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Diophantine tuples are sets of positive integers with the 
property that the product of any two elements in the set 
increased by the unity is a square. In the main theorem of 
this paper it is shown that any Diophantine triple, the second 
largest element of which is between the square and four times 
the square of the smallest one, is uniquely extended to a 
Diophantine quadruple by joining an element exceeding the 
largest element in the triple. A similar result is obtained under 
the hypothesis that the two smallest elements have the form 
T 2+2T , 4T 4+8T 3−4T for some positive integer T , which we 
encounter as an exceptional case. The main theorem implies 
that the same is valid for triples with smallest elements KA2, 
4KA4 ± 4A for some positive integers A and K ∈ {1, 2, 3, 4}.
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1. Introduction

This paper is devoted to Diophantine tuples, defined as sets of positive integers with 
the property that the product of any two elements in the set increased by the unity is a 
square. When the set has cardinality 2 (3, 4 or 5), we shall speak of a Diophantine pair 
(triple, quadruple or quintuple, respectively).

Since Euler it is known that each Diophantine pair {a, b} can be extended to a Dio-
phantine triple by taking c = a + b + 2r, where r =

√
ab + 1. Arkin, Hoggatt and 

Strauss [2] and independently Gibbs [21] found a possibility to produce Diophantine 
quadruples: they associated to an arbitrary Diophantine triple {a, b, c} the integer

d+ = a + b + c + 2abc + 2
√

(ab + 1)(bc + 1)(ca + 1) (1)

and showed that {a, b, c, d+} is a Diophantine quadruple, usually referred to as regular. 
Moreover, they conjectured that this is the only possibility to extend a Diophantine 
triple {a, b, c} to a quadruple by an integer greater than max{a, b, c}.

Since there are no Diophantine quintuples, as shown quite recently in [24] and (for an 
even more general case) in [4], the main open question regarding Diophantine tuples is 
the unique extendability of Diophantine triples. This has been established under various 
additional conditions. From results available in the literature we quote here only those 
needed in subsequent proofs. The willing reader can find references to previous / other 
relevant results on the web page http://web .math .pmf .unizg .hr /~duje /dtuples .html.

Let {a, b, c, d} be a Diophantine quadruple with a < b < c < d. The available results 
can be classified according to several criteria. On the one hand, there are those in which 
a and b are supposed to be ‘close to each other’. Thus, from [15] and [8] it is known 
that in order to have d > d+ it is necessary to have b > 4000. In the same category 
enter the unicity of extension to a Diophantine quadruple for any pair {a, b} of the type 
{k, k + 2} (k ≥ 1) [6,18] or for which b < a + 4

√
a (see [16]). On the other hand, there 

are articles dealing with the problem when c is ‘much bigger’ than b. Thus, Miyazaki 
and the third author confirmed in [20] the validity of the conjecture when c ≥ 721.8b4. 
This result is slightly improved in [11], where it is shown that it holds assuming that 
c ≥ 200b4.

Numerous papers deal with parametric Diophantine tuples. In [10], the uniqueness of 
extension has been established for all members of the two-parameter families {k, A2k +
2εA, (A +1)2k+2ε(A +1)} with positive integers k and A and ε ∈ {±1}. The first infinite 
two-parameter family of Diophantine triples with unique extension is pointed out in [9]. 
As we shall shortly see, this family is relevant for the work reported here.

The present article draws attention to a different context in which the conjecture 
is valid. Our main result asserts that if {a, b, c, d} is a Diophantine quadruple with b, 
roughly speaking, between a2 and 4a2, then d = d+. This is for the first time in the 
literature when b compares not to a but to a2.

http://web.math.pmf.unizg.hr/~duje/dtuples.html
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Theorem 1.1. Let {a, b} be a Diophantine pair satisfying

a

(
a + 7

2 − 1
2
√

4a + 13
)

≤ b ≤ 4a2 + a + 2
√
a. (2)

If {a, b, c, d} is a Diophantine quadruple with b < c < d, then d = d+.

Such a result opens new prospects for the study of parametric Diophantine pairs. 
Theorem 1.1 immediately implies the following (see Section 2).

Theorem 1.2. Let a, b be positive integers defined by a = KA2, b = 4KA4+4εA with A a 
positive integer, K ∈ {1, 2, 3, 4} and ε ∈ {±1}. If {a, b, c, d} is a Diophantine quadruple 
with b < c < d, then d = d+.

Note that in case c is taken canonically (viz., c = cτν with cτν as defined in Section 3), it 
has been already known in [9, Theorem 1.1] that the assertion of Theorem 1.2 is valid for 
arbitrary positive integer K. Therefore, Theorem 1.2 can be regarded as a generalization 
of [9, Theorem 1.1] in the cases where K ∈ {1, 2, 3, 4}. Furthermore, it also generalizes 
[16, Theorem 1.8] and [22, Theorem 3], as seen from the fact that a specialization A = 1
of the pair in Theorem 1.2 gives {a, b} = {K, 4K + 4ε}.

Section 3 contains a crucial observation for our results, providing an explanation 
for the relevance of the hypothesis (2) in Theorem 1.1. The proof of the main result 
Theorem 1.1 combines a thorough study of systems of Pellian equations with extensive 
computations. Since the details of the reasoning developed in Section 4 varies according 
to the gap between b and c, we have to split the argument into several pieces distributed 
over three subsections. In the final section, the extendibility of a parametric family 
appearing as the exceptional cases for condition (2) is investigated in the case where 
c �= cτν for any ν and τ . In the situation where c can be expressed as c = γ+

1 and c = γ+
2

with some recurrence sequence {γ+
ν } introduced in Section 5, we need improvements of 

the procedure encountered in the literature for finding better lower bounds for solutions. 
Another twist of the usual method appears in case c = γ+

1 , where we obtain a suitable 
upper bound for the solution by applying Matveev’s theorem in 1998 ([27, Theorem 2.1]), 
which requires to check the “Kummer condition” (see Lemma 5.3). Since the case where 
(2) is satisfied and c = cτν for some ν and τ is already examined in the preceding section, 
the proof of the main result is complete as soon as the following is established.

Theorem 1.3. Let T be a positive integer and let a = T 2 + 2T , b = 4T 4 + 8T 3 − 4T . If 
{a, b, c, d} is a Diophantine quadruple with a < b < c < d, then d = d+.

2. Proof of Theorem 1.2

Since the case where A = 1, that is, {a, b} = {K, 4K + 4ε}, is already shown in [16, 
Theorem 1.8] and [22, Theorem 3], we may assume that A ≥ 2. Then, it is easy to check 
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that inequalities (2) hold for each K ∈ {1, 2, 3, 4}. Therefore, Theorem 1.2 follows from 
Theorem 1.1.

3. A key lemma

Let a, b, r with a < r < b be positive integers such that ab +1 = r2. Following [9], we 
define an integer c = cτν by

cτν = 1
4ab

{
(
√
b + τ

√
a)2(r +

√
ab)2ν + (

√
b− τ

√
a)2(r −

√
ab)2ν − 2(a + b)

}

with ν a positive integer and τ ∈ {±}. For reader’s convenience, we write down those 
terms of these sequences we shall use in subsequent proofs:

cτ1 = a + b + 2τr,

cτ2 = 4ab(a + b + 2τr) + 4(a + b + τr),

cτ3 = 16a2b2(a + b + 2τr) + 8ab(3a + 3b + 4τr) + 3(3a + 3b + 2τr).

The crucial observation on which the present work relies is formalised in the next 
result.

Lemma 3.1. Let {a, b, c} be a Diophantine triple with 4000 < b < c. If

a

(
a + 7

2 − 1
2
√

4a + 13
)

≤ b ≤ 2.98 a2, (3)

then c = cτν for some positive integer ν and some τ ∈ {±}. In addition, if the pair 
{a, b} cannot be expressed as {T 2 + 2T, 4T 4 + 8T 3 − 4T} for any integer T > 1, and if 
inequalities (2) hold, then c = cτν for some integer ν ≥ 1 and some τ ∈ {±}.

Proof. Suppose that c �= cτν . The proof of Lemma 4.1 in [15] allows us to assume that 
0 < c′ < b, where c′ = ((s′)2 − 1)/a and s′ = rs − at. Putting b′ = ((r′)2 − 1)/a with 
r′ = s′r − at′ and t′ = rt − bs shows that

b = a + b′ + c′ + 2ab′c′ + 2r′s′T, (4)

where T =
√
b′c′ + 1. If b′ = 0, then b = a + c′ + 2s′, which in turn implies c = c−2 . 

Hence, b′ is a positive integer and {a, B, C, b} is a regular Diophantine quadruple, where 
B = min{b′, c′} and C = max{b′, c′}.

If a ≤ BC then one can deduce from (4) that

b > 4aBC + a + B + C > 4a2 + a + 2
√
a. (5)
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Below we suppose that a > BC. If a �= B + C + 2T then a > 4BC + B + C. From 
a −1 ≥ 4BC +2

√
BC + 1 we deduce 8BC ≤ 2a −1 −

√
4a + 13, which together with (4)

entails

b < 4aBC + 4a ≤ a

(
a + 7

2 − 1
2
√

4a + 13
)
, (6)

in contradiction with the hypothesis.
Assume that a = B + C + 2T . Then, BC < B + C + 2T implies either B = 1 or

C ≤ B2 + 1 + 2
√
B3 −B + 1

(B − 1)2 . (7)

In the latter case, as the right-hand side of (7) is a decreasing function of B, one can 
easily see that B ≤ 3. Since B ≥ 2, the only possible triples {B, C, a} are

{2, 4, 12}, {3, 5, 16},

which respectively induce the following Diophantine pairs {a, b}:

{12, 420}, {16, 1008},

any of which does not satisfy the assumption b > 4000.
It remains to consider the case where a = C + 1 + 2

√
C + 1. Now one has C = T 2 − 1

and a = T 2 + 2T for some integer T > 1. Since {1, C, a, b} is a regular Diophantine 
quadruple, one also has b = 4T 4 + 8T 3 − 4T , which together with 4000 < b ≤ 2.98a2

shows T = 6. Thus, b/a2 = 6888/482 > 2.989, a contradiction.
Therefore, if c �= c±ν , then either b < a2 + (7 −

√
4a + 13)a/2 or b > 2.98 a2. The 

first assertion of the lemma is exactly the contraposition of this statement. The second 
assertion follows from (5), (6) and the last paragraph. �
4. Proof of Theorem 1.1

Assume that {a, b, c, d} is a Diophantine quadruple with a < b < c < d+ < d. Let 
x, y, z be positive integers such that ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Then 
eliminating d from these equations yields a system of Pellian equations

ay2 − bx2 = a− b, (8)

az2 − cx2 = a− c, (9)

bz2 − cy2 = b− c. (10)

We know by [12, Lemma 1] that there exist a nonnegative integer l and a solution (y2, x2)
to (8) with
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1 ≤ x2 <
√
b, 1 ≤ |y2| <

√
b
√
b (11)

such that x = Vl and y = u′
l, where

V0 = x2, V1 = rx2 + ay2, Vl+2 = 2rVl+1 − Vl,

u′
0 = y2, u′

1 = ry2 + bx2, u′
l+2 = 2ru′

l+1 − u′
l.

Hence,

u′
l ≡

{
y2 (mod 2b) if l is even;
ry2 + bx2 (mod 2b) if l is odd.

(12)

After these general considerations, we can proceed with the promised proof. We ex-
amine the case where {a, b} = {T 2 + 2T, 4T 4 + 8T 3 − 4T} for some integer T > 1 in 
Section 5. By Lemma 3.1, in the next three subsections we may assume that c = cτν for 
some ν and τ .

