute lower bounds for solutions (see Proposition 3.1). Since they are weaker than the ones
in terms of k, several cases remain to be shown. Most of the cases can be done by applying
elementary considerations (see Section 6), using the standard methods, that is, Baker’s method
on a linear form in logarithms and the reduction method (see Subsections 7.1 and 7.2), or
finding the integral points on certain elliptic curves (see Subsection 7.3).

However, there is a case where we have to find the integral points on a certain hyperelliptic
curve of genus 2 (see Subsection 7.4). This task is not easy at all, since Chabauty’s method
cannot be applied to this curve, but we could complete it by applying the strategy due to
Gallegos-Ruiz (see [16], [17]). Such an application is new in this research field, and is expected
to be utilized in future work.

We also believe that the following Conjecture is valid, which will be considered in our
future research. But as we mentioned, that problem is more difficult for general k, than those
considered in [1], [15].

Conjecture 1.2. Let k be a positive integer. If {k, k + 1, c, d} is a D(−k)-quadruple, for
positive integer k, with c < d, then c = 1 and d = 4k+1, in which case 3k+1 must be a square.

2 Determination of fundamental solutions

Let k be a positive integer and {k, k + 1, c} a D(−k)-triple with c > 1. Then, there exist
positive integers s′ and t such that

kc− k = (s′)2 and (k + 1)c− k = t2. (2.1)

Expressing k as k = k0k
2
1, where k0 and k1 are positive integers with k0 square-free, we may

write c− 1 = k0s
2 with some positive integer s, which together with the latter equality of (2.1)

implies that

t2 − (k2
0k

2
1 + k0)s

2 = 1. (2.2)

The positive solutions (t, s) to this Pell equation can be expressed as

t+ s
√

k2
0k

2
1 + k0 =

(

2k + 1 + 2k1

√

k2
0k

2
1 + k0

)ν

,
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which enables us to write s = sν , where

s0 = 0, s1 = 2k1, sν+2 = (4k + 2)sν+1 − sν . (2.3)

According to s = sν , we may write t = tν and c = cν . For the later reference, we list small
values of sν :

s0 = 0, s1 = 2k1, s2 = 4k1(2k + 1),

s3 = 8k1(2k + 1)2 − 2k1, s4 = 16k1(2k + 1)3 − 8k1(2k + 1),

s5 = 32k1(2k + 1)4 − 24k1(2k + 1)2 + 2k1,

s6 = 64k1(2k + 1)5 − 64k1(2k + 1)3 + 12k1(2k + 1),

s7 = 128k1(2k + 1)6 − 160k1(2k + 1)4 + 48k1(2k + 1)2 − 2k1,

s8 = 256k1(2k + 1)7 − 384k1(2k + 1)5 + 160k1(2k + 1)3 − 16k1(2k + 1),

s9 = 512k1(2k + 1)8 − 896k1(2k + 1)6 + 480k1(2k + 1)4 − 80k1(2k + 1)2 + 2k1.

Since c0 = 1, if it is proved that there does not exist a D(−k)-quadruple {k, k + 1, c, d}
with 1 < c < d, then it turns out that Theorem 1.1 is valid. Thus, throughout this paper we
assume on the contrary that {k, k + 1, c, d} is a D(−k)-quadruple with c < d. Note that we
may consider only the case where k ≥ 3 in view of [7] and [3, 18, 20]. Then, there exist positive
integers x, y, z such that

d− 1 = k0x
2, (k + 1)d− k = y2, cd− k = z2,

from which we obtain the following system of Pellian equations

y2 − (k2
0k

2
1 + k0)x

2 = 1, (2.4)

z2 − k0cx
2 = c− k. (2.5)

Just as s = sν , from (2.4) we may write x = vm with a non-negative integer m, where {vm} is
the recurrence sequence defined by

v0 = 0, v1 = 2k1, vν+2 = (4k + 2)vν+1 − vν . (2.6)

On the other hand, we see from Nagell’s argument that for any positive solution (z, x) to (2.5)
there exist a solution (z0, x0) to (2.5) satisfying

0 < z0 ≤
√

c(c− k), |x0| < s (2.7)

and a non-negative integer n such that

z + x
√

k0c = (z0 + x0

√

k0c)(2k0s
2 + 1 + 2s

√

k0c)
n.

