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Abstract

We present explicit formulas for the Laplacian Szeged eigenvalues of paths, grids,

C4-nanotubes and of Cartesian products of paths with some other simple graphs.

A number of open problems is listed.
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1 Introduction and preliminaries

One of the most common ways of representing and manipulating graphs is via their

adjacency matrices. The adjacency matrix A(G) of a (simple, undirected) graph

G is a square matrix whose rows and columns are indexed by the vertices of G such

that A(i, j) = 1 if vertices i and j are adjacent in G and A(i, j) = 0 otherwise. A

topological index of a graph is a number derived from the graph which remains

invariant under graph isomorphisms. The number of topological indices introduced

and investigated during the last couple of decades is vast, and quite a few of them

have been defined either directly from the adjacency matrix of a graph or by using

certain weightings. A good example is one of the oldest and best researched topological

indices, the Wiener index, which was (implicitly) defined in [13] as the sum of elements

of weighted adjacency matrices of trees, where the weight of an edge uv of a tree T was

given as the product of the number of vertices closer to u than to v and the number

of vertices closer to v than to u. The more familiar definition of W (G) as the sum

1



of all distances among pairs of vertices in graph appeared later. For general graphs,

these two definitions do not coincide. Applying the original definition to graphs with

cycles resulted in definition of a novel topological index called the Szeged index [8, 9].

The adjacency matrix of a graph weighted in the described way is called its Szeged

matrix. In this paper we consider the Laplacians of Szeged matrices of paths and

compute their spectra. Such matrices were first considered in [5], where their spectra

were computed for several families of graphs. However, paths were not among those

families. We apply the results on Cartesian products of paths with other simple factors

such as paths, cycles, and graphs whose spectra were computed in [5].

All graphs in this paper are finite, simple, undirected and connected. For terms not

defined here we refer the reader to any of several standard monographs such as, e.g.,

[12].

Let G be a connected graph with vertex and edge sets V (G) and E(G), respectively.

The number of vertices of G is denoted by n. The adjacency matrix of a graph G is

denoted by A(G). The eigenvalues of a graph G are the eigenvalues of its adjacency

matrix A(G).

The Szeged index of a connected graph G is denoted by Sz(G) and defined by

Sz(G) =
∑
e=uv

nu(e)nv(e).

Here the sum is taken over all edges of G, and for a given edge e = uv, the quantity

nu(e) denotes the number of vertices closer to u than to v; the quantity nv(e) is defined

analogously.

It is obvious that an end-vertex of any edge is closer to itself than to the other end-

vertex of that edge. Hence the product nu(e)nv(e) is always positive, and the function

w : E(G) → R+ is a weight function on E(G). We call such weight function Szeged

weighting of G. The adjacency matrix of a graph G weighted by the Szeged weighting

is called the Szeged matrix of G and denoted by SzM(G) = [si,j ]. Its eigenvalues

are called the Szeged eigenvalues of G and denoted by σr(G), for r = 1, . . . , n.

Obviously, the Szeged index of a graph G can be expressed as one half of the sum of

all entries of SzM(G).

Let G be a weighted graph with a weight function w : E(G) → R+ and W (G) =

[wi,j ] its adjacency matrix. (We assume w(uv) = w(vu) and hence wi,j = wj,i.) The
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Laplacian matrix of a weighted graph G is defined as LW (G) = [li,j ], where

li,j =


wi =

∑n
j=1wij , i = j

−wij , ij ∈ E(G)

0 , otherwise

.

For unweighted graphs this definition gives us the usual Laplacian matrix of G

defined as L(G) = D(G)T I − A(G), where D(G) is the vector of degrees of vertices of

G. The Laplacian matrix of a graph G weighted by the Szeged weighting is denoted

by LSzM(G) and called the Laplacian Szeged matrix of G. Its eigenvalues are the

Laplacian Szeged eigenvalues of G. We denote them by µ′r(G), r = 1, . . . , n, while the

eigenvalues of the Laplacian matrix of the underlying unweighted graph G are denoted

by µr(G), r = 1, . . . , n.

As an example, we demonstrate the relations between the four types of spectra for

cycles on n vertices.

Example 1

Let Cn be the cycle graph on n vertices. The spectrum of Cn is given by λr = 2 cos 2rπ
n

(see, e.g. [4], p. 72), and the Laplacian eigenvalues are given by µr = 4 sin2 2rπ
n . For

each edge e = uv of Cn, the product nu(e)nv(e) depends only on the parity of n and it

is given by

nu(e)nv(e) =

{ (
n
2

)2
, n even(

n−1
2

)2
, n odd

.

