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q−spherical surfaces in Euclidean space

Sonja Gorjanca, Ema Jurkinb

aUniversity of Zagreb, Faculty of Civil Engineering
bUniversity of Zagreb, Faculty of Mining, Geology and Petroleum Engineering

Abstract. In this paper we define q-spherical surfaces as the surfaces that contain the absolute conic of the
Euclidean space as a q−fold curve. Particular attention is paid to the surfaces with singular points of the
highest order. Two classes of such surfaces, with one and two n−fold points, are discussed in detail. We
study their properties, give their algebraic equations and visualize them with the program Mathematica.

1. Motivation

One of the most important places in the classical geometry belongs to the study of some classes of
surfaces with special properties in the Euclidean space. In the real projective plane the Euclidean metric
defines the Euclidean plane E2 with the absolute (circular) points (0, 1, i) and (0, 1,−i) (i.e. x0 = 0, x2

1 + x2
2 = 0).

The absolute points do not belong to the real plane, they belong to its complexification. In this paper we
consider both real and imaginary elements. An algebraic curve of order n passing through the absolute
points is called circular curve. If it contains absolute points as its q−fold points, the curve is called q−circular,
and if n = 2q the curve is called entirely circular. Some well-known circular curves are strophoid, trisectrix
of Maclaurin, limaçon, cardiod, lemniscate of Bernoulli, Booth lemiscate, Cartesian ovals, Cassini ovals,
astroid and Watt’s curve. Due to their numerous applications in engineering, the circular curves in the
Euclidean plane have been treated in a significant number of papers (see e.g. [1], [3], [19], [20], [21], [22]).
On the other hand, the surfaces in the Euclidean space with the similar properties, with an exception of
the cyclides that will be mentioned later, have been in some way neglected. Motivated by this fact, we
introduce so-called q-spherical surfaces, the surfaces that contain the absolute conic ofE3 as a q−fold curve.
We study some of their properties and visualize their shapes. Particular attention is paid to the surfaces
with singular points of the highest order.

2. Introduction

In the real three-dimensional projective space P3(R), in homogeneous Cartesian coordinates (x0, x1, x2, x3),
(x1, x2, x3 ∈ R, x0 ∈ {0, 1}, (x0, x1, x2, x3) , (0, 0, 0, 0)), the equation

Fn(x0, x1, x2, x3) = 0,
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where Fn is a homogeneous polynomial of degree n, defines an nth order surface Sn. This equation can be
written as

fn(x1, x2, x3) + x0 fn−1(x1, x2, x3) + ... + xn−1
0 f1(x1, x2, x3) + xn

0 f0(x1, x2, x3) = 0, (1)

where f j, j = 1, ...,n, are homogeneous polynomials of degree j, [16].
Any straight line, not lying on Sn, intersects Sn in n points and any plane intersects Sn in the nth order

plane curve.
A point T of the surface Sn for which at least one partial derivative of Fn is not equal to zero is called a

regular point of Sn. All tangents to the surface at that point lie in one plane - the tangent plane of Sn at T.
A point T of the surface Sn for which all partial derivatives of Fn are equal to zero is called a singular

point of Sn. The tangents to Sn at this point form an algebraic cone with vertex in T. If the tangent cone is of
order k, the point T is the k-fold point of the surface Sn. Every plane through T intersects Sn in the nth order
plane curve with the k-fold point in T.

The point T is a k−fold point of Sn if all partial derivatives of Fn with the order less than k vanish at T,
and at least one k−order derivative of Fn at T doesn’t vanish, [4].

According to [10], if the origin O(1, 0, 0, 0) is the k-fold point of Sn, then Sn has the equation,

fn(x1, x2, x3) + x0 fn−1(x1, x2, x3) + ... + xn−k
0 fk(x1, x2, x3) = 0, (2)

and the tangent cone at O is given by

fk(x1, x2, x3) = 0. (3)

If every point of a curve C lying on the surface Sn is the k−fold point of Sn, then C is a k−fold curve of Sn.
In the real projective space P3(R) the Euclidean metric defines the Euclidean space E3 with the absolute

conic given by the equations:
x0 = 0 and A2 = x2

1 + x2
2 + x2

3 = 0.

The absolute conic does not belong to the real Euclidean space, but to its complexification.

3. q−spherical surfaces

Definition 3.1. A surface Sn of Euclidean space is called q−spherical surface if it contains the absolute conic as a
q−fold curve.