Thus, we may write x = wn, where

w0 = x0, w1 = (2k0s
2 + 1)x0 + 2sz0, wn+2 = (4k0s

2 + 2)wn+1 − wn. (2.8)

Expressions (2.3) and (2.6) together show that

(vm mod s)m≥0 = (0, s1, . . . , sν−1, 0,−sν−1, . . . ,−s1, 0, s1, . . . ),

which yields vm ≡ ±si (mod s) for some i with 0 ≤ i < ν. Since we see from (2.8) that wn ≡ x0

(mod s), we have x0 ≡ ±si (mod s). It follows from (2.7) that x0 = ±si.
In what follows, we assume the following:
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Assumption 2.1. {k, k + 1, c′, c} is not a D(−k)-quadruple for any c′ with 1 < c′ < c.

Then, putting d0 := k0x
2
0 + 1 we have

kd0 − k = k2
0k

2
1x

2
0,

(k + 1)d0 − k = (k + 1)(k0x
2 + 1)− k = k0(k + 1)s2i + 1 = t2i ,

cd0 − k = c(k0x
2
0 + 1)− k = z20 ,

that is, {k, k + 1, d0, c} is a D(−k)-quadruple. Since d0 < s2 + 1 ≤ c, from the assumption we
obtain d0 = 1, i.e., x0 = 0 and z0 =

√
c− k. Note that this occurs only if c − k is a perfect

square. Hence, (2.8) enables us to express x = wn as

w0 = 0, w1 = 2s
√
c− k, wn+2 = (4c− 2)wn+1 − wn, (2.9)

from which we obtain a lower bound for x by n and c.

Lemma 2.2. If x = wn, then log x > (n− 1) log(4c− 3).

Proof. By (2.9) we have

wn > (4c− 3)wn−1 > (4c− 3)n−1w1 > (4c− 3)n−1.

Moreover, since the recurrence sequence {vm} has the same form as {sν} and vm ≡ ±si =
x0 = 0 (mod s), we have the following.

Lemma 2.3. If x = vm, then m ≡ 0 (mod ν).

3 Lower bounds for solutions

Our goal in this section is to show the following.

Proposition 3.1. Assume that vm = wn has a solution with n 6= 0. On Assumption 2.1, the
following holds:

(1) If ν = 7, and k ≥ 12, then n ≥ 8.

(2) If either ν = 8 and k ≥ 15 or ν ≥ 9 and k ≥ 7, then n ≥ 9.

We first consider the case where n = 1. It is clear that

vν = sν < 2s
√
c− k = w1. (3.1)

From sequence (2.3) one easily see that

sν =
1

2
√

k0(k + 1)

{(

2k + 1 + 2
√
k2 + k

)ν

−
(

2k + 1− 2
√
k2 + k

)ν}

. (3.2)

Lemma 3.2. Let k and l be integers with k ≥ 3 and l ≥ 2.

(1) 2lk
l/4
0 slν < slν.

(2) If l ≥ 3, then 2lk
l/2
0 slν < slν.
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Proof. (1) If k = 3 and l = 2, then we know from (3.2) that

s2ν − 22k
1/2
0 s2ν =

1

4
√
3

{

2− 2(7− 4
√
3)2ν

}

> 0.

In all other cases, (3.2) implies that

slν − 2lk
l/4
0 slν =

1

2
√

k0(k + 1)

{

(

2k + 1 + 2
√
k2 + k

)lν

−
(

2k + 1− 2
√
k2 + k

)lν
}

− 1

k
l/4
0 (k + 1)l/2

{(

2k + 1 + 2
√
k2 + k

)ν

−
(

2k + 1− 2
√
k2 + k

)ν}l

>
1

2k
l/4
0 (k + 1)l/2

[

{

k
(l−2)/4
0 (k + 1)(l−1)/2 − 2

}(

2k + 1 + 2
√
k2 + k

)lν

− k
(l−1)/2
0 (k + 1)(l−1)/2

(

2k + 1 + 2
√
k2 + k

)lν

]

