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BILINEAR EMBEDDING IN ORLICZ SPACES FOR DIVERGENCE-FORM

OPERATORS WITH COMPLEX COEFFICIENTS

VJEKOSLAV KOVAČ AND KRISTINA ANA ŠKREB

Abstract. We prove a bi-sublinear embedding for semigroups generated by non-smooth complex-
coefficient elliptic operators in divergence form and for certain mutually dual pairs of Orlicz-space
norms. This generalizes a result by Carbonaro and Dragičević from power functions to more general
Young functions that still behave like powers. To achieve this, we generalize a Bellman function
constructed by Nazarov and Treil.

1. Introduction

One is often lead to study bi-sublinear estimates of the form
∫ ∞

0

∫

Rd

∣∣∇Ttf(x)
∣∣ ∣∣∇T̃tg(x)

∣∣ dxdt 6 C‖f‖‖g‖∗, (1.1)

where f, g are complex functions, ‖ · ‖, ‖ · ‖∗ are mutually dual Banach space norms, and (Tt)t>0,

(T̃t)t>0 are operator semigroups. Here, | · | simply denotes the standard (i.e., Euclidean) norm
on C

d and we emphasize that the constant C depends on the norms and the semigroups, but
not on the functions. Inequalities (1.1) are often called bilinear embeddings (even though they
are only bi-sublinear) and they are highly prized in the literature. As early examples, Petermichl
and Volberg [29] and Nazarov and Volberg [26] studied such embeddings in the context of bounds
for the Ahlfors–Beurling operator. Dragičević and Volberg [17, 14, 15, 16] established a series of
dimension-free estimates of type (1.1) in versatile analytical contexts, for both classical and fairly
general semigroups. More recently, Carbonaro and Dragičević proved several bilinear embeddings
of type (1.1) and used them to study bounds for the Riesz transforms associated with Riemannian
manifolds [1], extend the functional calculus for generators of symmetric contraction semigroups [2],
and shed a new light on properties of semigroups associated with divergence-form operators with
complex coefficients [6]. We have not attempted to list all existing literature as bilinear embeddings
are the topic of much recent and ongoing research.

In this paper we study bilinear embeddings (1.1) on the Orlicz function spaces for semigroups
generated by elliptic operators with bounded measurable complex coefficients; see Subsection 2.3
for precise formulation of the result. In particular, we reprove and generalize the main result from
[6], which was concerned with Lp norms only. In more detail, but still briefly, the following notions
characterize our setting and approach.

(i) Non-smooth complex divergence-form operators will be discussed in Subsection 2.2. Numerous
results that hold for real divergence-form operators generally fail for their complex counterparts.
Thus, it is an active line of research to give sufficient conditions for the corresponding estimates
in the complex case; see [8, 1, 2, 4, 6, 5, 9, 3, 7, 10]. The notion of p-ellipticity, introduced
by Carbonaro and Dragičević in [6] and reviewed in our Subsection 2.2, proved to be useful in
relation with Lp estimates, as it provides a gradation of assumptions stretched between real
ellipticity and (complex) ellipticity. Interesting aspects of the theory also happen on domains
Ω ⊆ R

d (see [5, 3, 7]), but here we choose to work exclusively on R
d, which avoids numerous

technical complications.
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(ii) In all of the aforementioned papers, the norms ‖ · ‖ and ‖ · ‖∗ are just the (unweighted or
weighted) Lp norms. Young functions and Orlicz spaces will be reviewed in Subsection 2.1.
One way of thinking about those spaces is as both providing a refinement of the scale of Lp

spaces and offering substitutes for the missing endpoint estimates. For these reasons, the
Orlicz norms frequently appear in harmonic analysis, but it seems that, so far, no Orlicz-space
estimates have been studied in the context of (1.1) and semigroups generated by operators
from (i). Related “functional” estimates for complex divergence-form operators have recently
been discussed by Cialdea and Maz’ya [9, 10], in the context of certain generalized dissipativity
of operators from (i), and we also find [9] motivating for the setting of the present paper.

