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Abstract
Recall that a repdigit in base g is a positive integer that has only one digit in its base g
expansion; i.e., a number of the form a(gm − 1)/(g − 1), for some positive integers m ≥ 1,
g ≥ 2 and 1 ≤ a ≤ g−1. In the present study, we investigate all Fibonacci or Lucas numbers
which are expressed as products of three repdigits in base g. As illustration, we consider the
case g = 10 where we show that the numbers 144 and 18 are the largest Fibonacci and Lucas
numbers which can be expressible as products of three repdigits respectively. All this is done
using linear forms in logarithms of algebraic numbers.

Keywords Fibonacci numbers · Lucas numbers · Mersenne numbers · Diophantine
equations · g Repdigit · Linear forms in logarithms · Reduction method

Mathematics Subject Classification 11B39 · 11J86 · 11D61 · 11D72 · 11Y50

1 Introduction

Let {Fn}n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, with initial values
F0 = 0 and F1 = 1 and let {Ln}n≥0 be the Lucas sequence defined by Ln+2 = Ln+1 + Ln,

B Alain Togbé
atogbe@pnw.edu

Kouèssi Norbert Adédji
adedjnorb1988@gmail.com

Alan Filipin
filipin@grad.hr

1 Institut de Mathématiques et de Sciences Physiques, Université D’Abomey-Calavi, Abomey Calavi,
Bénin

2 Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10000 Zagreb,
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where L0 = 2 and L1 = 1. If

(α, β) =
(
1 + √

5

2
,
1 − √

5

2

)

is the pair of roots of the characteristic equation x2 − x − 1 = 0 of both the Fibonacci and
Lucas numbers, then the Binet’s formulas for their general terms are

Fn = αn − βn

α − β
and Ln = αn + βn, for n ≥ 0. (1.1)

One can see that 1 < α < 2, −1 < β < 0 and αβ = −1. The following relations between
the n-th Fibonacci number Fn, the n-th Lucas number Ln and α are well known

αn−2 ≤ Fn ≤ αn−1 and αn−1 ≤ Ln ≤ 2αn, for n ≥ 0. (1.2)

Now, we are going to introduce the second concept of this study related to repdigits. Let
g ≥ 2 be an integer. A positive integer N is called a repdigit in base g or simply a g-repdigit
if all of the digits in its base g expansion are equal. Indeed, N is of the form

a

(
gm − 1

g − 1

)
, for m ≥ 1, a ∈ {1, 2, . . . , g − 1}.

Taking g = 10, the positive integer N is simply called repdigit.
The study of Diophantine equations involving linear recurrent sequences and repdigits

has been considered in recent years by many number theorists. First, Luca showed in [12]
that the number 55 is the largest repdigit in the Fibonacci sequence. After this, many authors
have worked on other similar problems (see [2, 5, 8, 9] and references therein). In [7], the
authors solved the problem of finding the Fibonacci or Lucas numbers which are products
of two repdigits. In [10], the authors tackled the problem of finding Fibonacci or Lucas
numbers which are products of two repdigits in base b. In [1], we found all Padovan and
Perrin numbers which are products of two repdigits in base b with 2 ≤ b ≤ 10. This study
deals with Fibonacci and Lucas numbers which are products of three repdigits in base g. In
other words, we study the Diophantine equations

Fk = d1

(
g� − 1

g − 1

)
· d2

(
gm − 1

g − 1

)
· d3

(
gn − 1

g − 1

)
, (1.3)

and

Lk = d1

(
g� − 1

g − 1

)
· d2

(
gm − 1

g − 1

)
· d3

(
gn − 1

g − 1

)
, (1.4)

where d1, d2, d3, k, �,m and n are positive integers such that

1 ≤ d1, d2, d3 ≤ g − 1 and g ≥ 2 with n ≥ 1, � ≤ m ≤ n. (1.5)

The novelty of the present work lies in its effectiveness, in the sense that k and n can be
effectively bounded in terms of g. This may be obtained using Baker’s method. There are
several different estimates of Baker-type lower bounds for linear forms in logarithms. In this
study, we use the most common Baker type result due to Matveev [13] or [3, Theorem 9.4].
Thus, our main result is as follows.
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Theorem 1.1 Let g ≥ 2 be an integer. Then, the Diophantine equations (1.3) and (1.4) have
only finitely many solutions in integers k, d1, d2, d3, g, �,m, n such that (1.5). Namely, we
have

� ≤ m ≤ n < 1.08 × 1048 log9 g and k < 1.08 × 1049 log10 g.

Remark 1.2 The inequalities from Theorem 1.1 allow one to compute upper bounds for all
the solutions to (1.3) and (1.4), for every fixed g.

The organization of this paper is as follows. In Sect. 2, we will cite the results that we will
use in Sects. 3 and 4, where our fundamental results of this paper will be fully proven. Also,
we devote Sect. 5 to some concluding remarks.

2 Auxiliary results

We begin this section with a few reminders about the logarithmic height of an algebraic
number. Let η be an algebraic number of degree d, let a0 > 0 be the leading coefficient of
its minimal polynomial over Z and let η = η(1), . . . , η(d) denote its conjugates. The quantity
defined by

h(η) = 1

d

⎛
⎝log |a0| +

d∑
j=1

logmax
(
1,

∣∣∣η( j)
∣∣∣)

⎞
⎠

is called the logarithmic height of η. Some properties of height are as follows. For η1, η2
algebraic numbers and m ∈ Z, we have

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±
2 ) ≤ h(η1) + h(η2),

h(ηm1 ) = |m|h(η1).