>
1

2k
l/4
0 (k + 1)l/2

[{

(k + 1)(l−1)/2 − 2
}

(4k)lν − 1
]

> 0,

where the last inequality holds for k ≥ 3 and l ≥ 2 with (k, l) 6= (3, 2).
(2) In the same way as (1), for l ≥ 3 it holds that

slν − 2lk
l/2
0 slν >

1

2
√
k0(k + 1)l/2

[

{

(k + 1)(l−1)/2 − 2
√

k0

}(

2k + 1 + 2
√
k2 + k

)lν

− (k + 1)(l−1)/2

(

2k + 1 + 2
√
k2 + k

)lν

]

>
1

2
√
k0(k + 1)l/2

{

(
√
k − 1)2

(

2k + 1 + 2
√
k2 + k

)lν

− 1

}

> 0.

We apply Lemma 3.2 (1) with l = 2 to get

v2ν = s2ν > 22k
1/2
0 s2ν = 4s

√
c− 1 > 2s

√
c− k = w1. (3.3)

Since if vm = wn, then m is a multiple of ν by Lemma 2.3, inequalities (3.1) and (3.3) together
imply the following.

Lemma 3.3. If k ≥ 3, then vm = w1 has no solution for all non-negative integers m.

Second, consider the case where n ≥ 2.

Lemma 3.4. If k ≥ 3 and 2 ≤ n ≤ k + 1, then v2nν > wn.

Proof. From (2.8) we have

wn < (4c− 2)wn−1 = (4k0s
2 + 2)wn−1 < 2s

√
c− k(4k0s

2 + 2)n−1

= 22nkn
0 s

2n · 1

2k0

(

1 +
1

2k0s2

)n−1√

1− k − 1

k0s2
.
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Applying Lemma 3.2 (2) with l = 2n ≥ 4, we have 22nkn
0 s

2n < s2nν = v2nν . Since n ≤ k + 1, it
suffices to show

(

1 +
1

2k0s2

)2n−2(

1− n− 2

k0s2

)

≤ 4 (3.4)

for n ≥ 2. We show this by induction on n.
If n = 2, then (3.4) clearly holds. Assume that (3.4) holds for n with n ≥ 2. Then,

(

1 +
1

2k0s2

)2n (

1− n− 1

k0s2

)

=

(

1 +
1

2k0s2

)2n−2(

1− n− 2

k0s2

)(

1 +
1

2k0s2

)2

·
1− n−1

k0s2

1− n−2
k0s2

.

Since

(

1 +
1

2k0s2

)2

·
1− n−1

k0s2

1− n−2
k0s2

<

(

1 +
1

2k0s2

)2(

1− 1

k0s2

)

= 1− 3

4k2
0s

4
− 1

4k3
0s

6
< 1,

the induction hypothesis shows that

(

1 +
1

2k0s2

)2n(

1− n− 1

k0s2

)

≤ 4.

Lemma 3.5. Assume that one of the following holds:

• ν = 7, n ≤ 7, k ≥ 12,

• ν = 8, n ≤ 8, k ≥ 15,

• ν ≤ 9, n ≤ 8, k ≥ 7.

Then, v(2n−1)ν < wn.

Proof. We see from (2.6) that

v(2n−1)ν < (4k + 2)v(2n−1)ν−1 < 2k1(4k + 2)(2n−1)ν−1

and from (2.9) that

wn > (4c− 3)wn−1 = (4k0s
2 + 1)wn−1 > 2s

√
c− k(4k0s

2 + 1)n−1.

Since s = sν > (4k + 1)sν−1 > 2k1(4k + 1)ν−1 by (2.3) and
√
c− k >

√
k0s > 2

√
k(4k + 1)ν−1,

we have

wn > 4k1(4k + 1)ν−1 · 2
√
k(4k + 1)ν−1

{

16k(4k + 1)2ν−2 + 1
}n−1

> 8 · 16n−1k1k
n−1/2(4k + 1)2n(ν−1) = 2k1 · 4n−1/2(4k)n−1/2(4k + 1)2n(ν−1)

> 2k1(4k + 1)2nν−n−1/2.