Theorem 3.2. In Euclidean space q−spherical surface of order n is given by the following equation:

Aq
2 1n−2q(x1, x2, x3) +

q−1∑
j=1

x j
0Aq− j

2 1n−2q+ j(x1, x2, x3) +
n∑

j=q

x j
0 fn− j(x1, x2, x3) = 0, (4)

where n ≥ 2q, 1n−2q , 0, A2 ∤ 1n−2q, fn−q , 0 and A2 ∤ fn−q.

Proof: Let us first prove that the surface given by (4) is q−spherical surface. For all points on the absolute
conic (A2 = 0, x0 = 0) all first q − 1 partial derivatives of the polynomial on the left hand side of (4) vanish
since their terms contain either A2 or x0 as a factor. According the theorem’s condition, at least one q−order
derivative does not vanish for the points of the absolute conic.

Now, let a q−spherical surface of order n be given by the equation (1) that can be written in the following
form:

Fn(x0, x1, x2, x3) = fn(x1, x2, x3) +
q−1∑
j=1

x j
0 fn− j(x1, x2, x3) +

n∑
j=q

x j
0 fn− j(x1, x2, x3) = 0. (5)
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Since the first q − 1 partial derivatives of the polynomial Fn have to vanish for A2 = 0 and x0 = 0, it is
clear that the polynomials fn− j, j = 1, . . . , q − 1, must contain Aq− j

2 as a factor. Since at least one q−order
derivative of Fn doesn’t vanish, it is clear that fn−q , 0 and A2 is not a factor of fn−q. □

In [9] and [5] the authors studied the special class of 1-spherical surfaces, the surfaces which touch the
plane at infinity through the absolute conic and have a singular point of the highest order. These surfaces
belong to a wider class of surfaces, so-called monoid surfaces, also treated in [12] and introduced in [15].

In paper [7] the authors considered a congruence of circles C(p) that consists of circles in Euclidean
space E3 passing through two given points P1,2(0, 0,±p). For a given congruence C(p) and a given curve α,
a circular surface CS(α, p) is defined as the system of circles from C(p) that intersect α. If α is an mth order
algebraic curve that intersects the axis z at z′ points, the absolute conic at a′ pairs of the absolute points and
with the points P1 and P2 as p′1-fold and p′2-fold points, respectively, then, the following statements hold:

– CS(α, p) is an algebraic surface of the order 3m − (z′ + 2a′ + 2p′1 + 2p′2).
– The absolute conic is an m − (z′ + p′1 + p′2)-fold curve of CS(α, p).
– The axis z is an (m − 2a′ + z′)–fold line of CS(α, p).
– The points P1, P2 are 2m − (2a′ + p′1 + p′2)–fold points of CS(α, p). (CS)

Thus, the most of these surfaces are spherical, and some of them will be studied in more detail in subsection
4.1.2.

The further examples of q−spherical surfaces can be found in [6] and [8] where authors introduced
rose surfaces and generalized rose surfaces as the special cases of circular surfaces for which α is a cyclic-
harmonic curve. It was shown how q depends on the properties and position of the referent cyclic-harmonic
curve with respect to the singular points of the congruence C(p).

4. Entirely spherical surfaces

Definition 4.1. A surface S2n of Euclidean space is called entirely spherical surface if it contains the absolute conic
as an n−fold curve.

Probably the mostly studied surfaces of the fourth order are cyclides, the bispherical quartic surfaces,
[17].

The term “cyclides” is often used for their special class, Dupin cyclides, which can be defined in a several
ways, [2], [11]. They are only surfaces that have the property that their evolulute degenerate into curves, in
fact both sheets of the focal surface are conics. The examples of cyclides are the tori, cones and cylinders of
revolutions. Dupin cyclides can also be defined as the envelopes of the family of spheres tangent to three
fixed spheres. Dupin cyclides are the inverse images of the standard tori, cylinders or cones. The inverse
image of a ring torus, horn torus and spindle torus are called a ring cyclide, horn cyclide and spindle cyclide,
respectively. If the center of the inversion sphere lies on the torus, the obtained surface is a parabolic cyclide
(ring, horn or spindle), [23]. The cyclides as the surfaces of the forth order having the circle at infinity as
the nodal conic were studied in [17]. Their equation of type (4) for n = 4, p = 2, was given. The cyclide
was also defined as the envelope of sphere whose center moves on a fixed quadric, and which intersects a
fixed sphere orthogonally. The intersection curve of the fixed quadric and sphere is the focal curve of the
cyclide. The number of strait lines lying on the cyclide is sixteen. In [17] the author distinguishes 23 types
of cyclides.