(iii) Our results will be established via the heat flow method, a particular case of the Bellman
function technique. This is certainly not surprising, as the proofs of all aforementioned Lp

bilinear embeddings proceeded precisely this way. In fact, we will closely follow the basic
outline from [6]. However, each of the papers by Carbonaro and Dragičević [1, 2, 4, 6, 5, 3]
used (slight variants of) the Bellman function constructed by Nazarov and Treil [23], while
here we need to construct a Bellman function tailored to a pair of complementary Young
functions (see the definition in Subsection 2.1), which generalizes the Nazarov–Treil Bellman
function. We provide one such function in Section 4. This might be an interesting result on
its own, as most of this paper is dedicated to verification of the numerous required properties
of the constructed function, such as the generalized convexity introduced in [6] and discussed
in our Lemma 6 below. We also believe that this construction could find further applications
in loosely related contexts. Very few papers construct Bellman functions to prove Orlicz-space
estimates on R

d; see [32] for an example.

The study of generalized convexity for more general Young functions, in connection with Bellman
functions and Orlicz-space estimates, was suggested by Alexander Volberg in the summer of 2016;
this has been communicated to us by Oliver Dragičević.

Structure of the present paper is as follows. Section 2 recalls the basic definitions and clarifies
the lengthy assumptions needed later, regarding both the Young functions (Subsection 2.1) and
divergence-form operators (Subsection 2.2). Then it proceeds with formulation of the main result,
namely Theorem 1, and gives numerous remarks on its applicability (Subsection 2.3). Section 3
recalls the concept of a generalized Hessian from [6] and computes two expressions associated with
rather general nonlinear functions. Section 4 is the heart of the paper. It constructs the Bellman
function (4.1) corresponding to the studied problem and proves a series of its delicate properties
needed in the proof of the main theorem. Section 5 completes the proof of Theorem 1 by closely
following the scheme from [6].

2. Formulation of the main result

2.1. Young functions and Orlicz spaces. We only review the basic definitions; more details can
be found in the books [30, 19]. Let Φ: [0,∞) → [0,∞) be a Young function, i.e.,

Φ is convex, Φ(0) = 0, lim
s→0+

Φ(s)

s
= 0, and lim

s→∞

Φ(s)

s
= ∞. (2.1)

Let Φ∗ : [0,∞) → [0,∞) be the complementary (or conjugate) Young function to Φ, defined as

Φ∗(t) := sup
s∈(0,∞)

(
st− Φ(s)

)
=

∫ t

0
(Φ′)−1(r) dr, (2.2)

where the integral expression for Φ∗ can be used in special cases when (Φ′)−1 is well-defined on
(0,∞). This definition ensures that Young’s inequality holds:

st 6 Φ(s) + Φ∗(t) for s, t ∈ [0,∞). (2.3)
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The Orlicz-space Luxemburg norm ‖ · ‖Φ is defined for (classes of a.e. equal) measurable complex
functions f on R

d as

‖f‖Φ := inf
{
α ∈ (0,∞) :

∫

Rd

Φ
( |f(x)|

α

)
dx 6 1

}
. (2.4)

Remark 1. Note that we will be working simultaneously with two norms, ‖ · ‖Φ and ‖ · ‖Φ∗
. These

are said to be complementary or mutually associate, but they do not need to be mutually dual. In
order for ‖ · ‖Φ∗

to be equivalent to the dual of ‖ · ‖Φ it is sufficient that Φ is doubling, i.e., there
exists a constant K such that

Φ(2s) 6 KΦ(s) for s ∈ [0,∞).

Indeed, doubling functions Φ are said to “satisfy globally the ∆2-condition” in [30, Section 2.3,
Definition 1], so the reader can deduce the last claim from [30, Section 3.4, Corollary 5] and [30,
Section 4.1, Theorem 6].