Thus, it remains to show the inequality

(4k + 1)2nν−n−1/2 > (4k + 2)2nν−ν−1,
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which is equivalent to

g(ν, n) :=
2nν − n− 1/2

2nν − ν − 1
>

log(4k + 2)

log(4k + 1)
=: f(k).

It is easy to check that g(n, ν) is an increasing function of ν and a decreasing function of n,
while f(k) is a decreasing function of k. Since

g(7, 7) > 1.0055 > f(12),

g(8, 8) > 1.0042 > f(15),

g(9, 8) > 1.0011 > f(7),

we see that if the assumption in the lemma holds, then g(ν, n) > f(k). This completes the
proof of Lemma 3.5.

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. We may assume that n ≥ 2 in view of Lemma 3.3. Suppose that ν,
n, k satisfy one of conditions in Lemma 3.5. Since m ≡ 0 (mod ν) by Lemma 2.3, it suffices to
show that

v(2n−1)ν < wn < v2nν .

This is an immediate consequence of Lemmas 3.4 and 3.5.

4 Upper bounds for solutions

Put

θ1 :=

√

1− 1

c
and θ2 :=

√

1− k

(k + 1)c
.

Lemma 4.1.

max

{
∣

∣

∣

∣

θ1 −
k1sx

z

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
ty

(k + 1)z

∣

∣

∣

∣

}

<
1

2k0x2
.

Proof. By (2.4) and (2.5), we have
∣

∣

∣

∣

θ1 −
k0sx

z

∣

∣

∣

∣

=
s
√
k0

z
√
c

∣

∣

∣
z − x

√

k0c
∣

∣

∣
=

s
√
k0

z
√
c
· c− k

z + x
√
k0c

<
1

x
√
k0c

· c

2x
√
k0c

=
1

2k0x2
,

∣

∣

∣

∣

θ2 −
ty

(k + 1)z

∣

∣

∣

∣

=
t

(k + 1)z
√
c

∣

∣

∣
z
√
k + 1− y

√
c
∣

∣

∣
=

t

(k + 1)z
√
c
· k(c− k − 1)

z
√
k + 1 + y

√
c

<
kc

y
√
c · 2y√c

=
k

2y2
=

k

2 {k0(k + 1)x2 + 1} <
1

2k0x2
.

Theorem 4.2. Let k ≥ 3 and let N be a multiple of k + 1. If N ≥ 3.76k2(k + 1)2, then

max

{
∣

∣

∣

∣

θ1 −
p1
q

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
p2
q

∣

∣

∣

∣

}

> (1.425 · 1028(k + 1)N)−1q−λ,

where

λ = 1 +
log(10(k + 1)N)

log(2.66k−2(k + 1)−1N2)
< 2.
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Proof. The proof proceeds along the same lines as the one of [4, Theorem 2.2] or [13, Theorem
2.5].

For 0 ≤ i, j ≤ 2 and integers a0, a1, a2, we define the polynomial pij(x) by

pij(x) :=
∑

ij

(

k + 1/2
hj

)

(1 + ajx)
k−hjxhj

∏

l 6=j

(

−kij
hl

)

(aj − al)
−kil−hl,

where kil = k + δil with δil the Kronecker delta,
∑

ij denotes the sum over all non-negative
integers h0, h1, h2 satisfying h0 + h1 + h2 = kij − 1, and

∏

l 6=j denotes the product from l = 0
to l = 2 omitting l = j (which is expression (3.7) in [21] with ν = 1/2). Substituting x = 1/N
we have

pij(1/N) =
∑

ij

(

k + 1/2
hj

)

C−1
ij

∏

l 6=j

(

−kij
hl

)

,

where

Cij :=
Nk

(N + aj)k−hj

∏

l 6=j

(aj − al)
−kil−hl.