4.1. The case c = cτ1

If c = cτ1 , then τ = +, that is, c = c+1 = a + b + 2r. From [20, Theorem 1.3] and [25, 
Theorem 8] one sees that any solutions to (9), (10) can be expressed respectively as

z
√
a + x

√
c = (λ1

√
a +

√
c)(s +

√
ac)m,

z
√
b + y

√
c = (λ1

√
b +

√
c)(t +

√
bc)n

for some nonnegative even integers m, n and λ1 ∈ {±1}, which enables us to write 
x = Wm and y = un, where

W0 = 1, W1 = s + λ1a, Wm+2 = 2sWm+1 −Wm,

u0 = 1, u1 = t + λ1b, un+2 = 2tun+1 − un. (13)

Since we have y = un ≡ 1 (mod 2b) by (13) with n even, if l is even, then y2 ≡
1 (mod 2b), which together with (11) implies y2 = 1 and x2 = 1. If l is odd, then 
ry2 + bx2 ≡ 1 (mod 2b). Since 0 < bx2 − r|y2| ≤ b − r < b, one has bx2 − r|y2| = 1. 
However, (11) shows that bx2 + r|y2| < 2bx2 < 2b

√
b, while

bx2 + r|y2| = (bx2 + r|y2|)(bx2 − r|y2|) = b2 − ab− y2
2 > 61b

√
b,

which is a contradiction. Therefore, one obtains the following.

Lemma 4.1. Assume that {a, b, c+1 , d} is a Diophantine quadruple with d > d+. If x =
Vl = Wm has a solution, then l ≡ m ≡ 0 (mod 2) and x2 = y2 = 1.
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Now let

α = s +
√
ac, β = r +

√
ab, χ =

√
bc +

√
ac√

bc±
√
ab

.

Since we are assuming d > d+, it is easy to see that m ≥ 3 (see the proof of [23, Lemma 
1] for a similar argument). Then, the standard argument shows that

0 < Λ < α1−2m (14)

where Λ = l log β −m logα + logχ (cf. [23, Lemma 2]). Rewriting Λ as Λ = log(βνχ) −
m log(α/β), where ν = l − m, one has ν ≥ 2 in a similar way to the proof of [23, 
Lemma 1], and from (14) with logχ > α1−2m one sees that m log(α/β) > ν log β. Since 
log(α/β) <

√
a/b by [10, Lemma 3.6], one can deduce the lower bound for the solution:

m > ν

√
b

a
log β. (15)

In order to get an upper bound for m, we appeal to Laurent’s theorem on linear forms 
in two logarithms.

Proposition 4.2. ([26, Theorem 2]) Let α1 and α2 be multiplicatively independent algebraic 
numbers with |α1| ≥ 1 and |α2| ≥ 1. Let b1 and b2 be positive integers. Consider the linear 
form in two logarithms

Λ = b2 logα2 − b1 logα1,

where logα1, logα2 are any determinations of the logarithms of α1, α2, respectively. Let 
ρ and μ be real numbers with ρ > 1 and 1/3 ≤ μ ≤ 1. Set

σ = 1 + 2μ− μ2

2 , λ = σ log ρ.

Let a1, a2 be real numbers such that

ai ≥ max{ 1, ρ | logαi| − log |αi| + 2D h(αi) } (i = 1, 2),

a1a2 ≥ λ2,

where D = [Q(α1, α2) : Q] / [R(α1, α2) : R]. Let h be a real number such that

h ≥ max
{
D

(
log

(
b1
a2

+ b2
a1

)
+ log λ + 1.75

)
+ 0.06, λ, D log 2

2

}
.

Then we have
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log |Λ| ≥ −C

(
h + λ

σ

)2

a1a2 −
√
ωθ

(
h + λ

σ

)
− log

(
C ′

(
h + λ

σ

)2

a1a2

)
,

where

σ = 1 + 2μ− μ2

2 , λ = σ log ρ,

ω = 2
(

1 +
√

1 + 1
4H2

)
, θ =

√
1 + 1

4H2 + 1
2H ,

h ≥ max
{

4
(

log
(
b1
a2

+ b2
a1

)
+ log λ + 1.75

)
+ 0.06, λ, 2 log 2

}
,

H = h

λ
+ 1

σ
,

C = μ

λ3σ

(
ω

6 + 1
2

√
ω2

9 + 8λω5/4θ1/4

3√a1a2H1/2 + 4
3

(
1
a1

+ 1
a2

)
λω

H

)2

,

C ′ =

√
Cσωθ

λ3μ
.

Suppose first that (3) holds. We apply Proposition 4.2 with b1 = m, b2 = 1, α1 = α/β

and α2 = βνχ. Note that (3) together with b > 4000 implies that
√

b

2.98 < a <

√
b

0.923 . (16)

As seen in the proof of [10, Proposition 6.1], one has

h(α1) = 1
2 logα, h(χ) ≤ 1

4 log(bc2(c− a)),

which shows that it is sufficient to have

a1 ≥ 4 logα + (ρ− 1)(0.923b)−1/4,

a2 ≥ ν(ρ + 3) log β + 2 log(bc2(c− a)) + (ρ− 1) logχ.

A similar argument to [10, Lemmas 3.7, 3.9] implies that β > 1.999r and

bc2(c− a) <
(

1 + 2
√

a

b
+ 1

b2

)(
1
r

+ 1
a

)4

r8 < 10−8β8.

We now fix ρ = 37, μ = 0.63. Since

χ ≤
√
bc +

√
ac√

bc−
√
ab

< 1 + 2√
b/a−

√
b/c

,
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we obtain

a1 ≥ f1(a, b) logα, a2 ≥ (40ν + f2(a, b)) log β,

where

f1(a, b) = 4 + 36
0.9231/4b1/4 logα

,

f2(a, b) = 16
(

1 − log(10)
log β

)
+

36 log
(
1 + 2√

b/a−
√
b/c

)
log β < 16.

Furthermore, since α > β implies that

b1
a2

+ b2
a1

≤ m

(40ν + 16) log β + 1
f1(a, b) logα

<
m + (40ν + 16)/f1(a, b)

(40ν + 16) log β ,

one can deduce that

h = 4 log
(
m + (40ν + 16)/f1(a, b)

(40ν + 16) log β

)
+ 11.913.

Suppose for the moment that b > 1014. Then, in view of inequalities (16), we may 
take

a1 = 4.001 logα, a2 = (40ν + 16) log β, (17)

h = 4 log
(
m + 9.998ν + 4
(40ν + 16) log β

)
+ 11.913.

If h ≤ 28.74, then inequality (15) shows that

ν

√
b

a
log β < m < (40ν + 16) exp(4.20675) log β,

which together with ν ≥ 2 yields b/a < 1.039 · 107. If h > 28.74, then Proposition 4.2
together with the estimate 0 < Λ < α1−2m implies that

2m− 1
4.001(40ν + 16) log β < C

(
h + λ

σ

)2

+

√
ωθ

(
h + λ

σ

)
+ log

(
C ′ (h + λ

σ

)2
a1a2

)
a1a2

,

which yields

m
< 67.26.
(40ν + 16) log β
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It follows from inequality (15) that b/a < 1.04231 · 107.
Therefore, it remains to obtain a contradiction for 4000 < b < 1.0868 · 1014, 37 ≤ a <

1.043 · 107 and 385 ≤ r < 3.367 · 1010, which can be done by using the reduction method 
introduced in [3].

Because it is the most difficult case in all the reduction procedures used in this paper 
(in terms of running time), we will give some details here. We were solving the equation 
z = v2m = w2n for z0 = z1 = ±1. In order to bound from above the index m we have used 
the linear form in logarithms from [13, relation (60)]. Using the rough estimates given 
there in conjunction with [28], we got the initial estimate m < M = 1021 in all cases. 
Now, for every a we find all r which satisfy r2 ≡ 1 (mod a) and we have lower and upper 
bounds for r, depending on a, from the bounds for b = (r2 − 1)/a. Depending on which 
upper bound is smaller, we take b < 2.98a2 or b < 1.04231 ·107a. We also check if r ≡ ±1
(mod a). If that is the case, we do not have to do the reduction because of the results 
proved in [10]. Now for fixed a and r we find b and c = a +b +2r and do the variant of the 
reduction process described in [14, Lemma 5]. We have done it in PARI-GP [29], running 
20 programs simultaneously (we have used the command forstep with different starting 
a), with real precision of 77 significant digits, on Intel® Core™ i7-7700 CPU@3.60–4.20 
GHz.

It took 55 days to finish all of them. After at most 2 steps of reduction we got m < 2
in all cases, which means that the only solution is z = v2 = w2 that gives us the already 
known extension to a quadruple with d = d+.

Suppose second that 2.98a2 < b ≤ 4a2 + a + 2
√
a. From b > 4000 it then follows 

a ≥ 32. Note that we are still in the case where c = c+1 = a + b + 2r.
Assume now that b > 1013. Then, a <

√
b/2.98 and

a ≥
√

b

4 + 1/a + 2/(a
√
a)

>

√
b

4.001 .

In applying Proposition 4.2, since logα/β <
√

a/b < (2.98b)−1/4 and bc2(c −a) < 10−8β8

can be seen in the same way as in case (3), it is sufficient that

a1 ≥
(

4 + 36
2.981/4b1/4 logα

)
logα,

a2 ≥ (40ν + 16) log β.

Thus, one may take a1, a2, h given by (17), exactly the same as in case (3). It follows 
from Proposition 4.2 and inequality (15) that b/a < 1.04231 ·107, 4000 < b < 3.6457 ·1013

and 32 ≤ a < 3.498 · 106. It only remains to perform reduction for the triples satisfying 
these inequalities and 2.98a2 < b ≤ 4a2 + a + 2

√
a.

We have done this proceeding as in the case where inequality (3) holds. With the 
same processor, it took 28 days to reach the conclusion that the only extension of the 
triple {a, b, a + b + 2r} is with d = d+.
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4.2. The case c = cτ2

Note that c is even, so both s and t are odd. By [20, Theorem 1.3] and [11, Lemma 
2.3], we may assume that vm = wn holds, where either of the following holds:

(A) Both m and n are even with z0 = z1 = ε1 ∈ {±1};
(B) Both m and n are odd with z0 = ε2t, z1 = ε2s and ε2 ∈ {±1}.

In the case of (B), any solution to (10) can be written as y = un, where

u0 = r, u1 = rt + ε2bs, un+2 = 2tun+1 − un. (18)

Since t = tτ2 = 2rb + τ(2ab + 1) ≡ τ (mod 2b), one has

un ≡ ±(b− r) (mod 2b), (19)

since n is odd. Comparing (19) with (12), one sees that

b− r ≡
{
±y2 (mod 2b) if l is even;
±(bx2 − r|y2|) (mod 2b) if l is odd.

If l is even, then b ≡ r± y2 (mod 2b). However, (11) shows that 0 < |r± y2| ≤ r+ |y2| <
r+

√
b
√
b < b, which is a contradiction. If l is odd, then b −r ≡ ±(bx2−r|y2|) (mod 2b). 

Since both sides have absolute value between 0 and b, one has

b− r = bx2 − r|y2|.

Combining this with ay2
2 − bx2

2 = a − b yields

x2
2 + 2a(b− r)x2 − 2ab− 1 + 2ar = 0.