If η = p

q
∈ Q is a rational number in reduced form with q ≥ 1, then the above definition

becomes h(η) = log(max{|p|, q}). We can now present the famous Matveev’s result used in
this study. Thus, let L be a real number field of degree dL, η1, . . . , ηs ∈ L and b1, . . . , bs ∈
Z \ {0}. Let B ≥ max{|b1|, . . . , |bs |} and

� = η
b1
1 · · · ηbss − 1.

Let A1, . . . , As be real numbers with

Ai ≥ max{dLh(ηi ), | log ηi |, 0.16}, i = 1, 2, . . . , s.

With the above notations, Matveev proved the following result (the version that we will use
is due to Bugeaud, Mignotte and Siksek. See Theorem 9.4 in [3]).

Theorem 2.1 Assume that � �= 0. Then

log |�| > −1.4 · 30s+3 · s4.5 · d2
L

· (1 + log dL) · (1 + log B) · A1 · · · As .

The following lemma will also be used in order to prove our subsequent results.
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Lemma 2.2 ([11, Lemma 7]) If l ≥ 1, H >
(
4l2

)l
and H > L/(log L)l , then

L < 2l H(log H)l .

The upper bounds of the variables of Eqs. (1.3) and (1.4) obtained after the application
of Theorem 2.1 are too large for a very fast search for solutions by a computer program. To
overcome this situation, a reduction of the upper bounds is necessary. For this reduction’s
purpose, we present a variant of the reduction method of Baker and Davenport due to Dujella
and Pethő [6]. For a real number x , we write ||x || := min{|x − n| : n ∈ Z} for the distance
from x to the nearest integer.

Lemma 2.3 ([6, Lemma 5a]) Let M be a positive integer, let p/q be a convergent of the
continued fraction of the irrational τ such that q > 6M, and let A, B, μ be some real
numbers with A > 0 and B > 1. Let

ε = ||μq|| − M · ||τq||,
where || · || denotes the distance from the nearest integer. If ε > 0, then there is no solution
of the inequality

0 < |mτ − n + μ| < AB−w

in positive integers m, n and w with

m ≤ M and w ≥ log(Aq/ε)

log B
.

Note that Lemma 2.3 cannot be applied when μ = 0 (since then ε < 0) or when μ

is a multiple of τ . For this case, we use the following well known technical result from
Diophantine approximation, known as Legendre’s criterion.

Lemma 2.4 (see [4]) Let κ be a real number and x, y integers such that∣∣∣∣κ − x

y

∣∣∣∣ <
1

2y2
.

Then x/y = pk/qk is a convergent of the continued fraction expansion [a0, a1, . . .] of κ (with
some k = 0, 1, . . .). Further, let M and N be nonnegative integers such that qN > M . Then
putting a(M) := max{ai : i = 0, 1, . . . , N }, the inequality∣∣∣∣κ − x

y

∣∣∣∣ ≥ 1

(a(M) + 2)y2
,

holds for all pairs (x, y) of positive integers with 0 < y < M .

3 Fibonacci numbers as products of three repdgits in base g

Our first aim is to prove Theorem 1.1 using the Diophantine equation (1.3).

3.1 Proof of Theorem 1.1 for Eq. (1.3)

Note that if n = 1, then � = m = 1 and therefore the Diophantine equation (1.3) becomes
Fk = d1d2d3. Combining this with (1.2), we have k ≤ 3 log(g − 1)/ logα + 2. So, in this
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Fibonacci and Lucas numbers as products...

case the bound of k from Theorem 1.1 easily holds. For the rest of the proof we consider
n ≥ 2. The following result will be useful in proving our main result which gives a relation
between n and k in Eq. (1.3).

Lemma 3.1 All solutions of the Diophantine equation (1.3) satisfy

k < 3n
log g

logα
+ 2 < 10n log g.

Proof From (1.2), we have

αk−2 ≤ Fk = d1

(
g� − 1

g − 1

)
· d2

(
gm − 1

g − 1

)
· d3

(
gn − 1

g − 1

)
≤ (gn − 1)3 < g3n .

Taking logarithm on both sides, we get (k − 2) logα < 3n log g. Since, n ≥ 2 and g ≥ 2,
we obtain the desired inequalities. This ends the proof. ��

Next, we find upper bounds for the variables n, �,m of Eq. (1.3). Using (1.1) and (1.3),
we get

Fk = αk

√
5

− βk

√
5

= d1

(
g� − 1

g − 1

)
· d2

(
gm − 1

g − 1

)
· d3

(
gn − 1

g − 1

)

and thus obtain

αk

√
5

− d1d2d3g�+m+n

(g − 1)3
= βk

√
5

− d1d2d3g�+m

(g − 1)3
− d1d2d3gn+�

(g − 1)3
+ d1d2d3g�

(g − 1)3

− d1d2d3gn+m

(g − 1)3
+ d1d2d3gm

(g − 1)3
+ d1d2d3gn

(g − 1)3
− d1d2d3

(g − 1)3
. (3.1)