We will need to narrow down the above setting in order to obtain meaningful results. Throughout
the paper we assume the following:

Φ and Φ∗ are mutually complementary Young functions, (2.5a)

Φ and Φ∗ are C1 on [0,∞) and C2 on (0,∞), (2.5b)

Φ′′(s),Φ′′
∗(s) > 0 for s ∈ (0,∞), (2.5c)

Φ′ is strictly convex on (0,∞) and lim
s→0+

Φ′(s)

s
= 0, (2.5d)

sup
s∈(0,∞)

sΦ′(s)

Φ(s)
<∞, (2.5e)

1 < inf
s∈(0,∞)

sΦ′′(s)

Φ′(s)
6 sup

s∈(0,∞)

sΦ′′(s)

Φ′(s)
<∞. (2.5f)

Note that defining properties (2.1) and assumptions (2.5a)–(2.5c) imply that

Φ′ and Φ′
∗ are mutually inverse increasing bijections of [0,∞). (2.6)

Because of that, assuming (2.5a)–(2.5c), conditions (2.5d)–(2.5f) are respectively equivalent to con-
ditions:

Φ′
∗ is strictly concave on (0,∞) and lim

s→0+

Φ′
∗(s)

s
= ∞, (2.7a)

inf
s∈(0,∞)

sΦ′
∗(s)

Φ∗(s)
> 1, (2.7b)

0 < inf
s∈(0,∞)

sΦ′′
∗(s)

Φ′
∗(s)

6 sup
s∈(0,∞)

sΦ′′
∗(s)

Φ′
∗(s)

< 1. (2.7c)

Indeed, equivalence (2.5d)⇐⇒(2.7a) is an immediate consequence of (2.6) and

lim
t→0+

t

Φ′
∗(t)

=
[
substitute t = Φ′(s) ⇐⇒ s = Φ′

∗(t)
]
= lim

s→0+

Φ′(s)

s
.
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Moreover, equivalence (2.5f)⇐⇒(2.7c) clearly follows from

{ Φ′
∗(t)

tΦ′′
∗(t)

: t ∈ (0,∞)
}
=

{Φ′
∗(t)Φ

′′(Φ′
∗(t))

t
: t ∈ (0,∞)

}

[
substitute t = Φ′(s) ⇐⇒ s = Φ′

∗(t)
]

=
{sΦ′′(s)

Φ′(s)
: s ∈ (0,∞)

}
. (2.8)

Finally, computation

{ Φ(s)

sΦ′(s)
: s ∈ (0,∞)

}
=

{ 1

sΦ′(s)

∫ s

0
Φ′(u) du : s ∈ (0,∞)

}

[
substitute s = Φ′

∗(t) ⇐⇒ t = Φ′(s)
]

=
{ 1

Φ′
∗(t)t

∫ Φ′

∗
(t)

0
Φ′(u) du : t ∈ (0,∞)

}

[ u = Φ′
∗(v)

du = Φ′′
∗(v) dv

]

=
{ 1

tΦ′
∗(t)

∫ t

0
vΦ′′

∗(v) dv : t ∈ (0,∞)
}

[
integration by parts

]

=
{
1−

Φ∗(t)

tΦ′
∗(t)

: t ∈ (0,∞)
}

shows (2.5e)⇐⇒(2.7b).
It has already been implied in (2.5e) and (2.5f) that the following four quantities will be relevant

later. They can be defined in terms of Φ as

m := inf
s∈(0,∞)

sΦ′(s)

Φ(s)
, M := sup

s∈(0,∞)

sΦ′(s)

Φ(s)
, (2.9)

m̃ := inf
s∈(0,∞)

sΦ′′(s)

Φ′(s)
, M̃ := sup

s∈(0,∞)

sΦ′′(s)

Φ′(s)
, (2.10)

or, equivalently, thanks to the previous computations, in terms of Φ∗ via

M

M − 1
= inf

s∈(0,∞)

sΦ′
∗(s)

Φ∗(s)
,

m

m− 1
= sup

s∈(0,∞)

sΦ′
∗(s)

Φ∗(s)
, (2.11)

1

M̃
= inf

s∈(0,∞)

sΦ′′
∗(s)

Φ′
∗(s)

,
1

m̃
= sup

s∈(0,∞)

sΦ′′
∗(s)

Φ′
∗(s)

. (2.12)

Conditions (2.5b)–(2.5d) imply that Φ′′ is continuous and increasing, so for any s ∈ (0,∞) Cheby-
shev’s rearrangement inequality (see [18, Section 2.17, Theorem 43] and [18, Chapter 6, Theo-
rem 236]) gives

Φ(s)

s
=

1

s

∫ s

0
(s− u)Φ′′(u) du 6

(1
s

∫ s

0
(s− u) du

)(1
s

∫ s

0
Φ′′(u) du

)
=

1

2
Φ′(s).