Now the Szeged matrix of Cn is given by SzM(Cn) =
(
n
2

)2
A(Cn) for n even and by

SzM(Cn) =
(
n−1
2

)2
A(Cn) for n odd. Hence LSzM(Cn) =

(
n
2

)2
L(Cn) for n even and

by LSzM(Cn) =
(
n−1
2

)2
L(Cn) for n odd. Finally, µ′r(Cn) = n2 sin2 rπ

n and µ′r(Cn) =

(n− 1)2 sin2 rπ
n for n even and odd, respectively.

2 Main results

2.1 Paths

Paths usually serve as first examples in papers dealing with topological indices. They

owe this prominence to their simple and regular structure that is chemically realizable

and hence relevant. Stars and other trees usually follow, before considering graphs with

more elaborate connectivity patterns. The paper by Fath-Tabar et al. [5] is a notable

exception: the only trees considered there are stars, and they were included only as
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special cases of complete bipartite graphs. In this section we fill this gap and determine

the Laplacian Szeged eigenvalues of paths and of some graphs that arise as Cartesian

products with path factors.

Theorem 2 The Laplacian Szeged spectrum of Pn is given by

µ′r = r(r − 1), r = 1, . . . , n.

Proof

The Laplacian Szeged matrix of Pn conserves the tridiagonal structure of the adjacency

matrix of Pn. If the vertices of Pn are labeled by 1, 2, . . . , n, then it is easy to see that

the Szeged weights of the edges are symmetric and appear as the elements of the

(n− 1)-st anti-diagonal of the multiplication table (see Fig. 1), but with negative sign.

6   12   18   24   30   36   42   48   54

5   10   15   20   25   30   35   40   45

4     8   12   16   20   24   28   32   36

3     6     9   12   15   18   21   24   27

2     4     6     8   10   12   14   16   18

1     2     3     4     5     6     7     8    9

7   14   21   28   35   42   49   56   63

8   16   24   32   40   48   56   64   72

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Figure 1: Super- and sub-diagonal of LSzM(P8) in the multiplication table.

Hence, the sub- and the super-diagonal of LSzM(Pn) are equal. Further, the value

in the m-th row on the main diagonal is equal to n + 2m(n − m) for a given fixed

n. The main diagonals of LSzM(Pn) are, in fact, the rows of a triangular array that

appears as sequence A141387(n) in [10]. In spite of its simplicity, this array seems

to have many physically relevant interpretations. For example, it is connected with

infinite-dimensional matrix representations of angular momentum operators (J1, J2, J3)

in Jordan-Schwinger form [11]. Also, tridiagonal matrices with the same main diagonal

appear in a paper by Bruschi et al. [3] concerned with some Diophantine problems

for some classes of orthogonal polynomials arising in the context of isochronous many-

body problems. In this last paper the authors show, in a rather elaborate way, that the

eigenvalues of their matrices Un are r(r − 1) for r = 1, . . . , n. By a closer look at their

matrices Un one can see that the elements of the sub-diagonal of Un are given by (m−1)2

for 2 ≤ m ≤ n, while on the super-diagonal the elements are (n −m)2 for 1 ≤ m ≤
n− 1. As Un is a tridiagonal matrix, elements of its sub- and super-diagonals enter its
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characteristic polynomial only in products of the form Un(m,m−1)Un(m−1,m) for 2 ≤
m ≤ n. But Un(m,m−1)Un(m−1,m) = LSzM(Pn)(m,m−1)LSzM(Pn)(m−1,m) =

[(m− 1)(n−m)]2. Since the elements on the main diagonals of Un and LSzM(Pn) are

equal, it follows that Un and LSzM(Pn) must have the same characteristic polynomials,

and hence the same spectra.

It is worth mentioning that the characteristic polynomials of LSzM(Pn) form a

system of orthogonal polynomials whose coefficients seem to be the Legendre-Stirling

numbers of the first kind [1].

As an immediate application of the above result, we have an explicit expression for

the Laplacian Szeged energy of paths. (Here the Laplacian Szeged energy of a graph

G, denoted by LSzE(G), is defined in the usual way, as the sum of absolute values of

all eigenvalues of its Laplacian Szeged matrix, LSzE(G) =
∑n

r=1 |µ′r|.)
Corollary 3

LSzE(Pn) = 2

(
n+ 1

3

)
.

2.2 Cartesian products

Let us consider two graphs G1 and G2. Their Cartesian product G1�G2 is a graph

on the vertex set V (G1)�V (G2) and the vertices (u1, u2) and (v1, v2) are adjacent in

G1�G2 if and only if either (u1 = v1 and u2v2 ∈ E(G2)) or (u1v1 ∈ E(G1) and u2 = v2).