Taking the absolute values of both sides of (3.1), we get∣∣∣∣ αk

√
5

− d1d2d3g�+m+n

(g − 1)3

∣∣∣∣ <
1

αk
√
5

+ d1d2d3g�+m

(g − 1)3
+ d1d2d3gn+�

(g − 1)3
+ d1d2d3g�

(g − 1)3

+ d1d2d3gn+m

(g − 1)3
+ d1d2d3gm

(g − 1)3
+ d1d2d3gn

(g − 1)3
+ d1d2d3

(g − 1)3
. (3.2)

Dividing both sides of (3.2) by d1d2d3g�+n+m

(g−1)3
and using the fact that � ≤ m ≤ n gives us the

following inequalities∣∣∣∣∣ (g − 1)3 · αk · g−(�+n+m)

d1d2d3
√
5

− 1

∣∣∣∣∣ <
(g − 1)3

αkd1d2d3g�+n+m
√
5

+ 1

gn
+ 1

gm
+ 1

gn+m

+ 1

g�
+ 1

gn+�
+ 1

g�+m
+ 1

g�+m+n

< 8 · g−�.

From this, it follows that ∣∣∣∣ (g − 1)3

d1d2d3
√
5

· αk · g−(�+n+m) − 1

∣∣∣∣ <
8

g�
. (3.3)

Put

�1 := (g − 1)3

d1d2d3
√
5

· αk · g−(�+n+m) − 1.
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Let us show that �1 �= 0. Suppose �1 = 0, then

α2k = 5(d1d2d3)2

(g − 1)6
· g2(�+m+n),

which is false as α2k cannot be rational except if k = 0. Thus,�1 �= 0. To apply Theorem 2.1
to �1, we choose the following data

(η1, b1) :=
(

(g − 1)3

d1d2d3
√
5
, 1

)
, (η2, b2) := (α, k), (η3, b3) := (g,−(� + m + n))

and s := 3. Note that η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) :
Q] = 2, where L is Q(α). According to the inequalities from Lemma 3.1, we can take
B := 10n log g because B ≥ max{|b1|, |b2|, |b3|}. To estimate the parameters A1, A2, A3,

we calculate the logarithmic heights of η1, η2, η3 as follows:

h(η1) = h

(
(g − 1)3

d1d2d3
√
5

)
≤ h

(
(g − 1)3

d1d2d3

)
+ h

(
1√
5

)

= log
(
max{(g − 1)3, d1d2d3}

) + 1

2
log 5

= 3 log(g − 1) + 1

2
log 5 < 4 log g

and

h(α) = 1

2
logα and h(η3) = log g.

Thus, one can take

A1 = 8 log g, A2 = logα and A3 = 2 log g.

Then, we apply Theorem 2.1 and find

log |�1| > −1.4 · 306 · 34.5 · 4 · (1 + log 2) · (1 + log(10n log g)) · A, (3.4)

where A := A1A2A3 = 16 logα · log2 g. Comparing inequality (3.4) with (3.3) gives

� log g − log 8 < 7.47 × 1012 · (1 + log(10n log g)) · log2 g. (3.5)

Because for g ≥ 2 and n ≥ 2,

1 + log(10n log g) < 10 log n · log g,
we get

� < 7.5 × 1013 · log n · log2 g. (3.6)

Secondly, we rewrite (1.3) as

αk(g − 1)

d1(g� − 1)
√
5

− βk(g − 1)

d1(g� − 1)
√
5

= d2d3
(g − 1)2

(
gn+m − gm − gn + 1

)
,

which implies

αk(g − 1)

d1(g� − 1)
√
5

− d2d3gn+m

(g − 1)2
= βk(g − 1)

d1(g� − 1)
√
5

− d2d3gm

(g − 1)2
− d2d3gn

(g − 1)2

+ d2d3
(g − 1)2

. (3.7)
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Taking the absolute values of both sides of (3.7), we have∣∣∣∣ αk(g − 1)

d1(g� − 1)
√
5

− d2d3gn+m

(g − 1)2

∣∣∣∣ <
(g − 1)

d1(g� − 1)αk
√
5

+ d2d3gm

(g − 1)2
+ d2d3gn

(g − 1)2

+ d2d3
(g − 1)2

.

Dividing both sides of the inequality above by
d2d3gn+m

(g − 1)2
and using the fact that n ≥ 2, leads

to ∣∣∣∣ (g − 1)3

d1d2d3(g� − 1)
√
5

· αk · g−(n+m) − 1

∣∣∣∣ <
(g − 1)3

d1d2d3(g� − 1)αkgn+m
√
5

+ 1

gn
+ 1

gm
+ 1

gn+m
< 4 · g−m .

Therefore, we obtain ∣∣∣∣ (g − 1)3

d1d2d3(g� − 1)
√
5

· αk · g−(n+m) − 1

∣∣∣∣ <
4

gm
. (3.8)

Now, let us apply Theorem 2.1 with

(η1, b1) :=
(

(g − 1)3

d1d2d3(g� − 1)
√
5
, 1

)
, (η3, b3) := (g,−n − m),

(η2, b2) := (α, k), s := 3 and B := 10n log g. Note that the numbers η1, η2, and η3 are
positive real numbers and elements of the field L = Q(

√
5). It is obvious that the degree of

the field L is 2. So dL = 2. Let

�2 := (g − 1)3

d1d2d3(g� − 1)
√
5

· αk · g−(n+m) − 1.