Thus, our assumptions (2.5a)–(2.5f) guarantee

2 6 m 6M <∞, 1 < m̃ 6 M̃ <∞. (2.13)
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Consequences of (2.5d), (2.5f), (2.7a), (2.7c), (2.10), and (2.12) are

(m̃− 1)
Φ′(s)

s2
6

d

ds

Φ′(s)

s
6 (M̃ − 1)

Φ′(s)

s2
,

1− 1/m̃

Φ′
∗(s)

6
d

ds

s

Φ′
∗(s)

6
1− 1/M̃

Φ′
∗(s)

,

and thus, by integrating in s, also

1

M̃ − 1

Φ′(t)

t
6

∫ t

0

Φ′(s) ds

s2
6

1

m̃− 1

Φ′(t)

t
, (2.14)

M̃

M̃ − 1

t

Φ′
∗(t)

6

∫ t

0

ds

Φ′
∗(s)

6
m̃

m̃− 1

t

Φ′
∗(t)

(2.15)

for every t ∈ (0,∞).
Let us also remark that Φ and Φ∗ satisfying (2.5a)–(2.5f), and thus also (2.7a)–(2.7c), will auto-

matically be doubling, as defined in Remark 1. This is easily seen as

Φ(2s)

Φ(s)
= exp

( ∫ 2

1

stΦ′(st)

Φ(st)

dt

t

)
6 2M ,

Φ∗(2s)

Φ∗(s)
= exp

( ∫ 2

1

stΦ′
∗(st)

Φ∗(st)

dt

t

)
6 2m/(m−1) 6 4

for s ∈ (0,∞). The first inequality above used (2.9), while the second one used (2.11) and (2.13).
Consequently, ‖ · ‖Φ∗

∼ ‖ · ‖∗Φ and ‖ · ‖Φ ∼ ‖ · ‖∗Φ∗

, where ‖ · ‖∗ denotes the dual norm of ‖ · ‖ and ∼
denotes the equivalence of norms.

Example 1 (Lebesgue spaces Lp). A typical example of a pair of functions Φ,Φ∗ for which the
above conditions (2.5a)–(2.5f) hold is

Φ(s) =
sp

p
, Φ∗(s) =

sq

q
for p ∈ (2,∞), q ∈ (1, 2),

1

p
+

1

q
= 1. (2.16)

In this case ‖ · ‖Φ ∼ ‖ · ‖Lp and ‖ · ‖Φ∗
∼ ‖ · ‖Lq . Also note that

m =M = p, m̃ = M̃ = p− 1.

Example 2 (Zygmund spaces Lr log L). Conditions (2.5a)–(2.5f) are also satisfied for functions that
“behave like powers.” We can take

Φ(s) = sr log(s+ e) for r ∈ (2,∞),

while we cannot, and do not need to, evaluate its conjugate function Φ∗ explicitly. Exact expressions
for M and M̃ involve a bit complicated numerical constants, but we always have

r = m 6M < r + 1, r − 1 = m̃ 6 M̃ < r.

Example 3 (Superpositions of powers I). Yet another useful example satisfying (2.5a)–(2.5f) is

Φ(s) = sp + εsr for 2 < r < p <∞, ε ∈ (0, 1]. (2.17)

This Young function exhibits the features of sr for small positive s and those of sp for large s. We
have

m = r, M = p, m̃ = r − 1, M̃ = p− 1

and note that these quantities are independent of ε. A straightforward generalization of this example
is

Φ(s) =

∫
st dµ(t)

for a finite positive Borel measure µ supported on a compact subinterval of (2,∞).
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Example 4 (Superpositions of powers II). Define Φ as the conjugate function of

Φ∗(s) = sq + sr for 1 < q < r < 2.