We take a0 := −k − 1, a1 := −k, a2 := 0 and N := (k + 1)N0 for some integer N0.
If j = 0, then

|Ci0| =
Nk(k + 1)ki1+h1+h0−k

(N0 − 1)k−h0

,

which shows (k + 1)kNkC−1
i0 ∈ Z. If j = 1, then

|Ci1| =
Nkkki2+h2

(N − k)k−h1

,

which shows k2kNkC−1
i1 ∈ Z. If j = 2, then

|Ci2| =
Nk(k + 1)ki0+h0+h2−kkki1+h1

Nk−h2

0

,

which shows k2k(k+ 1)kNkC−1
i2 ∈ Z. Hence, {k2(k+ 1)N}kC−1

ij ∈ Z for all i, j. It follows from
[4, Theorem 2.2] that

pijk := 2−1{4k2(k + 1)N}k · 1.6k

4.09 · 1013 · pij(1/N) ∈ Z.

Putting θ0 := 1, we obtain

|pijk| < pP k and

∣

∣

∣

∣

∣

2
∑

j=0

pijkθj

∣

∣

∣

∣

∣

< lL−k,
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where

p =
4.09 · 1013

2

(

1 +
k

2N

)1/2

< 2.048 · 1013,

P =
32

(

1 + 2k+3
2N

)

k(k + 1)N

1.6(2k + 1)
< 10(k + 1)N,

l =
4.09 · 1013

2
· 27
64

(

1− k + 1

N

)−1

< 8.692 · 1012,

L =
1.6

4k2(k + 1)N
· 27
4

(

1− k + 1

N

)2

N3 >
2.66N2

k2(k + 1)
,

λ = 1 +
log(10(k + 1)N)

log(2.66k−2(k + 1)−1N2)
< 2,

C−1 = 4pP (max{1, 2l})λ−1 < 4 · 2.048 · 1013 · 10(k + 1)N · 2 · 8.692 · 1012
< 1.425 · 1028(k + 1)N.

This completes the proof of Theorem 4.2.

Applying Theorem 4.2 with N = (k + 1)c, p1 = k0(k + 1)sx, p2 = ty, q = (k + 1)z and
Lemma 4.1, we have

(

1.425 · 1028(k + 1)2c
)−1

(k + 1)−λz−λ <
1

2k0x2
.

Since z2 = k0cx
2 + c− k < k0(c+ 1)x2 by c ≤ d− 1 = k0x

2, we see from λ < 2 that

x2−λ <
1

2
· 1.425 · 1028(k + 1)4c(c+ 1) = 7.125 · 1027

(

1 +
1

k

)4(

1 +
1

c

)

k4c2

<
(

1.502 · 1014k2c
)2

.

Since

2

2− λ
=

2 log (2.66k−2(k + 1)c2)

log (0.266k−2(k + 1)−1c)
<

4 log(1.884k−1/2c)

log(0.1995k−3c)
,

we have

log x <
4 log(1.502 · 1014k2c) log(1.884k−1/2c)

log(0.1995k−3c)
.

which combined with Lemma 2.2 implies that

n− 1 <
4 log(1.502 · 1014k2c) log(1.884k−1/2c)

log(4c− 3) log(0.1995k−3c)
. (4.1)

Inequality (4.1) shows that if ν = 8 and k ≥ 662, then n ≤ 7, and if ν = 8 and k ≥ 5, then
n ≤ 8. Moreover, since the right-hand side of inequality (4.1) is a decreasing function of c = cν ,
we see that if ν ≥ 9 and k ≥ 3, then n ≤ 8. Comparing these upper bounds for n with the
lower bounds in Proposition 3.1, we obtain the following.

Proposition 4.3. Besides Assumption 2.1, we assume that one of the following holds:

9



• ν = 7 and k ≥ 662,

• ν = 8 and k ≥ 15,

• ν ≥ 9 and k ≥ 7.

Then, there exist no D(−k)-quadruples of the form {k, k + 1, c, d} with c = cν and 1 < c < d.

In view of Proposition 4.3, it remains to consider the following cases:

• k = 3, 5, 6,

• 1 ≤ ν ≤ 6 and k ≥ 7,

• ν = 7 and 7 ≤ k ≤ 661,

• ν = 8 and 7 ≤ k ≤ 14.