If �2 = 0, then we get

α2k = 5(d1d2d3)2(g� − 1)2g2(n+m)

(g − 1)6
∈ Q.

This is impossible as α2k is irrational for k ≥ 1. Therefore, �2 is nonzero. Moreover, since

h(η1) = h

(
(g − 1)3

d1d2d3(g� − 1)
√
5

)
≤ h

(
(g − 1)3

d1d2d3

)
+ h

(
1

g� − 1

)
+ h

(
1√
5

)

= logmax{(g − 1)3, d1d2d3} + log(g� − 1) + 1

2
log 5

= 3 log(g − 1) + log(g� − 1) + 1

2
log 5 < (5 + �) log g,

and

h(η2) = 1

2
logα, h(η3) = log g,

we can take A1 := 2(�+5) log g, A2 := logα, and A3 := 2 log g. Thus, taking into account
the inequality (3.8) and using Theorem 2.1, we obtain

m log g − log 4 < 1.4 · 306 · 34.5 · 4 · (1 + log 2) · (1 + log B) · A,
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where A = A1A2A3 = 4(5 + �) logα · log2 g. Since g ≥ 2 and 1 + log B < 10 log n log g,
it follows that

m < 1.87 × 1013 · (5 + �) · log n · log2 g + 2. (3.9)

By (3.6), we have

5 + � < 7.6 × 1013 · log n · log2 g. (3.10)

Therefore, from (3.9) and (3.10), we easily get

m < 1.5 × 1027 log2 n log4 g. (3.11)

Rearranging now Eq. (1.3) as

d3gn

g − 1
− (g − 1)2αk

d1d2(g� − 1)(gm − 1)
√
5

= d3
g − 1

− βk(g − 1)2

d1d2(g� − 1)(gm − 1)
√
5

and taking absolute values of both sides of the equality above, we get∣∣∣∣ d3gng − 1
− (g − 1)2αk

d1d2(g� − 1)(gm − 1)
√
5

∣∣∣∣ <
d3

g − 1
+ (g − 1)2

αkd1d2(g� − 1)(gm − 1)
√
5
. (3.12)

Dividing both sides of (3.12) by
d3gn

g − 1
and using the fact that n ≥ 2, we obtain

∣∣∣∣1 − (g − 1)3

d1d2d3(g� − 1)(gm − 1)
√
5

· g−n · αk
∣∣∣∣ <

1

gn
+ 1

gn−1 <
2

gn−1 . (3.13)

Put

�3 := (g − 1)3

d1d2d3(g� − 1)(gm − 1)
√
5

· g−n · αk − 1. (3.14)

Next, we apply Theorem 2.1 to (3.14). First, we need to check that �3 �= 0. If it is, then we
would get

α2k = 5(d1d2d3)2(g� − 1)2(gm − 1)2g2n

(g − 1)6
∈ Q,

which is impossible. Hence, �3 �= 0. So, we apply Theorem 2.1 to (3.14) with the data:

s := 3, (η1, b1) :=
(

(g − 1)3

d1d2d3(g� − 1)(gm − 1)
√
5
, 1

)
, (η2, b2) := (g,−n),

and (η3, b3) := (α, k).Because B ≥ max{|b1|, |b2|, |b3|} = max{1, n, k} and by the inequal-
ity from Lemma 3.1, we see that we can take B := 10n log g. Note that η1, η2, η3 ∈ Q(α).
Observe that L := Q(η1, η2, η3) = Q(α), so dL = 2. Next,

h(η1) = h

(
(g − 1)3

d1d2d3(g� − 1)(gm − 1)
√
5

)

≤ h

(
(g − 1)3

d1d2d3

)
+ h

(
(g� − 1)(gm − 1)

)
+ h(

√
5)

< (3 + � + m) log g + 1

2
log 5 < (5 + � + m) log g.
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Thus, we take

A1 := 2(5 + � + m) log g, A2 := 2 log g and A3 := logα.

Theorem 2.1 gives

log |�3| > −1.4 · 306 · 34.5 · 4 · (1 + log 2) · (1 + log B) · A (3.15)

with

A = A1A2A3 = 2 log g · logα · (10 + 2� + 2m) log g (3.16)

and

1 + log B < 10 log n log g. (3.17)

Combining the above three relations with (3.13) implies

(n − 1) log g − log 2 < 1.87 × 1013(5 + � + m) log n log3 g,

which leads to

n < 1.87 × 1013(5 + � + m) log n log2 g + 2. (3.18)

Referring to the relations (3.6) and (3.11), we have

5 + � + m < 5 + 7.5 × 1013 · log n · log2 g + 1.5 × 1027 log2 n log4 g

< 3 × 1027 log2 n log4 g. (3.19)

Inserting this in (3.18) leads to

n < 5.7 × 1040 · log3 n · log6 g. (3.20)

We are now in position to apply Lemma 2.2 with the data

l = 3, L = n and H := 5.7 × 1040 · log6 g.
Therefore, we get

n < 23 · 5.7 × 1040 · log6 g × log3
(
5.7 × 1040 · log6 g)

< 23 · 5.7 × 1040 · log6 g · (93.84 + 6 log log g)3

< 1.08 × 1048 log9 g.