In [14] the family of surfaces called Darboux cyclides were studied. These surfaces are algebraic surfaces
of order at most 4 and are a superset of bispherical surfaces of order 4, circular surfaces of order 3 and
quadrics, and they carry up to six real families of circles.

Entirely spherical surfaces can be constructed in many different ways. Let us mention some of them:
An inverse image of a surface Sn of order n is an n−spherical surface S2n of order 2n with an n−fold

point in the pole of inversion.
If Cn is a surface of class n and P a point in general position to Cn, then the pedal surface of Cn with

respect to the pole P is an n−spherical surface S2n of order 2n with an n−fold point in the pole P, [13].
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According to the properties (CS) of circular surfacesCS(α, p) that are pointed out in the previous section,
if α = k2n is an entirely circular curve of order 2n with an n−fold point in P1 (m = 2n, a′ = p1 = n, p2 = 0,
z′ = 0), the obtained surface CS(k2n, p) is entirely spherical surface with two n−fold points P1,P2. The
examples of these surfaces will be given in subsection 4.1.2.

Theorem 4.2. An entirely spherical surface S2n of order 2n can’t have singular points of multiplicity higher then n.

Proof: If there was a point T of multiplicity n + 1, all isotropic lines through T would lie on S2n and the
surface would split onto the isotropic cone with vertex in T and a surface of order 2n − 2. □

Lemma 4.3. A plane curve of order 2n, n ≥ 2, can have at most three n−fold points.

Proof: The maximum number of double points of a curve of order 2n equals D = (2n−1)(2n−2)
2 , [18]. Every

n−fold point is counted as N = n(n−1)
2 double points. Since D

N = 4 − 2
n , the curve of order 2n can have three,

but not four n−fold points. □

Therefore, if a plane curve of order 2n has more then three n−fold points, it splits onto the curves of
lower order.

Lemma 4.4. An entirely circular curve of order 2n, n ≥ 2, can have only one n−fold point beside the absolute points.

Proof: The statement follows directly from Lemma 4.3. □

Theorem 4.5. If an entirely spherical surface S2n contains two real and distinct n−fold points N1 and N2, every
plane through the line N1N2 intersects S2n along n circles passing through N1 and N2.

Proof: Let N1 and N2 be the n−fold points of the surface S2n, and let β be a plane through N1 and N2. The
intersection line of β and S2n is a curve k2n of order 2n. According to Lemma 4.4 this curve is not proper, it
splits onto curves k2t and k2n−2t of order 2t and 2n − 2t, respectively. Since k2n passes through the absolute
points n times, the curves k2t, k2n−2t have to be entirely circular passing through the absolute points t and
n − t times. The necessary multiplicity of the point N1 will be achieved if it is the singular point of k2t and
k2n−2t with multiplicity t and n − t. Now, again according to Lemma 4.4, N2 is the singular point of k2t and
k2n−2t with multiplicity at most t − 1 and n − t − 1. This is in contradiction with the fact that k2n passes n
times through N2. It follows that k2t and k2n−2t are not proper curves either. Therefore, they again split onto
the curves of lower order. Continuing with this procedure, in the last step we come to the n curves of order
2, i.e. circles. □

4.1. Examples

In this subsection we give some examples of the spherical surfaces. For a particular surface given by an
implicit equation, we study its properties and visualize its shape. For computing and plotting, we use the
program Mathematica. In some examples we start with an algebraic equation of the surface and determine
its properties. In other cases we first give a construction of the surface from which we derive its equation.

4.1.1. Entirely spherical surfaces S2n with only one n-fold point
A surface S2n given by the equation of the form

A2(x1, x2, x3)n + xn
0 · fn(x1, x2, x3) = 0,

i.e. in the affine coordinates

A2(x, y, z)n + fn(x, y, z) = 0, (6)

is an entirely spherical surface with the n−fold point at the origin.
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Proposition 4.6. There are only 2n straight lines through the origin lying entirely on the surface S2n given by (6).
These lines are the intersections of cones given by

A2(x, y, z) = 0, fn(x, y, z) = 0,

and they are imaginary in pairs.