5 Linear form in logarithms

We are trying to solve x = vm = wn, where

v0 = 0, v1 = 2k1, vm+2 = (4k + 2)vm+1 − vm,

(k = k0k
2
1). The solution of this recurrence relation is

vm =
1

2
√

k0(k + 1)

(

(2k + 1 + 2
√
k2 + k)m − (2k + 1− 2

√
k2 + k)m

)

.

The other sequence is w0 = 0, w1 = 2s
√
c− k, wn+2 = (4c− 2)wn+1 − wn, or explicitly

wn =

√
c− k

2
√
ck0

(

(2c− 1 + 2
√
c2 − c)n − (2c− 1− 2

√
c2 − c)n

)

.

Lemma 3.3 implies that m > n > 2 or x = v0 = w0 = 0, so we assume k > 3 and m > n > 2.
Define P = 1√

k+1
(2k + 1 + 2

√
k2 + k)m and Q =

√
c−k√
c
(2c− 1 + 2

√
c2 − c)n. Then vm = wn

implies that P − 1
k+1

P−1 = Q− c−k
c
Q−1. Since c > c1 = 4k + 1, we get c−k

c
> 1

k+1
. Then

P −Q =
1

k + 1
P−1 − c− k

c
Q−1 <

1

k + 1
P−1 − 1

k + 1
Q−1 =

=
1

k + 1
(P−1 −Q−1) =

1

k + 1
P−1Q−1(Q− P ),

hence Q > P .

Now Q − P < c−k
c
Q−1, hence Q−P

Q
< c−k

c
Q−2. Since n > 2, Q >

√

c−k
c
(4
√
c2 − c)2 =

16(c2 − c)
√

c−k
c

, so Q−2 < c
c−k

· 1
256(c2−c)2

. We can conclude that Q−P
Q

< 1
256(c2−c)2

6
1

6230016

because c > 1 + 4k > 13.
We can get the upper bound on log Q

P
,

0 < log
Q

P
= − log

(

1− Q− P

Q

)

6
− log

(

1− 1
6230016

)

1
6230016

· c− k

c
Q−2

< 1.00001(2c− 1 + 2
√
c2 − c)−2n.
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We define the form as Λ = n logα1 −m logα2 + logα3, where

α1 = 2c− 1 + 2
√
c2 − c, h(α1) =

1

2
logα1

α2 = 2k + 1 + 2
√
k2 + k, h(α2) =

1

2
logα2

α3 =

√

(c− k)(k + 1)

c
, h(α3) =

1

2
log ((c− k)(k + 1)) .

and h(αj) denotes the absolute logarithmic height of αj for 1 6 j 6 3.
We have already obtained 0 < Λ < 1.0001α−2n

1 . This implies that m < logα1

logα2

(n + 1). We
will now apply the following theorem by Matveev.

Theorem 1 (Matveev). Let Λ be a linear form in logarithms of l multiplicatively independent to-
tally real algebraic numbers α1, . . . , αl with rational integer coefficients b1, . . . , bl (bl 6= 0). Define

D = [Q(α1, . . . , αl) : Q], Aj = max{Dh(αj), | logαj |}, B = max
{

1,max
{

|bj |Aj

Al
: 1 6 j 6 l

}}

.

Then
log Λ > −C(l)C0W0D

2Ω,

where C(l) = 8
(l−1)!

(l + 2)(2l + 3)(4e(l + 1))l+1,W0 = log(1.5eBD log(eD)),

C0 = log
(

e4.4l+7l5.5D2 log(eD)
)

,Ω = A1 · · ·Al.

In our problem, l = 3, b1 = n, b2 = −m, b3 = 1, D = 4. Since B < m < logα1

logα2

(n + 1), we can

get the following bounds C(3) < 644065984.903, C0 < 29.8847, W0 < log
(

38.92 · logα1

logα2

(n+ 1)
)

.

For Ω we can take Ω = 8 logα1 logα2 log ((c− k)(k + 1)).
Combining the upper and lower bound for log Λ and using α2 < 4k + 2, we get

n

log (K(n+ 1))
< 1.23185 · 1012 log(4k + 2) log ((c− k)(k + 1)) , (5.1)

where K = 38.92 logα1

logα2

.