In the above inequality, we have used the fact that 93.84 + 6 log log g < 133 log g, which
holds for all g ≥ 2. Hence, we summarize that all the solutions of (1.3) satisfy

n < 1.08 × 1048 log9 g and k < 10n log g < 1.08 × 1049 log10 g.

The proof of Theorem 1.1 is complete in this case. ��

3.2 Application for the decimal base

Now, as an illustration, we solve the Diophantine equation (1.3) for g = 10. When g = 10,
the bound on k becomes

k < 4.6 × 1052.

Thus, our main result in this case is the following.
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Theorem 3.2 The only Fibonacci numbers which are products of three repdigits are
1, 2, 3, 5, 8, 21, 55, and 144.

Proof First, we must reduce the bounds on �,m, n and k. Put

z1 := log(�1 + 1)

= k logα − (� + m + n) log 10 + log

(
729

d1d2d3
√
5

)
.

Inequality (3.3) can be written as ∣∣ez1 − 1
∣∣ <

8

10�
.

Since � ≥ 1, we have |ez1 − 1| <
8

10�
≤ 4

5
, which implies that

5

9
< e−z1 < 5. If z1 > 0,

then

0 < z1 < ez1 − 1 = ∣∣ez1 − 1
∣∣ <

8

10�
.

Furthermore, if z1 < 0, then

0 < |z1| < e|z1| − 1 = e−z1(1 − ez1) <
40

10�
.

In any case, it always holds 0 < |z1| <
40

10�
, which implies

0 <

∣∣∣∣∣∣k
logα

log 10
− (� + m + n) +

log
(
729/(d1d2d3

√
5)

)
log 10

∣∣∣∣∣∣ < 17.4 · 10−�. (3.21)

It is easy to see that
logα

log 10
is irrational. In fact, if

logα

log 10
= p

q
(p, q ∈ Z and p > 0, q > 0,

gcd(p, q) = 1), then 10p = αq ∈ Z which is an absurdity. Now, we will apply Lemma 2.3
with w := �,

τ := logα

log 10
, μ :=

log
(
729/(d1d2d3

√
5)

)
log 10

, A := 17.4, B := 10.

Because k < 4.6× 1052, we can take M := 4.6× 1052. Therefore, for the remaining proof,
we use Mathematica to apply Lemma 2.3. For the computations, if the first convergent such
that q > 6M does not satisfy the condition ε > 0, then we use the next convergent until we
find the one that satisfies the conditions. We have found that the denominator of the 115th
convergent

p115
q115

= 1532282514732971248699360262855137347685624203086792614

7331928878186982501184370491249297952824659131062806099

of τ exceeds 6M . Thus, we can say that the inequality (3.21) has no solution for

� = w ≥ log(Aq115/ε)

log 10
≥ log(Aq115/0.00809526)

log 10
≥ 58.1975.

So, we obtain

� ≤ 58. (3.22)

123



Fibonacci and Lucas numbers as products...

Substituting this upper bound for � into (3.9) and combining the new bound obtained with
(3.18), we get

n < 6.4 × 1029 · log2 n,

which implies n < 1.3×1034 using Lemma 2.2. Thus, by Lemma 3.1 we have k < 3×1035.
Next, we need to reduce the bound on m. We return to (3.8) and put

z2 := log(�2 + 1)

= k logα − (n + m) log 10 + log

(
729

d1d2d3(10� − 1)
√
5

)
.

From the inequality (3.8) and m ≥ 1, we conclude that

∣∣ez2 − 1
∣∣ <

4

10m
<

1

2
,

which implies that
1

2
< ez2 <

3

2
. If z2 > 0, then 0 < z2 < ez2 − 1 <

4

10m
. If z2 < 0, then

0 < |z2| < e|z2| − 1 = e−z2 − 1 = e−z2(1 − ez2) <
8

10m
.

In any case, we have 0 < |z2| <
8

10m
, which implies

0 <

∣∣∣∣∣∣k
logα

log 10
− (n + m) +

log
(
729/(d1d2d3(10� − 1)

√
5)

)
log 10

∣∣∣∣∣∣ <
3.5

10m
. (3.23)

Again, we apply Lemma 2.3 with

τ := logα

log 10
, μ :=

log
(
729/(d1d2d3(10� − 1)

√
5)

)
log 10

, A := 3.5, B := 10

and M := 3 × 1035. With the help of Mathematica, we found that the denominator of the
77th convergent

p77
q77

= 1097876139463713781430275039172749779

5253306550332349137376600680873772748

of τ exceeds 6M . It follows that the inequality (3.23) has no solution for

m = w ≥ log(Aq77/ε)

log 10
≥ log(Aq77/0.000111931)

log 10
≥ 41.2155.