Proof: Let a line p through O(0, 0, 0) be spanned by O and a further point P(a, b, c) , O. The line p is
parametrized by

p ... (x, y, z) = (ta, tb, tc), t ∈ R. (7)

It lies on S2n if and only if

A2(ta, tb, tc)n + fn(ta, tb, tc) = 0,

for every t ∈ R. This is precisely when

tn[tnA2(a, b, c)n + fn(a, b, c)] = 0,

for every t ∈ R. It follows that A2(a, b, c) = 0 and fn(a, b, c) = 0. Therefore, A2(ta, tb, tc) = 0, fn(ta, tb, tc) = 0,
for every t ∈ R. Evidently the line p lies on the cones given by equations A2(x, y, z) = 0 and fn(x, y, z) = 0.
We conclude: the only lines through the origin that lie on S2n are the isotropic lines on the tangent cone at
the origin. □

Proposition 4.7. The surface S2n given by (6) has no other singular points beside the origin.

Proof: This fact can be proved as follows: Let a non-isotropic line p through the origin be given by (7). We
compute the intersections of S2n and p. They belong to the zeros of the following polynomial of degree 2n
in t:

P(t) := A2(ta, tb, tc)n + fn(ta, tb, tc).

Obviously, t = 0 is zero with multiplicity n. The other n zeros are given by

tn = −
fn(a, b, c)

(a2 + b2 + c2)n

and therefore different (in general) complex numbers. □

The tangent cone Φn at the n−fold point O of the surface S2n given by (6) has the equation fn(x, y, z) = 0.
The polynomial fn can be irreducible or reducible. If the polynomial fn can be factorized

fn(x, y, z) = fn1 (x, y, z) · ... · fnk (x, y, z), n1 + ... + nk = n, (8)

the tangent cone Φn splits into the cones Φn1 , ...,Φnk of order n1, ...,nk, respectively. Therefore, the classi-
fication of surfaces S2n can be made according to the degrees of the polynomials fn1 , ..., fnk . If we assume
that all polynomials fn1 , ..., fnk determine different cones Φn1 , ...,Φnk , then for all n ∈ N the surfaces S2n can
be classified into p(n) types, where p is the partition function, i.e. p(n) is the number of ways of writing
the integer n as a sum of positive integers, where the order of addends is not considered significant. The
formulas for counting the value p(n) can be found in [24].

Some examples of surfaces given by (6), together with their tangent cones at the n−fold points, are
shown in Figures 1-4.
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a b c d e

Figure 1: Five examples for n = 2, 3, . . . , 6 where the tangent cone at the origin splits into n planes, i.e.
fn(x, y, z) =

∏n
i=1 hi(x, y, z), where ∀i, hi(x, y, z) is a linear polynomial.

a b c d

Figure 2: Surfaces S2n with the proper tangent cones of degree n at the origin, where fn(x, y, z) is: x2+ y2
− z2

(a), −(x2+ y2
−z2) (b), −2x3

−x2z+2y2z+xz2 (c), 48x4+48y4
−64
√

3y3z+40y2z2
−z4+8x2(12y2+24

√
3yz+5z2)

(d).
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a b c

Figure 3: Three examples for n = 3 where the tangent cone at the origin splits into a plane and 2nd degree
cone.

a b c d

Figure 4: Four examples for n = 4 where the tangent cone at the origin splits into two 2nd degree cone or
into two planes and one 2nd degree cone.

4.1.2. Entirely spherical surfaces S2n with two n-fold points
In this subsection we study a class of entirely spherical surfaces having two singular points of the highest

order. We start with defining a class of entirely circular curves.
A curve k2n of order 2n, n ≥ 2, given by the equation(

x2 + y2
)n
+ fn(x, y) = 0, (9)

where homogeneous polynomial fn is a product of n linear factors, is an entirely circular curve having an
n−fold point at the origin. Linear factors of fn represent the tangent lines at the singular point. If the tangent
lines divide the plane into equal parts, polynomial fn equals

fn =


n−1∏
i=0

(
cos i

2π
n
· y − sin i

2π
n
· x

)
, n odd,

n−1∏
i=0

(
cos i
π
n
· y − sin i

π
n
· x

)
, n even.
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Some examples of this type of curves are shown in Figure 5.

a b c d e

Figure 5: Five examples of entirely circular curves with equation (9) for n = 2, ..., 6.

Remark 4.8. The examples in Figure 5 make it easy to see that every straight line through the origin intersects k2n,
except at the n−fold point O, at just one real point if n is odd number, and that the number of real intersections is zero
or two if n is even. This fact can be also numerically verify for any chosen n and straight line through O using the
program Mathematica.