6 Small values of k

In the case k = 3, we have
c− k = 1 + 3s2 − 3 = 3s2 − 2,

which should be a square. We also know that s is even, i.e. s = 2s′ for some integer s′. Then,
putting 3s2 − 2 = X2, for some integer X, we get

X2 − 12s′2 = −2,

which obviously does not have any integer solutions if we consider congruences modulo 4.

In the case k = 5, we have that
c− k = 5s2 − 4

is perfect square. Again, because s is even, for s = 2s′, we get

X2 − 5s′2 = −1,

11



for some integers X and s′. Then, remembering the recurrence relation for s, we get that
s = vm = 2wn where

v0 = 0, v1 = 2, vm+2 = 22vm+1 − vm,

w0 = 1, w1 = 17, wn+2 = 18wn+1 − wn.

Using the standard methods, i.e. Baker’s theory on a linear form in logarithms, we get that the
only solution is s = v1 = 2w0 = 2, which gives us c = 21. Now, we have the exact values for k
and c and we can again use the linear form in logarithms described above, and it will gives us
the desired result.

In the case k = 6, we have that −k ≡ 2 (mod 4) and then it is known that there is no
D(−6)-quadruple.

7 Small indices ν ∈ {1, 2, 3, 4, 5, 6, 7, 8}
7.1 Case ν ∈ {7, 8}
Whenever we have fixed k and c = cν , we can solve our problem using inequalities (5.1). After
getting the first upper bound on n, we can reduce it using the well-known Baker-Davenport
reduction method, which gives us the desired result in all cases. More precisely, in the case
c = c7, for 7 ≤ k ≤ 661 we get n < 4.73 · 1016, and in the case c = c8, for 7 ≤ k ≤ 14 we get
n < 1.39 · 1016. Using the reduction, after at most two steps we get n ≤ 2 and we can check
that the only solution for x is x = v0 = w0 = 0 which gives us c = 1.

7.2 Case ν = 1

For ν = 1 we have c = c1 = 1 + 4k, k ≥ 7. Now, c − k = 1 + 3k should be a square which
implies 1 + 3k = (3l ± 1)2 or k = l(3l ± 2) for some positive integer l. Thus,

√
c− k = 3l ± 1.

In this case s = s1 = 2k1 and we want to solve vm = wn, for positive integers m and n, where

v0 = 0, v1 = 2k1, vm+2 = (4k + 2)vm+1 − vm,

w0 = 0, w1 = 4k1(3l ± 1), wn+2 = (16k + 2)wn+1 − wn.

Considering congruences modulo 2k1(4k + 1) we get

vm ≡ 0,±2k1 (mod 2k1(4k + 1)),

wn ≡ (−1)n+14nk1(3l ± 1) (mod 2k1(4k + 1)),

which implies
(−1)n+14nk1(3l ± 1) ≡ 0,±2k1 (mod 2k1(4k + 1)).

Now, from
3(4k + 1) = (12l ± 4)(3l ± 1)− 1,

we see that (3l ± 1) and (4k + 1) are relatively prime and then

±2n ≡ 0,±(12l ± 4) (mod (4k + 1)),

which, in the worst case, implies that

2n > 2(4k + 1)− 12l − 4 > 4k.

Assuming n ≥ 2, we can combine this lower bound for n with the upper bound (5.1) to get
k < 8.528 · 1016 and finally l < 1.68603 · 108, which is small enough to do the Baker-Davenport
reduction method, which gives us the desired result in the same way as in the last subsection.
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7.3 Cases ν ∈ {2, 3, 4, 5}
For ν = 2 we get y2 = c2 − k = k0s

2
2 + 1− k = 64k3 + 64k2 + 15k + 1. This is an elliptic curve.

Multiplying by 64 and letting X = 16k, Y = 8y, we get Weierstrass form Y 2 = X3 + 16X2 +
60X + 64. Using Sage to find integral points on this curve and condition 16 | X gives that
64k3 + 64k2 + 15k + 1 is a square only for k = 0 and k = 1 (12 and 122).