Hence, we obtain

m ≤ 41. (3.24)

Inserting the bounds from (3.22) and (3.24) in (3.18), we get

n < 1.1 × 1016 log n + 2,
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which leads to n < 8.2× 1017 and then k < 2× 1019. Finally, we have to reduce the bound
on n. From (3.13), we can put

z3 := log(�3 + 1)

= k logα − n log 10 + log

(
729

d1d2d3(10� − 1)(10m − 1)
√
5

)
.

By following what is done in previous cases, it is easy to see that for n ≥ 2, we have

0 <

∣∣∣∣∣∣k
logα

log 10
− n +

log
(
729/

(
d1d2d3(10� − 1)(10m − 1)

√
5
))

log 10

∣∣∣∣∣∣ <
1.8

10n−1 . (3.25)

Now, we apply Lemma 2.3 to (3.25) with B := 10,

τ := logα

log 10
, μ :=

log
(
729/

(
d1d2d3(10� − 1)(10m − 1)

√
5
))

log 10
, A := 1.8,

and M := 2 × 1019. Find upper bounds that the denominator of the 44th convergent

p44
q44

= 259791952914951895804

1243097211893507332887

of τ exceeds 6M . Therefore the inequality (3.25) has no solution for

n − 1 = w ≥ log(Aq44/ε)

log 10
≥ log(Aq44/0.0000637147)

log 10
≥ 25.5455.

Hence, we obtain

n ≤ 26. (3.26)

So, it remains to check Eq. (1.3) in the case g = 10 for 1 ≤ d1, d2, d3 ≤ 9, 1 ≤ n ≤ 26,
1 ≤ k ≤ 598, 1 ≤ � ≤ 58 and 1 ≤ m ≤ 41. A quick inspection using Maple reveals that
the Diophantine equation (1.3) has only the solutions listed in the statement of Theorem 3.2,
which ends the proof of Theorem 3.2. ��

4 Lucas numbers as products of three repdigits in base g

In this section, we will follow the method from Sect. 3. To avoid repetition in this section,
some details will be left out and Sect. 3 may be referred for any required clarifications. Our
first aim is to prove Theorem 1.1 considering Eq. (1.4). The computations of the heights and
the proof of the non-nullity of the linear forms on logarithms are similar. So, we leave them
to the readers.

4.1 Proof of Theorem 1.1 for Eq. (1.4)

Again, by taking n = 1, we easily verify that the bound of k from Theorem 1.1 is valid. Now
let us see what happens for n ≥ 2. The following result will be useful in proving our main
result which gives a relation between n and k of Eq. (1.4).
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Lemma 4.1 All solutions of the Diophantine equation (1.4) satisfy

k < 3n
log g

logα
+ 1 < 10n log g.

Proof The proof of this lemma is similar to that of Lemma 3.1. In this case, we have to
combine (1.2) and (1.4). ��

First, we find upper bounds for the variables n, �,m of the Diophantine equation (1.4).
Combining (1.1) and (1.4), we get

αk − d1d2d3g�+m+n

(g − 1)3
= −βk − d1d2d3g�+m

(g − 1)3
− d1d2d3gn+�

(g − 1)3
+ d1d2d3g�

(g − 1)3

− d1d2d3gn+m

(g − 1)3
+ d1d2d3gm

(g − 1)3
+ d1d2d3gn

(g − 1)3
− d1d2d3

(g − 1)3
(4.1)

and then

|�4| :=
∣∣∣∣ (g − 1)3

d1d2d3
· αk · g−(�+n+m) − 1

∣∣∣∣ <
8

g�
. (4.2)

Next, we apply Theorem 2.1 to (4.2) and we get that

� < 5.7 × 1013 · log n · log2 g. (4.3)

Now, we rewrite (1.4) into the form

αk(g − 1)

d1(g� − 1)
− d2d3gn+m

(g − 1)2
= − βk(g − 1)

d1(g� − 1)
− d2d3gm

(g − 1)2
− d2d3gn

(g − 1)2

+ d2d3
(g − 1)2

, (4.4)

which leads us to

|�5| :=
∣∣∣∣ (g − 1)3

d1d2d3(g� − 1)
· αk · g−(n+m) − 1

∣∣∣∣ <
4

gm
. (4.5)

We apply Theorem 2.1 to (4.5) and we see that

m < 1.87 × 1013 · (3 + �) · log n · log2 g + 2. (4.6)

By (4.3), we have

3 + � < 5.8 × 1013 · log n · log2 g. (4.7)

Therefore, from (4.6) and (4.7), we easily get

m < 1.1 × 1027 log2 n log4 g. (4.8)

Finally, rearranging now Eq. (1.4) as

d3gn

g − 1
− (g − 1)2αk

d1d2(g� − 1)(gm − 1)
= d3

g − 1
+ βk(g − 1)2

d1d2(g� − 1)(gm − 1)

and using the fact that n ≥ 2, we obtain

|�6| :=
∣∣∣∣1 − (g − 1)3

d1d2d3(g� − 1)(gm − 1)
· g−n · αk

∣∣∣∣ <
2

gn−1 . (4.9)
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Thus, with the help of Theorem 2.1 we have

n < 1.87 × 1013(3 + � + m) log n log2 g + 2. (4.10)

Referring to the inequalities (4.3) and (4.8), we have

3 + � + m < 5.8 × 1013 · log n · log2 g + 1.1 × 1027 log2 n log4 g

< 2.2 × 1027 log2 n log4 g. (4.11)

Inserting this in (4.10) leads to

n < 4.2 × 1040 · log3 n · log6 g. (4.12)

Now, Lemma 2.2 tells us that

n < 23 · 4.2 × 1040 · log6 g × log3
(
4.2 × 1040 · log6 g)

< 23 · 4.2 × 1040 · log6 g · (93.6 + 6 log log g)3

< 7.73 × 1047 log9 g.