This time Φ cannot, and does not need to, be evaluated explicitly. It is now more convenient
to verify conditions (2.6), (2.5b)–(2.5c), and (2.7a)–(2.7c), which are sufficient by the previous
discussion. Moreover, the four characteristic quantities can be computed from (2.11) and (2.12),
and they equal

m =
r

r − 1
, M =

q

q − 1
, m̃ =

r

r − 1
− 1, M̃ =

q

q − 1
− 1.

A generalization of this example is

Φ∗(s) =

∫
st dµ(t),

where µ is a finite positive Borel measure supported on a compact subinterval of (1, 2).

2.2. Divergence-form operators with non-smooth complex coefficients. Once again, we
only give the basic definitions; more details can be found in the book by Ouhabaz [28]. Let A : Rd →
C
d×d be a matrix function with coefficients in L∞(Rd). It is said to be (uniformly) elliptic if

Λ(A) := ess sup
x∈Rd

max
ζ,η∈Cd

|ζ|=|η|=1

∣∣〈A(x)ζ, η〉Cd

∣∣ <∞, (2.18)

λ(A) := ess inf
x∈Rd

min
ξ∈Cd

|ξ|=1

Re
〈
A(x)ξ, ξ

〉
Cd > 0. (2.19)

Define the corresponding divergence-form operator formally as

LAf := − div(A∇f).

More precisely, LA is defined via duality:

〈LAf, g〉L2(Rd) =

∫

Rd

〈A(x)∇f(x),∇g(x)〉Cd dx (2.20)

and its domain D(LA) is the set of all functions f from the Sobolev space W1,2(Rd) for which the
right hand side of (2.20), regarded as an antilinear functional in g ∈ W1,2(Rd), extends boundedly
to the whole L2(Rd). We will consider the operator semigroup on L2(Rd) generated by −LA:

TA
t := exp(−tLA) for t ∈ (0,∞).

Carbonaro and Dragičević [6] introduced the property of p-ellipticity of A for p ∈ [1,∞] by
additionally requiring ∆p(A) > 0, where

∆p(A) := ess inf
x∈Rd

min
ξ∈Cd

|ξ|=1

Re
〈
A(x)ξ, ξ +

∣∣∣1−
2

p

∣∣∣ ξ
〉
Cd

= ess inf
x∈Rd

min
ξ∈Cd

|ξ|=1

Re
〈
A(x)ξ, ξ +

(
1−

2

p

)
ξ
〉
Cd
. (2.21)

An equivalent condition was discovered independently by Dindoš and Pipher [13] as a strengthening
of the earlier condition introduced by Cialdea and Maz’ya [8]. It is also easy to check that for
2 6 p1 6 p2 <∞ we have

λ(A) = ∆2(A) > ∆p1(A) > ∆p2(A)
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and that the following inclusions hold:
{

elliptic
matrices

}
=

{
2-elliptic
matrices

}
⊇

{
p1-elliptic
matrices

}

⊇

{
p2-elliptic
matrices

}
⊇

{
matrices that are p-elliptic

for every p ∈ [2,∞)

}
=

{
real elliptic
matrices

}
; (2.22)

see [6, Section 5.3]. Therefore, the notion of p-ellipticity bridges the gap between real and complex
elliptic matrix functions.

Let us now take a complex matrix function A and an arbitrary C2 function Ψ: (0,∞) → (0,∞)
such that Ψ′(s) > 0 and Ψ′′(s) > 0 for every s ∈ (0,∞). We define a quantity ∆Ψ(A) “measuring”
certain Ψ-ellipticity of A as

∆Ψ(A) := ess inf
x∈Rd

inf
ξ∈Cd, |ξ|=1
s∈(0,∞)

Re
〈
A(x)ξ, ξ +

sΨ′′(s)−Ψ′(s)

sΨ′′(s) + Ψ′(s)
ξ
〉
Cd

(2.23)

and say that A is Ψ-elliptic if ∆Ψ(A) > 0. Indeed, (2.23) reduces to (2.21) when Ψ(s) = sp/p.
However, one could merely generalize (2.21) in many other ways, so let us spend a few more words
motivating the above definition and explaining why it is more useful than the other possibilities.