By x2 > 0, one obtains x2 = 1, and hence y2 = ±1. Moreover, since t ≡ τ (mod b), 
one has un ≡ τr (mod b) and u′

l ≡ y2r (mod b), which together show that y2r ≡ τr

(mod b). Since gcd(b, r) = 1, one obtains y2 = τ .
Since the case where both m and n are even can be treated exactly in the same way 

as in the proof of Lemma 4.1, the following holds.

Lemma 4.3. Assume that {a, b, cτ2 , d} is a Diophantine quadruple with d > d+. Assume 
that z = vm = wn has a solution.

(i) If both m and n are even, then l is even and (x2, y2) = (1, 1).
(ii) If both m and n are odd, then l is odd and (x2, y2) = (1, τ).
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Our next concern is to obtain lower bounds for m in terms of a and b. First consider 
case (A).

Lemma 4.4. Assume that vm = wn holds with m ≡ n ≡ 0 (mod 2). Put Δ = m − l/2 for 
τ = − and Δ = l/2 −m for τ = +. If m > 0, then Δ ≥ 1.

Proof. Assume first that τ = −. We show that V2m > Wm by induction. One has 
V2 = 2a(b + r) + 1 > s + a ≥ W1. For m ≥ 2, the inductive assumption together with 
s = 2ab − 2ar + 1 < 2r2 − 2 shows that

Wm < 2sWm−1 < (4r2 − 4)V2m−2 = 2r(V2m−1 + V2m−3) − 4V2m−2

= V2m + V2m−4 − 2V2m−2 < V2m.

Assume second that τ = +. Then, V2 = 2a(b + r) + 1 = s and W1 = s ± a, which 
mean that Vl = Wm with m > 0 has a solution only for l > 2. Thus, it suffices to show 
V2m < Wm for m ≥ 2. Since c > 4ab(b + 2r) and

V4 = 8a2b(b + r) + 8ab + 4ar + 1,

W2 = 2ac± 2as + 1 > 8a2b(b + 2r) − 2a(2ab + 2ar + 1) + 1,

one has V4 < W2. For m ≥ 3, the inductive assumption together with 2s − 1 = 4ab +
4ar + 1 > 4r2 implies that

Wm > (2s− 1)Wm−1 > 4r2V2m−2 > V2m. �
Lemma 4.5. Assume that vm = wn holds with m ≡ n ≡ 0 (mod 2).

(1) If τ = − and b > 1013, then m > 2Δ−1
1.0013

√
b
a log β, where Δ = m − l/2.

(2) If τ = + and b > 1013, then m > 2Δ
1.0003

√
b
a log β, where Δ = l/2 −m.

Proof. Note that in view of Lemma 4.4, the right-hand side of each inequality in (1) and 
(2) is positive. Observe that

β2 − α =
√
a(2r

√
b−

√
c− 2τr

√
a),

2r
√
b−

√
c = 4b(ab + 1) − c

2r
√
b +

√
c

= −4r(ar + 2τab + τ)
2r
√
b +

√
c

and

β2 − α

2r
√
a

= −τ
√
ac + 2τr

√
ab + 4τab + 2ar + 2τ

√
c + 2r

√
b

. (20)
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Assume that b > 1013. Inequalities (2) imply that

a > 1.581 · 106 and b > 0.9992a2.

(1) In the case of τ = −, one has

a + b− 2r = (b− a)2 − 4
a + b + 2r > 0.998b,

which shows that

c = c−2 = 4ab(a + b− 2r) + 4(a + b− r) > 3.992ab2.

It follows from (20) that

β2 − α

2r
√
a

<

√
3.992ab + 6ab√

3.992ab + 2r
√
b
< 2.00051

√
a,

which yields β2 − α < 4.0011ar. Since α > 2
√
ac > 3.99599ab, one has

β2 − α

α
<

4.0011r
3.99599b < 1.0013

√
a

b
.

Now it is easy to see from (14) that (l+1) log β > m logα. Therefore, putting Δ = m −l/2
leads us to

2Δ− 1
m

= 2 − l + 1
m

< 2 − logα
log β

= log(β2/α)
log β <

β2 − α

α log β <
1.0013√
b/a log β

,

from which the desired inequality is derived.
(2) In the case of τ = +, since c = c+2 = 4ab(a + b + 2r) + 4(a + b + r) > 4ab2 and

2r
√
ab + 4ab + 2ar + 2 < 6.0016ab,

one sees from (20) that

α− β2

2r
√
a

<
2ab + 6.0016ab
2
√
ab + 2

√
ab

= 2.0004
√
a,

and hence α− β2 < 4.0008ar. Combining this inequality with β2 > 4ab, one has

α− β2

2 <
4.0008ar

< 1.0003
√

a
.

β 4ab b
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In view of the inequality l log β < m logα obtained from (14), it follows from Δ = l/2 −m

that

2Δ
m

= l

m
− 2 <

logα
log β − 2 <

α− β2

β2 log β <
1.0003√
b/a log β

,

which gives the inequality as asserted. �
Proposition 4.6. Let {a, b, c, d} be a Diophantine quadruple with a < b < c = cτ2 < d+ < d

with τ ∈ {±}. Assume that z = vm = wn for some even m and n with z0 = z1 ∈ {±1}.

(1) If τ = −, then b/a < 7.035 · 106 and b < 4.951 · 1013.
(2) If τ = +, then b/a < 7.018 · 106 and b < 4.929 · 1013.

Proof. (1) In the case of τ = −, rewrite the linear form Λ appearing in (14) as

Λ = l

2 log
(
β2

α

)
− log

(
αΔ

χ

)
,

and assume that b > 1013. We apply Proposition 4.2 with b1 = 1, b2 = l/2, α1 = αΔ/χ, 
α2 = β2/α. Since the conjugates of α2 greater than 1 are

(r +
√
ab)2

s +
√
ac

and (r +
√
ab)2

s−√
ac

,

one has

h(α2) = 1
4 log(r +

√
ab)4 = log β.

As in [10, Proof of Proposition 6.1], one has

h(χ) ≤ 1
4 log

(
bc(c− a)(

√
a +

√
b)2

)
. (21)

Since 3.992ab2 < c < 4ab2, b(
√
a +

√
b)2 < 1.0012b2 < c/(3.987a) and b < 4.001a2 by 

(2), one gets

h(χ) < 1
4 log

(
c3

3.987a

)
<

1
4 log

(
64

3.987a
2b6

)

<
1
4 log

(
64

3.987(4.001)4/3
( α

3.9959

)14/3
)

<
7
6 logα.

It follows that

h(α1) = h(αΔ/χ) ≤ Δh(α) + h(χ) < 3Δ + 7
6 logα.



M. Cipu et al. / Journal of Number Theory 210 (2020) 433–475 447
Hence, a1 and a2 should satisfy

a1 ≥ (ρ− 1) log
(
αΔ

χ

)
+ 8 · 3Δ + 7

6 logα

=
(
Δ(ρ + 3) + 28

3

)
logα− (ρ− 1) logχ,

a2 ≥ (ρ− 1) log
(
β2

α

)
+ 8 log β = 4 logα + (ρ + 3) log

(
β2

α

)
.

Now fix ρ = 37 and μ = 0.63. Since

β2

α
<

(r +
√
ab)2

2
√
ac

<
(r +

√
ab)2

2
√

3.992ab
< 1.0011,

we may take

a1 =
(

40Δ + 28
3

)
logα, a2 = 4 logα + 0.044.

Then,

b1
a2

+ b2
a1

<
l/2 + 10Δ + 7/3

(40Δ + 28/3) logα

which enables us to take

h = 4 log m + 10Δ + 7/3
(40Δ + 28/3) logα + 11.913.

If h ≤ 28.684, then

m < 66.205(40Δ + 28/3) logα.

If h > 28.684, then Proposition 4.2 with (14) implies that

m <

{
66.921(40Δ + 28/3) logα for Δ ≤ 10000;
66.216(40Δ + 28/3) logα for Δ ≥ 10001.

(22)

Thus, (22) holds in any case. In the case where Δ ≤ 10000, we know by [7, Lemma 2.4]
that

m > b−1/2c1/2 > b−1/2(3.992ab2)1/2 > 1.9979a1/2b1/2,

which together with (22) shows that
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√
ab

log(s +
√
ac)

<
66.921
1.9979(40Δ + 28/3) < 1.34 · 107.

Since s +
√
ac < 4ab, one obtains ab < 3.2 · 1017. However, b > 1013 implies a < 3.2 · 104, 

which contradicts 1013 < b ≤ 4a2 + a + 2
√
a.

In the case where Δ ≥ 10001, since β2 > α, comparing the inequality in Lemma 4.5
(1) with (22), one obtains b/a < 7.035 · 106 and b < 4.951 · 1013.

(2) In the case of τ = +, rewrite Λ as

Λ = log
(
αΔχ

)
− l

2 log α

β2 ,

and assume that b > 1013. We apply Proposition 4.2 with b1 = l/2, b2 = 1, α1 = α/β2, 
α2 = αΔχ. It is easy to see that

h(α1) = 1
4 log(s +

√
ac)2 = 1

2 logα.

Since 4ab2 < c < 4.0064ab2, b(
√
a+

√
b)2 < 1.0012b2 < c/(3.9952a) and b < 4.001a2, one 

sees from (21) that

h(χ) < 1
4 log

(
c3

3.9952a

)
<

7
6 logα,

which yields

h(α2) = h(αΔχ) ≤ Δ

2 logα + h(χ) < 3Δ + 7
6 logα.

Thus, a1 and a2 satisfy

a1 ≥ (ρ− 1) log
(

α

β2

)
+ 4 logα,

a2 ≥
(
Δ(ρ + 3) + 28

3

)
logα + (ρ− 1) logχ.

Fix ρ = 37 and μ = 0.63. Since

α

β2 <
s +

√
ac

4ab < 1.0008

and

(ρ− 1) logχ ≤ 36 log
1 +

√
a/b

1 −
√

a/c
< 36 log(1.001) < 0.001 logα,

we may take



M. Cipu et al. / Journal of Number Theory 210 (2020) 433–475 449
a1 = 8 log β + 0.032 and a2 = (40Δ + 9.335) logα.

Then, l log β < m logα shows that

b1
a2

+ b2
a1

<
l

2(40Δ + 9.335) logα + 1
8 log β <

4m + 40Δ + 9.335
8(40Δ + 9.335) log β ,

which allows us to take

h = 4 log 4m + 40Δ + 9.335
8(40Δ + 9.335) log β + 11.913.

If h ≤ 28.684, then

m < 132.41(40Δ + 9.335) log β.

If h > 28.684, then Proposition 4.2 with (14) implies that

m <

{
132.789(40Δ + 9.335) log β for Δ ≤ 10000;
132.413(40Δ + 9.335) log β for Δ ≥ 10001.

(23)

Thus, (23) holds in any case. In the case where Δ ≤ 10000, using (23) and m >
b−1/2c1/2 > 2a1/2b1/2 from [7, Lemma 2.4], one has

2
√
ab

log(r +
√
ab)

< 132.789(40Δ + 9.335) < 5.312 · 107,

which yields ab < 3.1 · 1017. However, b > 1013 implies a < 3.1 · 104, which contradicts 
1013 < b ≤ 4a2 + a + 2

√
a.

In the case where Δ ≥ 10001, the inequality in Lemma 4.5 (2) together with (23)
implies b/a < 7.018 · 106 and b < 4.929 · 1013. This completes the proof of Proposi-
tion 4.6. �

Second consider case (B), in which m ≡ n ≡ l ≡ 1 (mod 2) and (x2, y2) = (1, τ) hold. 
We appeal to the strategy in [22].