In the above inequality, we have used the fact that 93.6 + 6 log log g < 132 log g, which
holds for all g ≥ 2. Hence, we summarize that all the solutions of (1.4) satisfy

n < 7.73 × 1047 log9 g and k < 10n log g < 7.73 × 1048 log10 g.

This finishes the proof of Theorem 1.1 in this case. ��

4.2 Application for the decimal base

Again, as an illustration, we solve Eq. (1.4) for g = 10. Note that k < 4.6 × 1052. Here is
our main result in this case.

Theorem 4.2 The only Lucas numbers which are products of three repdigits are 1, 3, 4, 7,
11 and 18.

Proof We must first reduce the bounds on �,m, n and k. Put

z4 := log(�4 + 1) = k logα − (� + m + n) log 10 + log

(
729

d1d2d3

)
.

From (4.2), we deduce that

0 <

∣∣∣∣k logα

log 10
− (� + m + n) + log (729/(d1d2d3))

log 10

∣∣∣∣ < 17.4 · 10−�. (4.13)

Now, we have to study the following two cases.
Case 1: (d1, d2, d3) �= (9, 9, 9). We apply Lemma 2.3 with w := �,

τ := logα

log 10
, μ := log (729/(d1d2d3))

log 10
, A := 17.4, B := 10.

Because k < 4.6 × 1052, we can take M := 4.6 × 1052. We use Mathematica to apply
Lemma 2.3 and found that the denominator of the 114th convergent

p114
q114

= 75199708224715672236920162770429633212096962359234385

359828495765425172949832316042466402419242364862312251
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of τ exceeds 6M . Thus, we can conclude that the inequality (4.13) has no solution for

� = w ≥ log(Aq114/ε)

log 10
≥ log(Aq114/0.00114865)

log 10
≥ 57.7365.

Hence, we obtain

� ≤ 57. (4.14)

Case 2: (d1, d2, d3) = (9, 9, 9). In this case from (4.13), we have

0 <

∣∣∣∣ logα

log 10
− � + m + n

k

∣∣∣∣ <
17.4

k · 10�
. (4.15)

Assume that � > 55. Then, it can be seen that

10�

2(17.4)
> 2.87 × 1053 > 3.3 × 1052 > k,

and so we have ∣∣∣∣ logα

log 10
− � + m + n

k

∣∣∣∣ <
17.4

k · 10�
<

1

2k2
.

From the known properties of continued fraction (Lemma 2.4), we conclude that the rational
� + m + n

k
is a convergent to κ := logα

log 10
. So,

� + m + n

k
is of the form pt/qt for some t .

We have

q109 > 3.3 × 1052 > k.

Thus, t ∈ {0, 1, 2, . . . , 108}. By Lemma 2.4, we get

1

(a(M) + 2) · k2 ≤
∣∣∣∣ logα

log 10
− � + m + n

k

∣∣∣∣ <
17.4

k · 10�
.

Since a(M) = max{ai : i = 0, 1, 2, . . . , 108} = 106, we get

� <
log

(
17.4 · (106 + 2) · 3.3 × 1052

)
log 10

< 55.8.

This contradicts the fact that � > 55. Thus � ≤ 55. Therefore, the bound

� ≤ 57, (4.16)

holds in both cases. Substituting this upper bound for � into (4.6) and combining the new
bound obtained with (4.10), we get

n < 6 × 1029 · log2 n,

which implies n < 1.2 × 1034 using Lemma 2.2. Hence, by Lemma 4.1 we have k <

2.8 × 1035. Next, we need to reduce the bound on m. We return to (4.5) and define

z5 := log(�5 + 1) = k logα − (n + m) log 10 + log

(
729

d1d2d3(10� − 1)

)
.

From the inequality (4.5) and m ≥ 1, we conclude that

0 <

∣∣∣∣∣k logα

log 10
− (n + m) + log

(
729/(d1d2d3(10� − 1))

)
log 10

∣∣∣∣∣ <
3.5

10m
. (4.17)
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Now we have to study the following two cases.
Case a: (�, d1, d2, d3) �= (1, 1, 9, 9), (1, 9, 9, 1), (1, 9, 1, 9).
We can apply Lemma 2.3 with the following data

τ := logα

log 10
, μ := log

(
729/(d1d2d3(10� − 1))

)
log 10

, A := 3.5, B := 10,

and M := 2.8 × 1035. Using Mathematica, we found that the denominator of the 97th
convergent

p97
q97

= 3106590240739929077205211403373423170367494081

14864947214218067609395035403916715939116150260

of τ exceeds 6M . It follows that the inequality (4.17) has no solution for

m = w ≥ log(Aq97/ε)

log 10
≥ log(Aq97/4.58528 × 10−12)

log 10
≥ 58.0549.