Remark 2. One way to motivate the definition (2.21) of ∆p(A) was to differentiate formally using
(2.20):

d

dt

∣∣∣
t=0

∥∥(TA
t f)(x)

∥∥p
Lp(Rd)

=
d

dt

∣∣∣
t=0

∫

Rd

∣∣(TA
t f)(x)

∣∣p dx

= −
p2

2

∫

Rd

sp−2Re
〈
A(x)ξ, ξ +

(
1−

2

p

)
ξ
〉
Cd

dx,

where we used the shorthand notation

s = |f(x)|, ξ = sgn f(x)∇f(x). (2.24)

From this it is easy to see that ∆p(A) > 0 is an elegant sufficient condition for contractivity of

the semigroup (TA
t )t>0 on Lp(Rd); rigorous arguments and numerous details can be found in [6,

Section 7]. Prior to [6], Cialdea and Maz’ya [8] studied Lp-dissipativity (see [8, Definition 1]) of
the sesquilinear form (2.20), which is, by a result of Nittka [27], equivalent to the aforementioned
contractivity. In the particular case when ImA is symmetric, their result [8, Theorem 5] claims that
these are further equivalent to the condition

|p− 2|
∣∣〈ImA(x)ξ, ξ〉Rd

∣∣ 6 2(p− 1)1/2〈ReA(x)ξ, ξ〉Rd (2.25)

for all x, ξ ∈ R
d. Much more recently, Cialdea and Maz’ya [9] introduced the concept of functional

dissipativity with respect to a general function Ψ as before. Under the same assumption that ImA
is symmetric, their result [9, Theorem 1] characterizes this property via the condition

∣∣∣Ψ′′(s)−
Ψ′(s)

s

∣∣∣
∣∣〈ImA(x)ξ, ξ〉Rd

∣∣ 6 2
(Ψ′(s)Ψ′′(s)

s

)1/2
〈ReA(x)ξ, ξ〉Rd (2.26)

for all x, ξ ∈ R
d and s ∈ (0,∞). To avoid any possible confusion, let us mention that the paper

[9] prefers to formulate (2.26) in terms of ϕ(s) = Ψ′(s)/s. Exact relationship of this functional
dissipativity to the contractivity of (TA

t )t>0 in Orlicz spaces has not been clarified yet, as the
Luxemburg norms (2.4) have less straightforward definitions than the Lp norms. However, one can
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still differentiate the nonlinear functional:

d

dt

∣∣∣
t=0

∫

Rd

Ψ
(∣∣(TA

t f)(x)
∣∣) dx

= −
1

2

∫

Rd

(
Ψ′′(s) +

Ψ′(s)

s

)
Re

〈
A(x)ξ, ξ +

sΨ′′(s)−Ψ′(s)

sΨ′′(s) + Ψ′(s)
ξ
〉
Cd

dx,

where s and ξ are as in (2.24). From this we see that ∆Ψ(A) > 0 is in fact also a very natural
condition, which might justify our choice for ∆Ψ(A). Much more on functional dissipativity can
be found in [9], but these discussions are not strictly relevant here. We are aiming at bilinear
embeddings, which are significantly more involved and (2.23) simply appears in the computations
in Sections 3 and 4.

Remark 3. Now, if Φ is a Young function satisfying (2.5a)–(2.5c) then the computation from (2.8)
easily shows

∆Φ∗
(A) = ∆Φ(A).

This is a generalization of the fact that ∆p(A) is invariant under conjugation of the Lebesgue
exponent p. However, definition (2.23) does not lead to a particularly novel concept for such Φ,
because it can be reduced to the mere p-ellipticity for an appropriate number p. More precisely,
∆Φ(A) = ∆p(A) for the unique p ∈ [2,∞] such that

sup
s∈(0,∞)

∣∣∣
sΦ′′(s)− Φ′(s)

sΦ′′(s) + Φ′(s)

∣∣∣ = 1−
2

p
.