Lemma 4.7. Assume that m ≡ n ≡ 1 (mod 2). Then, m ≡ n ≡ ±1 (mod r).

Proof. Note that x = Vl = Wm, where

V0 = x2 = 1, V1 = rx2 + ay2 = r + τa, Vl+2 = 2rVl+1 − Vl,

W0 = r, W1 = rs + ε2at, Wm+2 = 2sWm+1 −Wm.

Since l is odd, one has x = Vl ≡ (−1) l−1
2 τa (mod r). On the other hand, since s =

2r(r + τa) − 1 ≡ −1 (mod r) and t = 2r(b + τr) − τ ≡ −τ (mod r), one has
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x = Wm ≡ −τε2ma (mod r).

Since gcd(a, r) = 1, one obtains m ≡ (−1) l+1
2 ε2 (mod r). Similarly, one can deduce from 

y = u′
l = un that

u′
l ≡ (−1)

l−1
2 b (mod r) and un ≡ −ε2nb (mod r),

which together give n ≡ (−1) l+1
2 ε2 (mod r). It follows that m ≡ n ≡ ±1 (mod r). �

Proposition 4.8. Let {a, b, c, d} be a Diophantine quadruple with a < b < c = cτ2 < d+ < d

and τ ∈ {±}. Assume that z = vm = wn for some odd m and n with |z0| = t, |z1| = s

and z0z1 > 0. Then, b < 6.76 · 106.

Proof. For this proof we may assume b ≥ 106, which entails a ≥ 500 and r > 22360. By 
Lemma 4.7, one may put

m = m0r + ε0 and n = n0r + ε0

for some positive integers m0 and n0, and ε0 ∈ {±1}. Putting further

α = s +
√
ac, β′ = t +

√
bc, χ′ =

√
b(r

√
c + ε2t

√
a)

√
a(r

√
c + ε2s

√
b)
,

one has

Λ′ : = m logα− n log β′ + logχ′

= (m0r + ε0) logα− (n0r + ε0) log β′ + logχ′

= log
((

α

β′

)ε0

χ′
)
− r log

(
(β′)n0

αm0

)
.

We may apply Proposition 4.2 with b1 = r, b2 = 1, α1 = (β′)n0/αm0 , α2 = (α/β′)ε0χ′, 
by replacing α1, α2 with 1/α1, 1/α2 if α1 < 1 and α2 < 1. We know by [13, formula 
(60)] that

0 < Λ′ <
8
3acα

−2m. (24)

Now one has

h(α) = 1
2 logα, h(β′) = 1

2 log β′ <
3
4 logα

and
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h(χ′) ≤ 1
4 log

(
a2(c− b)2 ·

√
b(r

√
c + t

√
a)

√
a(r

√
c + s

√
b)

·
√
b(r

√
c + t

√
a)

√
a(r

√
c− s

√
b)

·
√
b(r

√
c− t

√
a)

√
a(r

√
c− s

√
b)

)

<
1
4 log

(
4a1/2b3/2c2r2

)
<

11
8 logα.

Hence,

h(α2) ≤ h(α) + h(β′) + h(χ′) < 21
8 logα. (25)

If (β′)n0 > αm0 , then the conjugates of (β′)n0/αm0 greater than 1 are (β′)n0/αm0 and 
(β′)n0/αm0 , where α = s −√

ac. Thus,

h(α1) = h

(
(β′)n0

αm0

)
= 1

4 log
(
(β′)2n0

)
= n0

2 log β′.

If (β′)n0 < αm0 , then similarly one has h(α1) = (m0/2) logα. By (24), one gets

∣∣∣m0

2 logα− n0

2 log β′
∣∣∣ = 1

2

∣∣∣∣log αm0

(β′)n0

∣∣∣∣ < 1
2r

(
| log ((α/β′)ε2χ′) | + 8

3acα
−2m

)

<
1
2r

(
logα + 10−10) < 0.00048,

where we used 3.74865ab2 < c−2 ≤ c ≤ c+2 < 4.25952ab2, m ≥ 22360, and

logχ′ < log(1.5b1/2a−1/2) < 0.5 logα,

|log ((α/β′)ε2χ′)| ≤ log(β′χ′/α) < logα,

1
2r logα <

log
(√

4.25952a2b2 + 1 +
√

4.25952ab
)

2
√
ab + 1

< 0.0004796.

Thus, in either case one has

h(α1) <
m0

2 logα + 0.00048. (26)

According to Proposition 4.2, we may take

a1 = 4m0 logα + 0.00096(ρ + 3),

a2 = (ρ + 20) logα,

b′ = r

a2
+ 1

a1
,

h = 4 log b′ + 4 log λ + 7.06.

Fix ρ = 37 and μ = 0.63. If h ≤ 28.77 then b′ < 67.657, so that
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r < 57 · 67.657 logα < 3856.449 logα.

If h > 28.77 then Proposition 4.2 together with (24) implies that

2m logα < 33.85945 · 57(4m0 logα + 0.0384) logα + log(8ab/3).

As m ≥ m0r − 1, one gets

r < 3864.828 logα.

Thus, one always has ab < 8.7839 · 109, r ≤ 93722, and b < 6.76 · 106. �
Now, starting with the bounds obtained in Propositions 4.6 and 4.8, one can apply 

the reduction method to get a contradiction in each case. The computations needed in 
all about 23 days.

4.3. The case c ≥ c−3

The following lemmas can be applied if c is much bigger than b.

Lemma 4.9. ([20, Lemma 4.1]) Assume that c > b4. Suppose that z = vm = wn has a 
solution for some integers m and n. Then, m ≡ n (mod 2) and n > 2.778b−3/4c1/4.

Lemma 4.10. ([20, Lemma 3.4]) Assume that c ≥ 3.706b4. If z = vm = wn has a solution 
for some integers m and n with n ≥ 4, then n < 8ϕ(a, b, c), where

ϕ(a, b, c) = log(8.406 · 1013a1/2(a′)1/2b2c) log(1.643a1/2b1/2(b− a)−1c)
log(4bc) log(0.2699a(a′)−1b−1(b− a)−2c)

and a′ = max{a, b − a}.

Suppose first that (3) holds. Assume that {a, b, c, d} is a Diophantine quadruple with 
c−3 ≤ c < d+ < d. Then c > 16a2b2(a + b − 2r). Since inequalities (3) and b > 4000
together imply that a ≥ 37, 0.923a2 < b and

a + b− 2r = (b− a)2 − 4
a + b + 2r >

{(
1 − (0.923b)−1/2)2 − 4b−2

}
b

1 + (0.923b)−1/2 + 2
√

(0.923b)−1/2 + b−2

> 0.759b,

from b ≤ 2.98a2 it follows that c > 16 · (1/2.98) · 0.759b4 > 4.0751b4. Since (b/2.98)1/2 ≤
a < (b/0.923)1/2 and a1/2b1/2(b − a)−1 < 1.037306b−1/4, we see from Lemmas 4.9 and 
4.10 that
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2.778b−3/4c1/4 <
8 log(8.5761 · 1013b11/4c) log(1.7043b−1/4c)

log(4bc) log(0.15634b−7/2c)
,

which together with c > 4.0751b4 implies that

3.9469b1/4 <
8 log(3.4949 · 1014b27/4) log(6.9452b15/4)

log(16.3004b5) log(0.6371b1/2)
.

Hence, we obtain b ≤ 800822, a ≤ 908 and r ≤ 26965. The reduction procedure gives 
m ≤ 3, so that comparison to (15) leads to

3 ≥ m > 2
√

b

a
log(2

√
ab) > log 16000 > 9.6,

a contradiction.
Suppose second that 2.98a2 < b ≤ 4a2 + a + 2

√
a, and that c = cτν for some ν and τ . 

Since 4a2 + a + 2
√
a < 4.01a2 and a + b − 2r > 0.93b, it holds

c ≥ c−3 > 16a2b2(a + b− 2r) > 16
4.01b

3 · 0.93b > 3.71b4. (27)

Lemmas 4.9 and 4.10, together with

a1/2 <

(
b

2.98

)1/4

< 0.76111b1/4, (b− a)−1 = 1
b

(
1 + a

b− a

)
< 1.00127b−1

and b < 4.01a2, imply that

2.778b−3/4c1/4 <
8 log(6.3979 · 1013b11/4c) log(1.2521b−1/4c)

log(4bc) log(0.13478b−7/2c)
. (28)

Combining the estimates (27) and (28) yields b ≤ 969729, a ≤ 570 and r ≤ 23510. The 
reduction procedure then leads us in less than 16 minutes to a contradiction as indicated 
above.

5. Proof of Theorem 1.3

Suppose finally that a = T 2 + 2T and b = 4T 4 + 8T 3 − 4T for some integer T > 1. 
We know by b > 4000 that T ≥ 6. Moreover, the proof of Lemma 3.1 implies that it 
suffices to consider the case where c can be expressed as c = γτ

ν for some sequence {γτ
ν}

satisfying γτ0
ν0

= c′ ∈ {1, T 2 − 1} with some ν0 and τ0. Let us show the sequence {γτ
ν}

explicitly. Any positive solution to the Pellian equation

at2 − bs2 = a− b (29)

can be written as s = σν , where
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σ0 = s0, σ1 = rs0 + at0, σν+2 = 2rσν+1 − σν ,

for some solution (t0, s0) to (29) with 1 ≤ s0 <
√

(r + 1)/2 = T
√
T + 2 by [12, Lemma 1]. 

Now, σ2 > r implies (σ2
2−1)/a > b > c′, and σ0 = s0 < T

√
T + 2 implies (σ2

0−1)/a < T . 
Hence, one must have either (σ2

i − 1)/a = 1 with i ∈ {0, 1} or (σ2
1 − 1)/a = T 2 − 1.

If (σ2
0 − 1)/a = 1, then one has s0 = σ0 = T + 1 and t0 = ±(2T 2 + 2T − 1).

If (σ2
1 − 1)/a = 1, then rs0 + at0 = σ1 = T + 1 with t0 < 0. Since at20 − bs2

0 = a − b, 
one has s0 = T 2 + T − 1 and t0 = −2T 3 − 2T 2 + 2T + 1.

If (σ2
1 − 1)/a = T 2 − 1, then rs0 + at0 = σ1 = T 2 + T − 1 with t0 < 0, and hence 

s0 = T +1, t0 = −2T 2−2T +1. Thus, one sees that the sequence {γτ
ν} obtained from the 

first case (t0, s0) = (±(2T 2+2T−1), T +1) contains the other possible values. Therefore, 
one may write

γ0 = γτ
0 = 1, γ−

1 = T 2 − 1,

γ+
1 = 16T 6 + 64T 5 + 72T 4 − 31T 2 − 4T + 3,

γ−
2 = 16T 8 + 64T 7 + 48T 6 − 80T 5 − 88T 4 + 32T 3 + 36T 2 − 4T − 3,

γ+
2 = 256T 12 + 2048T 11 + 6272T 10 + 8448T 9 + 2576T 8 − 5248T 7 − 4464T 6

+ 560T 5 + 1400T 4 + 96T 3 − 156T 2 − 12T + 5,

γ−
3 > 256T 14 + 2048T 13

(where the indices of the sequence are assigned in correspondence with {σν}).
Since b < c, it suffices to consider c ≥ γ+

1 .
Firstly, consider the case where c = γ+

1 . As usual, let z = vm and z = wn be solutions 
to Pellian equations (9) and (10), respectively. Then, as seen at the beginning of Sub-
section 4.2, we may assume that the parities of m and n are the same; more precisely, 
either (A) or (B) holds. Let y = un and y = u′

l be solutions to Pellian equations (10)
and (8), respectively. Then, the following holds.