Switching to polar coordinates O(ρ, φ), where x = ρ cosφ and y = ρ sinφ, we obtain the following polar
equation of the curve k2n

ρn = (−1)n21−n sin(nφ), φ ∈ [0, 2π). (10)

Without lost of generality, from now on we assume that polar equation of k2n is given by expression:

ρ = n
√

sin(nφ), φ ∈ [0, 2π). (11)

Let us now consider a congruence C(p) that consists of circles passing through two given points
P1,2(0, 0,±p), where p is a positive real number. For the congruence C(p) and curve k2n given by (9), a
circular surface CS(k2n, p) is defined as the system of circles from C(p) that intersect k2n. According to (CS),
if the n−fold point of k2n coincide with P1, the obtained surface CS(k2n, p) is entirely spherical surface of
order 2n having two real n−fold points in P1 and P2.

Figure 6

Here we offer a simpler construction of such surface.
Let k2n be a curve in xy−plane having an n−fold point
in the origin O, and let P , O be a point on the axis z.
In a plane π(φ), such that z ⊂ π and φ = ∠(π, x), a circle
c of radius PT, where T = π ∩ k2n, is considered. See
Figure 6.
If n is odd, there is a unique circle c in every plane π(φ).
If n is even, there could be two or none such circles. For
given n and p all circles c determine observed surface
CS(k2n,

p
2 ).
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In the plane π(φ), with coordinates (ρ, z), the circle c has an equation

(ρ − ρS)2 + (z − zS)2 = r2, (12)

where ρS =
ρT

2 , zS =
p
2 , r2 =

ρ2
T

4 +
p2

4 , and ρT is given by (11).
Therefore, for φ ∈ [0, 2π), the equation (12) takes the form

ρ2
− ρ n

√
sin nφ + z2

− pz = 0 (13)

which presents the equation of the surface CS(k2n,
p
2 ) in cylindrical coordinates (ρ, φ, z). If we raise it to the

n−th power, the equation of the surface can be written as

((ρ2 + z2) + (−pz))n = ρn sin nφ. (14)

Since the correspondence between cylindrical and Cartesian coordinates is given by ρ =
√

x2 + y2 and
sinφ = y

√
x2+y2

, if we use introduced notation A2 = x2 + y2 + z2 and multiple-angle formulas [25]

sin nφ =
{

(−1)(n−1)/2 Tn(sinφ), n odd,
(−1)n/2−1 cosφ Un−1(sinφ), n even,

where Tn and Un are Chebyshev polynomials of the first and second kind, we can write equation (14) in the
following form:

An
2 +

n−1∑
j=1

(
n
j

)
(−pz) jAn− j

2 = Gn(x, y) − (−pz)n (15)

where

G
n(x, y) =


(−1)

n−1
2

(√
x2 + y2

)n
Tn

(
y

√
x2+y2

)
, n odd,

(−1)
n
2−1x

(√
x2 + y2

)n−1
Un−1

(
y

√
x2+y2

)
, n even.

The properties of the polynomials Tn and Un−1 ([26], [27]), with x2+ y2 > 0, lead us to the conclusion that
G

n are homogeneous polynomials of degree n in x and y. Therefore, the equation of constructed surface
can be given in the following form:

An
2 +

n−1∑
j=1

(
n
j

)
(−pz) jAn− j

2 − T
n(x, y, z) = 0, (16)

where T n(x, y, z) = Gn(x, y)− (−pz)n is a homogeneous polynomial of degree n in x, y and z determining the
equation of tangent cone of the surface at its n−fold point O. By using Mathematica functions ChebyshevT
and ChebyshevU it is easy to obtain Tn(x, y, z) for every n and p.

The surface is symmetrical with respect to the plane z = p
2 . Thus, the tangent cone at the n−fold point P

is symmetrical to the tangent cone at the point O with respect to the same plane. Some examples of these
surfaces are depicted in Figures 7 and 8.
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a b c

Figure 7: Three examples of surfaces given by equation (15) for n = 2, 4, 6, p = 2 and their nth degree tangent
cones at the origin. The equations of tangent cones are: xy − 2z2 = 0 (case a), x3y − xy3

− 4z4 = 0 (case b)
and 3x5y − 10x3y3 + 3xy5

− 32z6 = 0 (case c).

a b c

Figure 8: Three examples of surfaces given by equation (15) for n = 3, 5, 7, p = 2 and their nth degree tangent
cones at the origin. The equations of tangent cones are: x2y− y3+8z3 = 0 (case a), x4y−10x2y3+ y5+32z5 = 0
(case b) and x6y − 35x4y3 + 21x2y5

− y7 + 128z7 = 0 (case c).
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