If Φ additionally satisfies all standing assumptions from Subsection 2.1, then the number p simplifies
as

p = sup
s∈(0,∞)

sΦ′′(s)

Φ′(s)
+ 1. (2.27)

We further recognize it as M̃ + 1, with the number M̃ given in (2.10). Consequently, we will avoid
complications and formulate a condition in our main result simply in terms of p-ellipticity for the
exponent (2.27).

2.3. The main result. Finally, we can state the desired estimate. Recall quantities (2.9)–(2.12)
from Subsection 2.1 and definitions (2.18), (2.19), (2.21) from Subsection 2.2.

Theorem 1. Suppose that Φ and Φ∗ satisfy conditions (2.5a)–(2.5f) and let A,B : Rd → C
d×d be

p-elliptic matrix functions with L∞ coefficients, where p = M̃ +1, i.e., p is given by (2.27). Denote

Cp(A,B) :=
max{Λ(A),Λ(B)}

min{∆p(A),∆p(B)}min{λ(A), λ(B)}
(2.28)

and

D(Φ) := max
{
1,
M

m̃

}( m̃
M̃

M̃ − 1

m̃− 1

)1/2
. (2.29)

Then an Orlicz-space bilinear embedding,
∫ ∞

0

∫

Rd

|(∇TA
t f)(x)| |(∇T

B
t g)(x)|dxdt 6 40Cp(A,B)D(Φ) ‖f‖Φ‖g‖Φ∗

, (2.30)

holds for any complex functions f, g ∈ C∞
c (Rd).

A few comments on Theorem 1 could help to better orient the reader.
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Remark 4 (Constants). Quantity (2.29) depends only on Φ (or, equivalently, on Φ∗), while (2.28)
depends on the ellipticity constants of A and B and on the exponent p, which, in turn, depends
only on Φ again. The constant in (2.30) depends on the ambient dimension d in no other way than
through these two quantities, so we can say that this estimate is dimension-free. This is a desired
property of all bilinear embeddings.

Remark 5 (Real case). If A and B have real coefficients, then the p-ellipticity condition is satisfied
automatically; recall (2.22). We are not in a position to list the vast literature on estimates for real
elliptic divergence-form operators, including many singular integral estimates as their special cases;
see the references in [6, 7]. The emphasis of the present paper is on the complex case.

Remark 6 (Duality). By Remark 1 and since Φ is doubling, the product ‖f‖Φ‖g‖Φ∗
on the right

hand side of (2.30) can be rewritten as ‖f‖Φ‖g‖
∗
Φ. That way (2.30) can sometimes be viewed as an

estimate on a single Orlicz space LΦ(Rd) (see the definition in [30, 19]) of a certain linear operator
L such that the left hand side of (2.30) dominates |〈Lf, g〉L2(Rd)|.

Remark 7 (Applicability). Estimate (2.30) is a generalization of [6, Theorem 1.1] by Carbonaro and
Dragičević, which was concerned with Lp and Lq norms only, i.e., with Φ and Φ∗ given by (2.16) in
Example 1. Indeed, the constant (2.28) is the same one appearing in their theorem, just formulated
in a slightly different manner. Also, in the particular case (2.16) we easily compute (2.29) as

D(Φ) =
p

p− 1
= q 6 2,

so our constant in (2.30) becomes the same one as in [6], up to a factor 4. Theorem 1 also applies to
the other examples given in Subsection 2.1. In the case of Example 2 the exact exponent p is some
number from [r, r + 1), so one can safely replace it by r + 1. In Example 3, just as in Example 1,
this exponent is exactly the eponymous parameter p, while in Example 4 it is equal to q/(q − 1),
the conjugate exponent of q.