Lemma 5.1. Let c = γ+
1 . Assume that z = vm = wn holds for some positive integers m

and n. Then, m ≡ n ≡ l ≡ 0 (mod 2) with z0 = z1 = ε1 ∈ {±1} and x2 = y2 = 1.

Proof. In the case where m ≡ n ≡ 0 (mod 2) with z0 = z1 = ε1 ∈ {±1}, the argument 
used in the proof of Lemma 4.1 shows that l ≡ 0 (mod 2) and x2 = y2 = 1.

Assume that m ≡ n ≡ 1 (mod 2) with z0 = ε2t, z1 = ε2s, ε2 ∈ {±1}. Then, the 
sequence {un} is given by (18). Since both n and s = 4T 4 + 12T 3 + 7T 2 − 3T − 1 are 
odd and t = 8T 5 + 24T 4 + 14T 3 − 10T 2 − 6T + 1, we have

un ≡ b + rt ≡ b + 2T 2 + 2T − 1 (mod 2b). (30)

If l is even, then (12) and (30) together imply b + 2T 2 + 2T − 1 ≡ y2 (mod 2b). 
However, since b < b + 2T 2 + 2T − 1 < 2b and |y2| <

√
b
√
b < b by (11), it would hold 
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2T 2 + 2T − 1 = b + y2 and y2 = −4T 4 − 8T 3 + 2T 2 + 6T − 1, which do not satisfy (11). 
Thus, l is odd. Then (12) and (30) together yield

b + 2T 2 + 2T − 1 ≡ ±(bx2 − r|y2|) (mod 2b).

Since 0 < bx2 − r|y2| < b, it holds

2T 2 + 2T − 1 = b− bx2 + r|y2|.

Then, one sees from ay2
2 − bx2

2 = a − b that

x2
2 + 2(T 2 + 2T )(4T 4 + 8T 3 − 2T 2 − 6T + 1)x2

− (8T 6 + 32T 5 + 27T 4 − 24T 3 − 25T 2 + 6T + 1) = 0.

The squareness of the discriminant of this quadratic equation leads to

4T 6 + 16T 5 + 12T 4 − 16T 3 − 13T 2 + 6T + 1 = X2

with a positive integer X. However, we then have

(2T 3 + 4T 2 − T − 2)2 < X2 < (2T 3 + 4T 2 − T − 1)2,

which is absurd. This completes the proof of Lemma 5.1. �
In view of Lemma 5.1, we may consider only case (A), and hence have the lower 

bound m > b−1/2c1/2. Certainly, this bound together with Baker’s method gives an 
upper bound for T . However, the bound obtained in this way is too large to apply the 
reduction method for each T . Thus, we improve the lower bound for m above, by using 
the fact that both a and b are divisible by T .

Lemma 5.2. Let c = γ+
1 . Assume that T > 1010. If vm = wn holds for some positive 

integers m and n, then m > 3.9999b−1/2c1/2T 1/2.

Proof. Since z0 = z1 = ε1 ∈ {±1}, the sequences {vm} and {wn} are given by

v0 = ε, v1 = c + εs, vm+2 = 2svm+1 − vm,

w0 = ε, w1 = c + εt, wn+2 = 2twn+1 − wn.

Considering vm and wn modulo 8c2T , we see from m ≡ n ≡ 0 (mod 2) that

vm ≡ mcs + ε
m2

2 ac + ε (mod 8c2T ),

wn ≡ nct + ε
n2

2 bc + ε (mod 8c2T ),
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which together imply that

ε

(
a · m

2

2 − b · n
2

2

)
≡ tn− sm (mod 8cT ). (31)

Suppose now that m ≤ 3.9999b−1/2c1/2T 1/2. Since n ≤ m ≤ 2n by [13, Lemma 3] with 
m, n even, one gets

∣∣∣∣a · m
2

2 − b · n
2

2

∣∣∣∣ < b · m
2

2 ≤ 7.9999600005cT,

|tn− sm| < tm ≤ 3.9999cT 1/2
√

1 + 1
bc

< 0.000039999cT,

where the last inequality holds because T ≥ 1010. Hence, congruence (31) is in fact an 
equality. Multiplying both sides of it by tn + sm one has

(
b · n

2

2 − a · m
2

2

)
(2c + ε(tn + sm)) = m2 − n2.

If m2−n2 = 0, then m = n. Since b > a, one gets 2c = m(t +s). However, c ≡ 3 (mod T )
and t +s ≡ 0 (mod T ) together imply 6 ≡ 0 (mod T ), which contradicts T > 1010. Thus, 
2c + ε(tn + sm) �= 0 and

|m2 − n2| ≥
∣∣∣∣b · n2

2 − a · m
2

2

∣∣∣∣ ,
which yields,

∣∣∣∣ ba − m2

n2

∣∣∣∣ ≤ 2|m2/n2 − 1|
a

.

However, this inequality is not compatible with the inequalities

b

a
≥ 3.9 · 1020 (by T > 1010) and m2

n2 ≤ 4.

Therefore, one obtains m > 3.9999b−1/2c1/2T 1/2. �
Now if we apply Aleksentsev’s theorem [1, Theorem 1] to the linear form

Λ = m logα− n log β′ − logχ′,

where α = s +
√
ac, β′ = t +

√
bc and

χ′ =
√
b(
√
c + ε

√
a)

√ √ √

a( c + ε b)
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with ε ∈ {±1} (χ′ is redefined here and hopefully is not mistakenly identified with 
the quantity introduced in the proof of Proposition 4.8), and combine the estimate 
0 < Λ′ < (8ac/3)α2m given by [13, Eq. (60)] with m > 3.9999b−1/2c1/2T 1/2, then we 
would get around T < 1.8 · 1011. In order to further reduce this upper bound for T , we 
will appeal to Matveev’s theorem ([27, Theorem 2.1]). To do that, we have to check the 
following.

Lemma 5.3. Assume that none of the following is a square in Q:

2(s± 1), 2(t± 1), (s± 1)(t± 1), (s± 1)(t∓ 1), 2ab(s± 1), 2ab(t± 1). (32)

Then the numbers 
√
α, 

√
β′, 

√
χ′ satisfy the Kummer condition with respect to the field 

K := Q(
√
ac, 

√
bc), that is,

[K(
√
α,

√
β′,

√
χ′) : K] = 23 = 8.

Proof. Firstly, we show that 
√
α /∈ K. Assume on the contrary that 

√
α ∈ K. Then, one 

may write
√
α = l0 + l1

√
ab + l2

√
ac + l3

√
bc

with l0, l1, l2, l3 ∈ Q. Squaring both sides yields

s +
√
ac = l20 + abl21 + acl22 + bcl23 + 2(l0l1 + cl2l3)

√
ab

+ 2(l0l2 + bl1l3)
√
ac + 2(l0l3 + al1l2)

√
bc.

Comparing the coefficients of 
√
ab and 

√
bc in both sides, one gets

l0l1 + cl2l3 = l0l3 + al1l2 = 0.

In case l2 �= 0, it holds cl23 = al21. If l1l3 �= 0, then ac would be a square, which 
contradicts ac + 1 = s2. Thus one has l1 = l3 = 0 and

s +
√
ac = l20 + acl22 + 2l0l2

√
ac,

which yields 2l0l2 = 1 and 4l40−4sl20+ac = 0. It follows that s = 2l20±1, which contradicts 
the assumption.

In case l2 = 0, one gets 2bl1l3 = 1 and l0 = 0, which together show that 4ab3l41 −
4b2sl21 + bc = 0. This means that s ± 1 = 2abl21, which contradicts the assumption. 
Therefore, one obtains 

√
α /∈ K.

In the same way as above, one also sees from the assumptions 2(t ± 1) �= � and 
2ab(t ± 1) �= � that 

√
β′ /∈ K.

Secondly, assume that 
√
α ∈ K(

√
β′). One may write 

√
α = k0 + k1

√
β′ for some 

k0, k1 ∈ K. Then,
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s +
√
ac = k2

0 + k2
1(t +

√
bc) + 2k0k1

√
β′.

If k0k1 �= 0, then this equation means that 
√
β′ ∈ K, which is impossible as seen 

above. If k1 = 0, then s +
√
ac = k2

0, which contradicts 
√
α /∈ K. If k0 = 0, then 

s +
√
ac = k2

1(t +
√
bc) with k1 = l0 + l1

√
ab + l2

√
ac + l3

√
bc, where l0, l1, l2, l3 ∈ Q. 

Explicitly, this means

st = l20 + abl21 + acl22 + bcl23, (33)

c = −2(l0l1 + cl2l3), (34)

s = −2(l0l3 + al1l2), (35)

t = 2(l0l2 + bl1l3). (36)

If l0 = 0 then 2l2l3 = −1. Elimination of s and t leads to the equality abl21 = acl22+bcl23. 
The arithmetic mean-geometric mean inequality shows that the right-hand side is at 
least 2|l2l3|c

√
ab = c

√
ab. This implies st = 2abl21 ≥ 2c

√
ab, which readily leads to the 

contradiction bc ≥ abc2. The same contradiction is obtained assuming l1l2l3 = 0.
Suppose now that it holds l0l1l2l3 �= 0. Then

c = − 2l0l1
1 + 2l2l3

.

Using this, the elimination of s and t results in the equation

(4l2l3 + 1)(l20 + abl21) + (c + 4l0l1)(al22 + bl23) = 0,

equivalently

(4l2l3 + 1)
(
l20 + abl21 − acl22 − bcl23

)
= 0.

In case 4l2l3 + 1 = 0 one gets

c = −4l0l1, l2 = bsl1 + tl0
2(l20 − abl21)

, l3 = − atl1 + bsl0
2(l20 − abl21)

.

Squaring (35), one obtains 2(l0l3 − al1l2) = ±1. Combining the last three equations, one 
finds

(s± 1)l20 + 2atl0l1 + ab(s∓ 1)l21 = 0,

which yields

l0 = − (s± 1)(t + 1)
c

l1 or − (s± 1)(t− 1)
c

l1.

It follows from c = −4l0l1 that
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c2 = 4(s± 1)(t + 1)l21 or 4(s± 1)(t− 1)l21,

which contradicts the assumption.
It remains to consider the possibility l20 + abl21 = acl22 + bcl23, when st = 2(l20 + abl21) =

2(acl22 + bcl23). Since k1 is an algebraic integer in a quartic field of type (2, 2) over Q, [17, 
Lemma 3.1] allows us to assume that 4li ∈ Z for i ∈ {0, 1, 2, 3}. From st ≥ 4|l0l1|

√
ab =

2|2l2l3 + 1|c
√
ab, st ≥ 4|l2l3|c

√
ab, and 4l2l3 �= −1, one has

st ≥ max{2|2l2l3 + 1|, 4|l2l3|} · c
√
ab ≥ 5

4c
√
ab, (37)

where the last equality is attained by l2l3 ∈ {−5/16, −3/16}. On the other hand, since 
a ≥ 1, b ≥ 3 and c ≥ 8, one gets

st =
√

1 + 1
ac

√
1 + 1

bc
· c
√
ab < 1.1c

√
ab,

which contradicts (37).
Hence, 

√
α /∈ K(

√
β′).

Similarly, one also sees that 
√
β′ /∈ K(

√
α).