For c3 we get y2 = c− k = 1+ 35k+ 384k2 +1408k3 +2048k4 +1024k5, but the right-hand
side can be factored to (1 + 16k + 32k2)(1 + 19k + 48k2 + 32k3). The factors are relatively
prime, so 1+ 19k+48k2+32k3 must also be a square. This gives us another elliptic curve and
as before, one gets only a few points on it (for k = 0, 1 and 165).

For c4, y
2 = 1+ 63k+1280k2+9472k3+32768k4+57344k5+49152k6+16384k7 factors as

y2 = (1+32k+128k2+128k3)(1+31k+160k2+256k3+128k4), so Y 2 = 1+32k+128k2+128k3.
Only nonnegative integral k are k = 0 and k = 1.

For c5, y
2 = (1+ 48k+352k2+768k3+512k4)(1+ 51k+400k2+1120k3+1280k4+512k5),

so Y 2 = 1 + 48k + 352k2 + 768k3 + 512k4. Using IntegralQuarticPoints([512, 768, 352, 48, 1])
in Magma, we get that the only integral solutions are (1,−41), (−1, 7), (0,−1).

7.4 Case ν = 6: hyperelliptic curve of genus 2

For ν = 6, we get

y2 = (1+72k+768k2+2816k3+4096k4+2048k5)(1+71k+840k2+3584k3+6912k4+6144k5+2048k6).

The factors on the right hand side are relatively prime, so each one has to be a complete
square. We focus on the first factor. If 1+72k+768k2+2816k3+4096k4+2048k5 is a square,
then so is 16(1 + 72k + 768k2 + 2816k3 + 4096k4 + 2048k5) = 16 + · · ·+ (8k)5. This allows us
to make the coefficients smaller by a change of variable x = 8k and multiplying y by 4. Now,
we are looking for integral points on the following hyperelliptic curve

C6 : y
2 = x5 + 16x4 + 88x3 + 192x2 + 144x+ 16.

We resolve this problem using methods developed by Gallegos-Ruiz in his PhD thesis [17] and
in [16].

Using Magma [2], one can determine generators for the Mordell-Weil group of J6(Q), the
Jacobian of C6. We obtain that J6(Q) is free of rank r = 2 with Mordell-Weil basis (written in
Mumford representation that Magma uses):

D1 = 〈x+ 2,−4〉, D2 = 〈x2 + 8x+ 12, 4〉,
while the torsion subgroup is trivial (so we let t = 1, the size of the torsion subgroup).

Baker’s method, improved in [16], gives us a very large bound log |x| 6 1.53106 · 10489.
Every integral point P on the curve C6 can be expressed as P −∞ = n1D1 + n2D2 with norm
||(n1, n2)|| 6 1.2203552 · 10245 =: N , by the Corollary 3.2 of [16]. Proposition 6.2 from the
same paper gives us an estimate of the precision we need for the computations that will follow.

This bound is

(

1

5
(48

√
rNt + 12

√
rN + 5N + 48)

)(r+4)/4

≈ 3.25 · 10369. We need a constant K

larger than this and we chose K = 10750, and the computations were done with 1000 digits of
precision.

The hyperelliptic logarithms of the base divisors are given by

ϕ(D1) = (−0.57355...− i1.292539...,−0.337441...+ i0.979713...)

ϕ(D2) = (−0.09728...+ i0.691157...,−0.40469...− i2.809269...).
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The chosen K reduces the bound on the norm of the coefficients to 129.97.... We then repeat
the reduction process with K = 1010 and this reduces the bound on ||(n1, n2)|| to 17.9141...,
which is sufficiently low for the simple search. Now we just compute all possible expressions of
the form n1D1 + n2D2 where ||(n1, n2)|| 6 17.92. This shows that the only integral points on
the curve C6 are

{∞, (0,−4), (0, 4), (−2,−4), (−2, 4), (−6,−4), (−6, 4), (8,−396), (8, 396)}.

Since x = 8k, returning to the original factor 1 + 72k + 768k2 + 2816k3 + 4096k4 + 2048k5, we
see that it is a square only for k = 0, 1.
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