Hence, we obtain m ≤ 58.
Case b: (�, d1, d2, d3) ∈ {(1, 1, 9, 9), (1, 9, 9, 1), (1, 9, 1, 9)}.
From (4.17), we can see that

0 <

∣∣∣∣ logα

log 10
− m + n

k

∣∣∣∣ <
3.5

k · 10m . (4.18)

Thus, for m ≥ 39, we have

10m

2(3.5)
> 10n log 10 > 2.8 × 1035 > k,

and so ∣∣∣∣ logα

log 10
− m + n

k

∣∣∣∣ <
3.5

k · 10m <
1

2k2
.

It follows that
m + n

k
is of the form pt/qt for some t . Moreover, we have

q73 > 2.8 × 1035 > 10n log 10 > k.

Thus, t ∈ {0, 1, 2, . . . , 72}. By Lemma 2.4, we get

1

(a(M) + 2) · k2 ≤
∣∣∣∣ logα

log 10
− m + n

k

∣∣∣∣ <
3.5

k · 10m .

Since a(M) = max{ai : i = 0, 1, 2, . . . , 72} = 106, we obtain

3.5

1039
≥ 3.5

10m
>

1

108 · k >
1

108 · 2.8 × 1035
,

which is a contradiction. Therefore, m ≤ 38. In both cases a) and b) we can consider

m ≤ 58. (4.19)

Using the inequalities (4.16) and (4.19) together and substituting these upper bounds into
(4.10), we get

n < 1.2 × 1016 log n,
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which leads to n < 9 × 1017 and hence to k < 2.1 × 1019. To reduce the bound on n we
must return to inequality (4.9) and put

z6 := log(�6 + 1)

= k logα − n log 10 + log

(
729

d1d2d3(10� − 1)(10m − 1)

)
.

For n ≥ 2, we can easily see that

0 <

∣∣∣∣∣k logα

log 10
− n + log

(
729/

(
d1d2d3(10� − 1)(10m − 1)

))
log 10

∣∣∣∣∣ <
1.8

10n−1 . (4.20)

It is also appropriate here to take into account the following two cases according to the values
of the variables.

Case I: 729 �= d1d2d3(10� − 1)(10m − 1).
Therefore, we can apply Lemma 2.3 to (4.20) with B := 10,

τ := logα

log 10
, μ := log

(
729/

(
d1d2d3(10� − 1)(10m − 1)

))
log 10

, A := 1.8,

and M := 2.1 × 1019. We see that the denominator of the 44th convergent

p44
q44

= 259791952914951895804

1243097211893507332887

of τ exceeds 6M . Thus, the inequality (4.20) has no solution for

n − 1 = w ≥ log(Aq44/ε)

log 10
≥ log(Aq44/0.0000149094)

log 10
≥ 26.1763.

Hence, we obtain n ≤ 27.
Case II: 729 = d1d2d3(10� − 1)(10m − 1).

Using the fact that 729 = d1d2d3(10� − 1)(10m − 1) and g = 10, it is easy to see from
Eq. (1.4) that Lk = 10n − 1. Thus, 9 | Lk so 6 | k, therefore 3 | k which makes Lk even, a
contradiction since 10n − 1 is odd. In both cases I and II, we can now consider n ≤ 27.

In the light of the above results, we need to check Eq. (1.4) in the case g = 10 for
1 ≤ d1, d2, d3 ≤ 9, 1 ≤ n ≤ 27, 1 ≤ k ≤ 621, 1 ≤ � ≤ 57 and 1 ≤ m ≤ 58. A quick
inspection using Maple reveals that Diophantine equation (1.4) has only the solution listed
in the statement of Theorem 4.2. This ends the proof of Theorem 4.2. ��

5 Concluding remarks

In this section, we bring some observations about the Diophantine equations studied in this
paper. First, if � = d1 = 1, then the Eqs. (1.3) and (1.4) become

Fk = a

(
gm − 1

g − 1

)
· b

(
gn − 1

g − 1

)
, (5.1)

and

Lk = a

(
gm − 1

g − 1

)
· b

(
gn − 1

g − 1

)
, (5.2)
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where a, b, k,m and n are positive integers such that 1 ≤ a, b ≤ g − 1 and g ≥ 2 with
m ≤ n. Note that the two equations above were studied earlier in papers [7] and [10] where
the authors exclusively mention the base g such that 2 ≤ g ≤ 10. However, the method
developed in this paper generalizes the results of these authors and allows us to deduce the
following results which follow immediately from Theorem 1.1.

Corollary 5.1 Let g ≥ 2 be an integer.

(1) The Diophantine equation (5.1) has only finitely many solutions in positive integers
k, a, b,m, n such that 1 ≤ a, b ≤ g − 1.

(2) The Diophantine equation (5.2) has only finitely many solutions in positive integers
k, a, b,m, n such that 1 ≤ a, b ≤ g − 1.

Next, when we take g = 2 in (1.3) and (1.4), we get the following result which gives a
link between Fibonacci, Lucas and Mersenne numbers.

Corollary 5.2 If Fk and Lk are expressible as products of three Mersenne numbers, then we
have

Fk ∈ {1, 3, 21} and Lk ∈ {1, 3, 7}.
Proof The proof is similar to those of Theorems 3.2 and 4.2. ��
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