Thirdly, assume that 
√
χ′ ∈ K. Since

χ′ = −ab + c
√
ab− εb

√
ac + εa

√
bc

a(c− b) , (38)

putting
√

χ′ = l0 + l1
√
ab + l2

√
ac + l3

√
bc

with some l0, l1, l2, l3 ∈ Q, one has

−ab + c
√
ab− εb

√
ac + ε

√
bc

= a(c− b)
{
l20 + abl21 + acl22 + bcl23 + 2(l0l1 + cl2l3)

√
ab

+ 2(l0l2 + bl1l3)
√
ac + 2(l0l3 + al1l2)

√
bc
}
.

Comparing the terms in Q yields

−b = (c− b)(l20 + abl21 + acl22 + bcl23).

Since a, b, c, c − b are positive, this is impossible. Hence, 
√
χ′ /∈ K.

It remains only to show that 
√
χ′ /∈ K(

√
α, 

√
β′). Assume on the contrary that 

√
χ′ ∈

K(
√
α, 

√
β′) and put

√
χ′ = k0 + k1

√
α + k2

√
β′ + k3

√
αβ′
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with some k0, k1, k2, k3 ∈ K. Squaring both sides, one has

χ′ = k2
0 + k2

1α + k2
2β

′ + k2
3αβ

′ + 2(k0k1 + k2k3β
′)
√
α (39)

+ 2(k0k2 + k1k3α)
√

β′ + 2(k0k3 + k1k2)
√

αβ′.

In case either k0k1 + k2k3β
′ �= 0 or k0k3 + k1k2 �= 0, the equation above means that √

α ∈ K(
√
β′), which is a contradiction. In case k0k1 + k2k3β

′ = k0k3 + k1k2 = 0, if 
k2 �= 0, then k2

3β
′ = k2

1. Since 
√
β′ /∈ K, one has k1 = k3 = 0 and k0 = 0. Similarly one 

sees that if k1 �= 0, then k0 = k2 = k3 = 0, and if k3 �= 0, then k0 = k1 = k2 = 0. Hence, 
it suffices to show that none of χ′/α, χ′/β′ and χ′/(αβ′) is a square in K.

Suppose first 
√
χ′/α ∈ K. One may write

χ′ = (s +
√
ac)(l0 + l1 + l2

√
ab + l2

√
ac + l3

√
bc)2

with some l0, l1, l2, l3 ∈ Q. Multiplying both sides by s −√
ac and comparing the terms 

in Q yield

−ab(s− εc) = a(c− b)(l20 + abl21 + acl22 + bcl23).

Since the right-hand side is positive, one gets ε = 1. On the other hand, since it also 
holds 

√
χ′α ∈ K, one may write

χ′(s +
√
ac) = (l′0 + l′1

√
ab + l′2

√
ac + l′3

√
bc)2

with some l′0, l
′
1, l

′
2, l

′
3 ∈ Q. Comparing the terms in Q yields

−ab(s + εc) = a(c− b)((l′0)2 + ab(l′1)2 + ac(l′2)2 + bc(l′3)2),

which shows that ε = −1, in contradiction with our previous finding ε = 1. Hence, √
χ′/α /∈ K.
In the same way, one sees that 

√
χ′/β′ /∈ K.

Suppose finally that 
√
χ′/(αβ′) ∈ K, which is equivalent to 

√
χ′α/β′ ∈ K. Thus one 

may write

χ′(s +
√
ac)(t−

√
bc) = (l0 + l1

√
ab + l2

√
ac + l3

√
bc)2

with some l0, l1, l2, l3 ∈ Q. Multiplying both sides by a(c − b), one finds that the term 
in Q of the left-hand side is

−abst− abc2 − εabct− εabcs = −ab(s + εc)(t + εc) < 0,

while the term in Q of the right-hand side is positive, which is a contradiction. Hence, 
χ′/(αβ′) /∈ K. This completes the proof of Lemma 5.3. �
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Recall Matveev’s theorem in [27] simplified a little bit to better suit our situation. Let 
α1, α2, α3 be real algebraic numbers and K := Q(α1, α2, α3). Put D := [K : Q]. Assume 
that α1, α2, α3 satisfy the Kummer condition, that is,

[K(
√
α1,

√
α2,

√
α3) : K] = 8.

Consider a linear form

Γ := b1 logα1 + b2 logα2 + b3 logα3,

where b1, b2, b3 are integers with b3 �= 0. Put Aj := h(αj) for 1 ≤ j ≤ 3. We take 
E, E1, C3, C1, C2 as follows:

E ≥ 1
3D max

{∣∣∣∣± logα1

A1
± logα2

A2
± logα3

A3

∣∣∣∣
}
,

E1 = 1
2D

(
1
A1

+ 1
A2

+ 1
A3

)
,

C∗
3 exp(C∗

3 )Ee

2 ≥ e3, C3 = max{C∗
3 , 3},

C1 =
(

1 + e−6

148

)
(3 log 2 + 2) 4

3C3
,

C2 = 16
(

6 + 5
3 log 2 + 2

)
e6

31/2C3
.

We also put

Ω := A1A2A3,

ω := Ω
(
DC1

e

)3

C3 exp(C3)
Ee

2 .

Let C0 be a real number satisfying

C0 ≥ max
{

2C3, log
(

4C2 max
{

C0ω

4C1A3
, C0,

2E1C3

C1

})}
.

Furthermore, put

B0 :=
2∑

j=1

|b3| + |bj |
8 gcd(bj , b3)C0C2ω

,

B1 :=
2∑ 1

24 gcd(bj , b3)C1

(
|b3|
Aj

+ |bj |
A3

)
,

j=1
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B2 =
2∑

j=1

| logαj |(|b3| + |bj |)
8|b3|C0C2ω

,

B3 =
2∑

j=1

| logαj |
24|b3|C1

(
|b3|
Aj

+ |bj |
A3

)
,

and take a real number W0 satisfying

W0 ≥ max{2C3, log(e(1 + B0 + B1 + B2 + B3))}.

Now we are ready to state [27, Theorem 2.1] in a form applicable to our situation.

Theorem 5.4. Suppose that

2ωmin{C0,W0} ≥ C3,

ωmin{C0,W0} ≥ 2C1C3Aj for 1 ≤ j ≤ 3,

3(4C1)24C0Ω ≥ C3Aj for 1 ≤ j ≤ 3.

Then,

log |Γ| > −11648C2C0W0ω.

In order to apply this result to the case where

a = T 2 + 2T, b = 4T 4 + 8T 3 − 4T, c = γ+
1 = 16T 6 + 64T 5 + 72T 4 − 31T 2 − 4T + 3,

we need to check that the hypothesis of Lemma 5.3 holds. Since

a = T (T + 2), b = 4T (T + 1)(T 2 + T − 1),

s− 1 = (T + 1)(T + 2)(2T − 1)(2T + 1),

s + 1 = T (2T + 3)(2T 2 + 3T − 1),

t− 1 = 2T (2T + 1)(2T + 3)(T 2 + T − 1),

t + 1 = 2(T + 1)2(2T − 1)(2T 2 + 3T − 1),

it is not difficult to see that among (32) the only square values for small T are 2(s − 1)
for T = 1, 2(t + 1) for T ∈ {1, 5} and (s − 1)(t + 1) for T = 1. The next lemma shows 
that no other square appears for bigger T .

Lemma 5.5. For any T ≥ 6, none of the following is a square in Q:

2(s± 1), 2(t± 1), (s± 1)(t± 1), (s± 1)(t∓ 1), 2ab(s± 1), 2ab(t± 1).
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Proof. The idea is to exploit information on the gcd of factors in order to reduce the 
question to determination of integral points on certain elliptic curves, for which task 
either Magma [5] or Sage [30] can be used. We used both packages and noticed no 
difference in their outputs. Occasionally, elementary arguments provide a shorter way to 
the desired conclusion.

Case 1. Assume 2(s + 1) is a perfect square, which is denoted shortly 2(s + 1) = �. 
Explicitly, 2T (2T + 3)(2T 2 + 3T − 1) = �. Note that gcd

(
2T + 3, 2(2T 2 + 3T − 1)

)
= 1

and gcd(T, 2T + 3) divides 3. If T and 2T + 3 are coprime, then 2T (2T 2 + 3T − 1) = y2

for some integer y. With transformation Y = 4y, X = 4T one sees the solutions to 
this equation give rise to integral points on the elliptic curve Y 2 = X3 + 6X2 − 8X. 
The computer finds the following integral points on this curve: (−4, ±8), (0, 0), (2, ±4), 
(1250, ±44300). None of them has the x-coordinate positive and multiple of 4.

When gcd(T, 2T + 3) = 3, one has T = 3u, 2u + 1 = �, and 2u(18u2 + 9u − 1) = �. 
Proceedings as above, one arrives at the conclusion that the integrals point on the elliptic 
curve (36y)2 = (36u)3 +18(36u)2 − 72(36u) are (−18, ±36), (0, 0), (4, ±8). Clearly, none 
of them has the x-coordinate positive and divisible by 36.

Case 2. Now 2(s − 1) = �, or 2(T + 1)(T + 2)(2T + 1)(2T − 1) = �. Having in view 
that gcd

(
T +1, (T +2)(2T +1)

)
= 1 and gcd(T +1, 2T −1) = gcd(T +1, 3), one discusses 

separately four subcases.
If T ≡ 1, 3 (mod 6) then T + 1 = 2� and y2 = (T + 2)(2T + 1)(2T − 1), that is 

(4y)2 = (4T )3 + 8(4T )2 − 4(4T ) − 32. The only integral points on this elliptic curve are 
(−8, 0), (−6, ±8), (−3, ±5), (−2, 0), (2, 0), (4, ±12), (22, ±120), (10084, ±1013028), so 
that T ∈ {1, 2521}. None of these values is acceptable, because 2522 �= 2�.

When T ≡ 0, 4 (mod 6) one has T + 1 square and y2 = 2(T + 2)(2T + 1)(2T − 1) =
(2T )3 + 4(2T )2 − (2T ) − 4. Sage /Magma readily gives that the only integral points on 
this elliptic curve are (−4, 0), (−1, 0), and (1, 0). None of them has positive y-coordinate.

For T ≡ 2 (mod 6) one has T + 1 = 3� and 3y2 = 2(T + 2)(2T + 1)(2T − 1), 
equivalently (9y)2 = (6T )3 + 12(6T )2 − 9(6T ) − 108. The complete list of integral points 
is (−12, 0), (−3, 0), (3, 0). As before, no integral point has positive y-coordinate.

The last possibility is T ≡ 5 (mod 6). Then T+1 = 3� and 3y2 = (T+2)(2T+1)(2T−
1), which is transformed into (36y)2 = (12T )3 + 24(12T )2 − 36(12T ) − 864. Applying 
the inverse transformation to the outcome list (−24, 0), (−14, ±40), (−12, ±36), (±6, 0), 
(21, ±135), (30, ±216), (1446, ±55440), one finds no integer value for T .

Case 3. If 2(t +1) is a square, that is, (2T−1)(2T 2+3T−1) = �, then both 2T−1 and 
2T 2 + 3T − 1 are squares, because gcd(2T − 1, 2T 2 + 3T − 1) = 1. Putting 2T − 1 = X2, 
one has 2Y 2 = X4 + 5X2 + 2, which is transformed, via x = 2X2 and y = 4XY , into 
the elliptic curve given by

C : y2 = x3 + 10x2 + 8x.
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The integral points on C are (−9, ±3), (−8, ±8), (−4, ±8), (−2, ±4), (−1, ±1), (0, 0), 
(2, ±8), (4, ±16), (18, ±96), (32, ±208), and (128, ±1504). Thus, one sees that X ∈
{1, 3, 4, 8}, which yields T ∈ {1, 5}.