The adjacency matrix of G1�G2 is given by

A(G1�G2) = In1 ⊗A(G2) +A(G1)⊗ In2

[4], where n1 and n2 denote the number of vertices of G1 and G2, respectively, and

A⊗B is the tensor product of matrices A and B (see, e.g., [7], p. 430). The Laplacian

matrix of G1�G2 is then given by analogous formula

L(G1�G2) = In1 ⊗ L(G2) + L(G1)⊗ In2 .

If the eigenvalues of G1 are denoted by λ1r, r = 1, . . . , n1 and the eigenvalues of G2 by

λ2s, s = 1, . . . , n2, then the eigenvalues of G1�G2 are given by

λr,s(G1�G2) = λ1r(G1) + λ2s(G2)

for r = 1, . . . , n1, s = 1, . . . , n2 ([4], Ch. 2).

We start by recalling the basic result on the Laplacian Szeged spectra of Cartesian

products [5] and then we combine it with our Theorem 2..
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Theorem 4 The Laplacian Szeged eigenvalues of G1�G2 are given by

µ′r,s(G1�G2) = n22µ
′
r(G1) + n21µ

′
s(G2), for r = 1, . . . , n1, s = 1, . . . , n2.

Cartesian products with path factors give rise to many interesting classes of graphs.

The most obvious examples are rectangular grids Pm�Pn and C4-nanotubes Pm�Cn.

Their Laplacian Szeged eigenvalues are given in the following corollary.

Corollary 5

(a) µ′r,s(Pm�Pn) = n2r(r − 1) +m2s(s− 1);

(b) µ′r,s(Pm�C2n) = 4n2
[
r(r − 1) +m2 sin2 sπ

2n

]
;

(c) µ′r,s(Pm�C2n+1) = (2n+ 1)2r(r − 1) + 4m2n2 sin2 sπ
2n+1 .

In all cases above r and s run from 1 to the number of vertices in the first and in the

second factor, respectively.

Numerous other results could be obtained by combining Theorem 2 with results

established in [5] for circulant and strongly regular graphs. We present here only the

case of Cartesian products of paths and complete bipartite graphs, leaving the rest to

the interested reader. Recall that the Laplacian Szeged eigenvalues of Km,n are 0, m2n,

mn2 and mn(m+ n) with multiplicities 1, n− 1, m− 1 and 1, respectively [5].

Corollary 6 Let Km,n be a complete bipartite graph with m ≤ n. Then

µr,1(Pk�Km,n) = (m+ n)2r(r − 1) ;

µr,s(Pk�Km,n) = (m+ n)2r(r − 1) + k2m2n for 2 ≤ s ≤ n ;

µr,s(Pk�Km,n) = (m+ n)2r(r − 1) + k2mn2 for n+ 1 ≤ s ≤ m+ n− 1 ;

µr,m+n(Pk�Km,n) = (m+ n)
[
r(r − 1)(m+ n) + k2mn

]
.

In all cases above r runs from 1 to k.

3 Concluding remarks

In this note we have extended the line of research of reference [5] by providing explicit

expressions for the Laplacian Szeged eigenvalues of paths. Now we know the Laplacian

Szeged spectra of paths and stars, but for other trees they still remain unknown. There

are also other interesting open questions. For example, both paths and stars have

integral Laplacian Szeged spectra; are they the only such trees? If not, how to char-

acterize trees with integral Laplacian Szeged spectrum? Then, the Laplacian Szeged

eigenvectors of paths exhibit interesting structure; the one corresponding to the largest
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eigenvalue n(n− 1) is the alternating (n− 1)-st row of the Pascal triangle. What can

be said about other eigenvectors? Further, apparently simpler task of determining the

Szeged eigenvalues of paths remains unsolved, in spite of very simple structure and

weighting of SzM(Pn). This matrix is of the so called Kac-Sylvester type [6]. Un-

like in the Laplacian Szeged case, computer experiments have so far failed to reveal

a clear pattern in the spectra. Similarly, coefficients of the characteristic polynomials

of SzM(Pn) form a triangular array that does not appear in [10]. There is a chance,

however, that the coefficients appear in older literature. We list here characteristic

polynomials SzPn(x) of the Szeged matrices of Pn for 1 ≤ n ≤ 5.

SzP1(x) = −x
SzP2(x) = x2 − 1

SzP3(x) = −x3 + 8x

SzP4(x) = x4 − 34x2 + 81

SzP5(x) = −x5 + 104x3 − 1408x

It can be easily seen that the free coefficients in the polynomials of even degree n behave

as [(n− 1)!!]4. Also, the coefficients of xn−2 seem to be given by n(n4 − 1)/30, but we

cannot explain the pattern.

Acknowledgment. Partial support of the Croatian Science Foundation via grant no.
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