Case 4. If 2(t − 1) = �, then P := T (2T + 1)(2T + 3)(T 2 + T − 1) = �. As gcd
(
2T +

1, T (2T +3)
)

= 1 and gcd
(
2T +1, T 2 +T −1

)
∈ {1, 5}, there are two subcases to discuss. 

Suppose first that 2T + 1 = 5�. Then T ≡ 2 (mod 20), which implies T (2T + 3)(T 2 +
T − 1) ≡ 10 (mod 20). This congruence is incompatible with P/(2T + 1) = 5�.

Assume now that gcd
(
2T + 1, T 2 + T − 1

)
= 1. Then T (2T + 3)(T 2 + T − 1) = �. 

When T �≡ 0 (mod 3), it follows that both T and (2T + 3)(T 2 + T − 1) are squares. 
The last condition readily implies (2y)2 = (2T )3 + 5(2T )2 + 2(2T ) − 12. As this elliptic 
curve has only one integral point, viz., (−3, 0), one concludes that it holds T = 3u2 and 
(2u2+1)(9u4+3u2−1) = 3y2. Either of the packages Magma, Sage finds only one integral 
point on the attached elliptic curve (48y)2 = (24u2)3+20(24u2)2+32(24u2) −768, namely 
(−12, 0). It is not acceptable because its x-coordinate is negative.

Case 5. Suppose (s +1)(t +1) = �, which is equivalent to y2 = 2T (2T +3)(2T − 1) =
(2T )3 +2(2T )2−3(2T ). It is found that none of the integral points on this curve (−3, 0), 
(−1, ±2), (0, 0), (1, 0), (3, ±6) has even, positive x-coordinate.

Case 6. When (s + 1)(t − 1) = �, then 2(2T + 1)(2T 2 + 3T − 1)(T 2 + T − 1) = �. 
One has gcd

(
2T + 1, 2(2T 2 + 3T − 1)

)
= 1, gcd

(
T 2 + T − 1, 2(2T 2 + 3T − 1)

)
= 1, 

and gcd(2T + 1, T 2 + T − 1) = gcd(2T + 1, 5). When 2T + 1 is coprime with any other 
factor, it must be a perfect square, as well as T 2 + T − 1. The last condition implies 
(2T + 1)2 − 5 = �, so that T = 1.

If gcd(2T + 1, T 2 + T − 1) = 5, then 2T 2 + 3T − 1 = 2y2. Writing the last condition 
as (4T + 3)2 − 17 = (4y)2, one sees that it implies 4T + 3 = 9, which is not true for 
integer T .

Case 7. Assume (s − 1)(t + 1) = �, explicitly

P := 2(T + 1)(T + 2)(2T + 1)(2T 2 + 3T − 1) = �.

One finds gcd
(
2T +1, 2(T +1)(2T 2 +3T −1)

)
= 1 and gcd(2T +1, T +2) = gcd(T +2, 3). 

Hence, for 2T+1 coprime with any other factor, one has 2T+1 = � and T even, which in 
turn implies gcd

(
T+1, 2(T+2)(2T 2+3T−1)

)
= 1. Therefore, y2 = 2(T+2)(2T 2+3T−1), 

whence (4y)2 = (4T )3 + 14(4T )2 + 40(4T ) − 64. The relevant elliptic curve contains the 
sole integral point (−8, 0), whose x-coordinate is negative.

When gcd(2T + 1, T + 2) = 3, then one necessarily has y2 = 2(T + 1)(2T 2 + 3T − 1). 
This time one finds on the associated elliptic curve (4y)2 = (4T )3+10(4T )2+16(4T ) −32
the points (−6, ±4), (−4, 0), (4, ±16), the last of which corresponds to T = 1.

Case 8. Assume that (s − 1)(t − 1) is a square. Since

gcd(2T (T + 1)(T + 2)(2T − 1)(2T + 3), T 2 + T − 1) = 1,
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one has T 2 + T − 1 = �. Since 4(T 2 + T − 1) = (2T + 1)2 − 5, this implies that T = 1, 
a value outside the range of interest.

Case 9. If 2ab(s + 1) is a square, then it holds

2T (T + 1)(T + 2)(2T + 3)(T 2 + T − 1)(2T 2 + 3T − 1) = �.

On noting that T 2 + T − 1 is coprime with any other factor in this product, it results 
that T 2 + T − 1 is a perfect square. As seen in Case 8, this is not possible.

Case 10. If 2ab(s − 1) = �, then also 2(2T − 1)(2T + 1)(T 2 + T − 1) is a square. As 
this product is congruent to 2 modulo 4, we reached a contradiction.

Case 11. Suppose that 2ab(t + 1) is a square, equivalently

(T + 1)(T + 2)(2T − 1)(T 2 + T − 1)(2T 2 + 3T − 1) = �.

Note that T 2 + T − 1 is coprime with (T + 1)(T + 2)(2T − 1)(2T 2 + 3T − 1), so that 
it must be a perfect square. This implies (2T + 1)2 − 5 = �, whence T = 1 is the only 
possible value.

Case 12. Assume finally that 2ab(t − 1) is a square, that is

T (T + 1)(T + 2)(2T + 1)(2T + 3) = �.

Since gcd(T (T + 2)(2T + 1)(2T + 3), T + 1) = 1, one has T + 1 = � as well as T (T +
2)(2T + 1)(2T + 3) = �. This last equation is readily put into the equivalent form (
8(T + 1)2 − 5

)2 − 9 = �, which implies that 8(T + 1)2 = 10, contradiction. �
In view of Lemmas 5.3 and 5.5, we may apply Theorem 5.4 with Γ = Λ′, that is,

b1 = m, b2 = −n, b3 = 1,

α1 = α, α2 = β′, α3 = χ′.

Then, D = 4 and

A1 = h(α) = 1
2 logα,

A2 = h(β′) = 1
2 log β′.

Since all conjugates of χ′ = (
√
bc ±

√
ab)/(

√
ac ±

√
ab) are greater than one and the 

minimal polynomial of χ′ is

a2(c− b)2X4 + 4a2b(c− b)X3 + 2ab(3ab− ac− bc− c2)X2 + 4ab2(c− a)X + b2(c− a)2
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divided by the greatest common divisor of the coefficients, which is divisible by T 2(T +
1)2, one has

A3 = h(χ′) ≤ 1
4 log

(
b2(c− a)2

T 2(T + 1)2

)
= 1

2 log
(

b(c− a)
T (T + 1)

)
.

Assume now that T > 1010. Then,

1
3D max

{∣∣∣∣± logα1

A1
± logα2

A2
± logα3

A3

∣∣∣∣
}

< 0.35432,

which enables us to take E = 0.35432. Thus, we may take C∗
3 = 2.8 and C3 = 3. It is 

easy to see that C0 satisfies

C0 ≥ log
(
C0C2ω

C1A3

)
= log(C0A)

with A = 34.01472e C2
1C2A1A2, which allows us to take

C0 = logA + log(logA) + log(log(logA)) + 2 log(log(log(logA)))

(note that log(log(log(logA))) > 0 for T > 1010). Since m ≥ n and A1 < A2, one has

B0 + B1 + B2 + B3 <

(
m + 1

4C0C2ω
+ 1

12C1

(
1
A1

+ m

A3

))
(1 + log β′).

On account of T > 1010, we may take

W0 = 1 + log
(

1 +
(

m + 1
4C0C2ω

+ 1
12C1

(
1
A1

+ m

A3

))
(1 + log β′)

)
.

Hence, combining the estimate in Theorem 5.4 with 0 < Λ′ < (8ac/3)α−2m one has

m <
91 · 4 · 16C0C2W0ω

logα + 1,

which together with m > 3.9999b−1/2c1/2T 1/2 implies that

T < 5.146 · 1010.

Now it remains to do the reduction procedure. The required computations ended after 
44 days.

Secondly, assume that c = γ−
2 .
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Lemma 5.6. Let c = γ−
2 . Assume that z = vm = wn holds for some positive integers m

and n.

(i) If m ≡ n ≡ 0 (mod 2) with z0 = z1 = ε1 ∈ {±1}, then l ≡ 0 (mod 2) and 
x2 = y2 = 1.

(ii) If m ≡ n ≡ 1 (mod 2) with z0 = ε2t, z1 = ε2s, ε2 ∈ {±1}, then either l ≡ 0
(mod 2) and x2 = T 2 + T − 1, y2 = 2T 3 + 2T 2 − 2T − 1 or l ≡ 1 (mod 2) and 
x2 = T + 1, y2 = −2T 2 − 2T + 1.

Proof. (i) This assertion can be shown by the argument used in the proof of Lemma 4.1.
(ii) The sequence {un} is given by (18). Since s ≡ T+1 (mod 2) and t ≡ −2T 2−2T+1

(mod 2b), one has

un ≡ 2T 3 + 2T 2 − 2T − 1 (mod 2b).

If l is even, then (12) implies that 2T 3 +2T 2−2T −1 ≡ y2 (mod 2b). Since |y2| <
√

b
√
b

by (11), one has

y2 = 2T 3 + 2T 2 − 2T − 1, x2 = T 2 + T − 1.

If l is odd, then (12) shows that

2T 3 + 2T 2 − 2T − 1 ≡ bx2 + ry2 (mod 2b). (40)

If y2 > 0, then (18) shows that

0 > ry2 − bx2 = y2
2 − b(b− a)
ry2 + bx2

> − b2

2ry2
> −b,

which contradicts 0 < 2T 3+2T 2−2T−1 < b and (40). Hence, y2 < 0. Again from (11) the 
above congruence is in fact an equality. Combining this equality with ay2

2 − bx2
2 = a − b, 

one has

x2
2 + 2a(2T 3 + 2T 2 − 2T − 1)x2 − (ab + 1 − a2 + (T 2 − 1)a) = 0.

It follows that x2 = T + 1 and y2 = −2T 2 − 2T + 1. �
Remark 5.7. Assume that y = un = u′

l for some n and l. Let u′
e, l = u′

l if l is even 
with x2 = T 2 + T − 1 and u′

o, l = u′
l if l is odd with x2 = T + 1. Then, one has 

u′
o, 0 < u0 < u′

e, 0 = u′
o, 1 and u′

e, l = u′
o, l+1 for all even positive integers l. Therefore, it 

suffices to consider the case where l is even.
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Let us first consider case (B). In view of Remark 5.7, we may assume that l is even. 
By the standard technique, one can show the inequalities

0 < Γ := l log β − n log β′ + logχ′′ < (β′)2−2n, (41)

where

β = r +
√
ab, β′ = t +

√
bc, χ′′ =

√
c(y2

√
a + x2

√
b)

√
a(r

√
c + ε2s

√
b)
,

x2 = T 2 + T − 1, y2 = 2T 3 + 2T 2 − 2T − 1.

Lemma 5.8. Assume that z = vm = wn holds with m ≡ n ≡ 1 (mod 2) and l even. Put 
Δ′ = n − l/2. If n > 1, then Δ′ ≥ 1.

Proof. We show by induction that un < u′
2n for n ≥ 1 if τ = − and for n > 1 if τ = +, 

since in the latter case one has u1 = u′
2, which corresponds to d = d+.

In the case of τ = −, one has u1 = u′
0 < u′

2. For n ≥ 2, the inductive assumption 
together with t < 2r2 − 2 implies that

un < 2tun−1 < 2(2r2 − 2)u′
2n−2 = 2r(u′

2n−1 + u′
2n−3) − 4u′

2n−2

= u′
2n + u′

2n−4 − 2u′
2n−2 < u′

2n.

In the case of τ = +, one easily sees that one has u2 < u′
4. For n ≥ 3, one obtains 

un < u′
2n in a similar way to the previous case. �

Lemma 5.9. Assume that vm = wn holds with m ≡ n ≡ 1 (mod 2) and l even. Put 
Δ′ = n − l/2. If T > 1000, then

n >
2Δ′ − 1
2.0002 · T log β′.

Proof. Noting that

0 < β2 − β′ = (r +
√
ab)2 − (t +

√
bc) < 4ab + 3 − 2t

= 16T 5 + 48T 4 + 32T 3 − 12T 2 − 12T + 1,

β′ > 2(t− 1) = 16T 6 + 48T 5 + 16T 4 − 48T 3 − 20T 2 + 12T

and T > 1000, one has

β2 − β′

β′ <
16T 5 + 48T 4 + 32T 3 − 12T 2 − 12T + 1

16T 6 + 48T 5 + 16T 4 − 48T 3 − 20T 2 + 12T <
1.0001

T
.

Since the inequality Γ > 0 implies (l + 1) log β > n log β′, one obtains
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2Δ′ − 1
n

= 2 − l + 1
n

< 2 − log β′

log β <
β2 − β′

β′ log β <
1.0001
T log β <

2.0002
T log β′ ,

from which the assertion immediately follows. �
Proposition 5.10. Let a = T 2 + 2T , b = 4T 4 + 8T 3 − 4T and c = 16T 8 + 64T 7 + 48T 6 −
80T 5 − 88T 4 + 32T 3 + 36T 2 − 4T − 3. Assume that z = vm = wn holds for some odd 
positive integers m and n with z0 = ε2t, z1 = ε2s and ε2 ∈ {±1}, and l even. Then, 
T ≤ 6585.

Proof. The linear form Γ can be rewritten as

Γ = l

2 log
(
β2

β′

)
− log

(
(β′)Δ′

χ′′

)
.

We apply Proposition 4.2 with b1 = 1, b2 = l/2, α1 = (β′)Δ′
/χ′′, α2 = β2/β′. Since the 

conjugates of α2 greater than one are

(r +
√
ab)2

t +
√
bc

,
(r +

√
ab)2

t−
√
bc

,

one has

h(α2) = 1
4 log(r +

√
ab)4 = log β.

Since the conjugates of χ′′ greater than one are

√
c(y2

√
a + x2

√
b)

√
a(r

√
c− s

√
b)

,

√
c(−y2

√
a + x2

√
b)

√
a(r

√
c− s

√
b)

,

one has

h(χ′′) ≤ 1
4 log

(
a2(c− b)2 · c

a
· b− a

(r
√
c− s

√
b)2

)

<
1
4 log

(
4(ab + 1)ac2(b− a)

)
<

1
2 log(2abc)

<
7
12 log(2bc) < 7

6 log β′,

where the second to last inequality follows from a6 < bc. Hence, one obtains

h(α1) ≤ Δ′h(β′) + h(χ′′) < 3Δ′ + 7
6 log β′.

In what follows, assume that T > 3000. Putting ρ = 37 and μ = 0.63, one may take a1
and a2 as
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a1 =
(

40Δ′ + 28
3

)
log β′,

a2 = 4 log β′ + 0.0136,

which together imply that

b1
a2

+ b2
a1

= 1
4 log β′ + 0.0136 + l/2

(40Δ′ + 28/3) log β′

<
l/2 + 10Δ′ + 7/3

(40Δ′ + 28/3) log β′ .

Thus, one may take

h = 4 log n + 10Δ′ + 7/3
(40Δ′ + 28/3) log β′ + 11.913.

If h ≤ 28.71, then n < 66.637(40Δ′ +28/3) log β′. If h > 28.71, then Proposition 4.2 and 
0 < Γ < (β′)2−2n together show that n < 66.734(40Δ′ + 28/3) log β′, which holds in any 
case. Combining this inequality with the one in Lemma 5.9, one obtains

T < 2.0002 · 66.734 · 40Δ′ + 28/3
2Δ′ − 1 < 6585.1,

that is, T ≤ 6585. �
Using the same methods, we can get a similar result in the case (A), only some 

constants will be different, so we do not give all details here. More precisely, we can 
define the same linear form in logarithms Γ, but with z0 = z1 = ±1 and x2 = y2 = 1
which will change the number χ′′. Here, we can also prove 0 < Γ < (β′)2−2n. As we 
said above, in this case l is even, and in the same way as in the case (B) we have 
Δ′ = n − l/2 ≥ 1. As in the proof of Lemma 5.9, assuming T > 3000, we get that 
vm = wn, with m ≡ n ≡ 0 (mod 2), implies

n >
2Δ′ − 1
2.0002 · T log β′.

Furthermore, applying Proposition 4.2, the only difference from the case (B) is that

h(χ′′) < log β′.

Moreover, we can take

a1 = (40Δ′ + 8) log β′,

a2 = 4 log β′ + 0.0134.
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Defining

h = 4 log n + 10Δ′ + 2
(40Δ′ + 8) log β′ + 11.913,

we can get

n < 66.743(40Δ′ + 8) log β′,

which at the end gives us T ≤ 6407.
Explicit computations required by the reduction method give in less than three min-

utes n ≤ 7, in contradiction with the inequality

n >
2Δ′ − 1
2.052 · T log β′

obtained by the same argument as in the proof of Lemma 5.9 with T ≥ 6. This shows 
that Theorem 1.1 holds when c = γ−

2 .
Thirdly, consider the case where c = γ+

2 .
Suppose that T ≥ 100. Since b < 4a2, c > 4b3 and gcd(a, b) ≥ T ≥ 100, it holds 

3.804b2(b − a)3 < abcT 4. One can thus apply [8, Theorem 2.1], which together with [12, 
Lemma 12] and log z > (n/2) log(4bc) (cf. [19, Lemma 25]) shows a similar inequality to 
the one in [8, Lemma 3.2]:

n <
8 log(8.4706 · 1013a1/2(b− a)1/2b2cT−1) log(1.6215a1/2b1/2(b− a)−1cT )

log(4bc) log(0.2629ab−1(b− a)−3cT 4) .

On account of T ≥ 100, a ≥ 10200, b > 3a2 ≥ 3.12 · 108 and

a1/2T−1 =
(

1 + 2
T

)1/2

< 1.01,

a1/2b1/2T

b− a
= T (T 2 + 2T )1/2

b1/2(1 − a/b)
< 0.501,

aT 4

b(b− a)3 >
aT 4

b4
>

1
8.08b5/2

,

we have

n <
8 log(8.556 · 1013b5/2c) log(0.8124c)

log(4bc) log(0.03253b−5/2c)
. (42)

Since the right-hand side is a decreasing function of c and c > 4b3, we see that

n <
8 log(3.4224 · 1014b11/2) log(3.2496b3)

log(16b4) log(0.13012b1/2)
. (43)
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(A) In the case where m ≡ n ≡ 0 (mod 2), we deduce from the proof of [7, Lemma 
2.4] that m > b−1/2c1/2. Since the inequality m ≤ (4n +2)/3 for c > 4b3 can be deduced 
in the same way as [13, Lemma 4], it holds

n ≥ 3m− 2
4 >

3
4b

−1/2c1/2 − 1
2 > 1.5b− 0.5. (44)

Inequalities (43) and (44) together imply that b < 303, which is a contradiction.
(B) In the case where m ≡ n ≡ 1 (mod 2), as in the proof of [20, Lemma 3.1 (2)], we 

have

±t
{
a(m2 − 1) − b(n2 − 1)

}
≡ 2rs(n−m) (mod 8c), (45)

±s
{
a(m2 − 1) − b(n2 − 1)

}
≡ 2rt(n−m) (mod 8c). (46)

Since c = γ+
2 and

s = 16T 7 + 80T 6 + 124T 5 + 36T 4 − 52T 3 − 22T 2 + 5T + 1,

t = 32T 8 + 160T 7 + 248T 6 + 56T 5 − 152T 4 − 72T 3 + 26T 2 + 10T − 1,

we have 2tb = c −A, where

A := 256T 11 + 1728T 10 + 4288T 9 + 4176T 8 − 256T 7 − 3072T 6 − 1152T 5

+ 672T 4 + 320T 3 − 76T 2 − 20T + 5.

Thus from (45) we deduce

±
{
2ta(m2 − 1) + A(n2 − 1)

}
≡ 4rs(n−m) (mod c). (47)

Suppose now that max{m, n2} ≤ T/2. Then, since

2tam2 + An2 ≤ T 2ta

2 + AT

2 <
3c
4 , 4rsm ≤ 2Trs < c

4 ,

sam2 ≤ T 2sa

4 <
c

4 , sbn2 ≤ Tsb

2 <
c

2 , 2rtm ≤ Trt <
c

4 ,

congruences (46) and (47) are in fact equalities. It follows that

2a(b− a)(m2 − 1) = (2b2 − 2ab− t)(n2 − 1). (48)

The left-hand side of (48) is divisible by T 2 (because a = T 2 +2T ), while 2b2−2ab − t ≡
1 (mod T ), which implies that n2 − 1 ≡ 0 (mod T 2). Since n > 1, one obtains the 
contradiction n2 ≥ T 2 − 1 > (T + 1)/2.
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We conclude that max{m, n2} > T/2. If n2 > T/2, then n2 ≥ (T + 1)/2. If m > T/2, 
since m ≤ (4n + 2)/3 as seen above, it holds 5n/3 ≥ m > T/2, which together with 
T ≥ 100 gives n2 ≥ (T + 1)/2.

Hence, one always has n2 ≥ (T + 1)/2, which combined with (43) shows that 
T ≤ 14190. Therefore, the reduction method easily leads us to a contradiction. The 
computation time was in this case less than five minutes.

Finally, assume that c ≥ γ−
3 . Suppose that T ≥ 100. In the same way as in the 

previous case, one has inequality (42). One sees from c > b7/2 that

n <
8 log(8.556 · 1013b6) log(0.8124b7/2)

log(4b9/2) log(0.03253b)
. (49)

(A) In the case where m ≡ n ≡ 0 (mod 2), we deduce from the proof of [7, Lemma 
2.4] that m > b−1/2c1/2. Since m ≤ (9n + 5)/7 by [20, Lemma 2.4] with c > b7/2, and 
n ≥ 4 by [20, Lemma 2.5], it holds

n > 0.6829b−1/2c1/2 > 0.6829b5/4. (50)

Inequalities (49) and (50) together imply that b < 117, which is a contradiction.
(B) In the case where m ≡ n ≡ 1 (mod 2), as in the case where c = γ+

2 , we have 
congruences (45) and (46).

Suppose that n ≤ 2.826b−3/4c1/4. By [13, Lemma 3], [20, Lemmas 2.4 and 2.5] and 
c > b7/2, we have

n ≤ m ≤ 9n + 5
7 ≤ 10n

7 .

Since

t
∣∣a(m2 − 1) − b(n2 − 1)

∣∣ < btn2 < 7.99c,

2rt(m− n) < 2rt · 3
7n < 0.01c,

congruences (45) and (46) are in fact equalities. It immediately results that m = n and 
a(m2 − 1) = b(n2 − 1), which contradict a < b. Hence we have

n > 2.826b−3/4c1/4 > 2.826b1/8. (51)

It follows from inequalities (49) and (51) that b < 1.502 ·1010. Since b = 4T 4+8T 3−4T , 
we obtain T ≤ 247. Therefore, the reduction method easily leads us to a contradiction. 
The computation time was in this case less than three minutes.

This completes the proof of Theorem 1.3 and hence of Theorem 1.1.
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