Remark 8 (Dehomogenization). It is easy to see that estimate (2.30) follows from (what could be
called) a Young-function bilinear embedding,

∫ ∞

0

∫

Rd

|(∇TA
t f)(x)| |(∇T

B
t g)(x)|dxdt

6 20Cp(A,B)D(Φ)
( ∫

Rd

Φ(|f(x)|) dx+

∫

Rd

Φ∗(|g(x)|) dx
)
. (2.31)

Indeed, take arbitrary functions f, g and arbitrary α, β ∈ (0,∞) such that
∫

Rd

Φ
( |f(x)|

α

)
dx 6 1,

∫

Rd

Φ∗

( |g(x)|
β

)
dx 6 1.

By applying (2.31) to f/α and g/β and using homogeneity of the left hand side, we conclude
∫ ∞

0

∫

Rd

|(∇TA
t f)(x)| |(∇T

B
t g)(x)|dxdt 6 40Cp(A,B)D(Φ)αβ.

Taking infima over all such α and β we derive (2.30). Thus, we only need to establish (2.31). Advan-
tages of such “dehomogenization” for proofs using the Bellman function technique were elaborated
by Nazarov and Treil [23, Section 8.1], who called it the “Hölder vs Young” trick. It is not at all
lossy (up to unimportant constants) in the case of the Lp spaces, while here it simply seems to be
the most natural thing to use.

Remark 9 (Interpolation). In relation with Remark 6, many particular cases and weaker forms of
estimate (2.30) are immediate consequences of [6, Theorem 1.1]. Let us again take a linear operator
L such that |〈Lf, g〉L2(Rd)| is less than or equal to the left hand side of (2.30). The p-ellipticity
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assumption guarantees Lp → Lp and Lq → Lq estimates, where q is the exponent conjugate to p.
A collection of Orlicz spaces LΦ is “squeezed between” Lp and Lq, so that certain interpolation
arguments can cheaply provide the estimate LΦ → LΦ. However, these arguments cannot recover
Theorem 1 in its full generality.

Indeed, real (i.e., Marcinkiewicz-type) Orlicz-space interpolation [33, 31, 11] applies as soon as
the Young function Φ is “sufficiently far” from the powers s 7→ sp and s 7→ sq. Cianchi [11] provided
a definite result on the topic and gave a precise description of all Young functions Φ such that (what
is nowadays usually called) restricted weak type (p, p) and (q, q) bounds generally imply the strong
bound LΦ → LΦ. Just a single necessary condition (out of many) from his paper in our case reads

∫ ∞

1

Φ(s)

sp+1
ds <∞. (2.32)

Note that (2.32) is not satisfied for (2.17), even if we only take ε = 1, so Marcinkiewicz-type inter-
polation cannot give our estimate (2.30) in the case of Example 3. Moreover, any real interpolation
argument one could think of would give a constant that necessarily blows up as ε → 0+. On the
other hand, we see that (2.28) and (2.29) are independent of ε, and so is our main estimate.

Strictly speaking, complex Orlicz-space interpolation [22, 21] is not applicable simply because
the left hand side of (2.30) is only bi-sublinear and not bilinear in f and g. However, in many
applications of bilinear embeddings we only need to control the bilinear form (f, g) 7→ 〈Lf, g〉L2(Rd)

for some linear operator L, as mentioned earlier. Then Orlicz-space interpolation of linear operators
can be useful, albeit still with certain limitations; see [21, Theorem 5.1]. Nevertheless, even in
particular situations when complex interpolation does apply, it is still interesting to have a direct
proof of the estimate LΦ → LΦ.

Remark 10 (Sharpness). One might initially feel dissatisfied by the fact that Theorem 1 does not
apply to any Orlicz spaces that are “close” to L1(Rd) or L∞(Rd), as such endpoint estimates are
often interesting in harmonic analysis. However, here we have every right to question the mere
possibility of endpoint estimates, because already a more basic result on semigroups [9] fails without
the very restrictive assumption (2.26), which transforms into (2.25) and (2.27) for a finite p. Indeed,
our main estimate (2.30) does not allow such endpoint generalizations either. Let us give a sketchy
argument to support this claim.

Suppose that LΦ lies “at the end” of the Lp range for p ∈ [2,∞) in the sense that all these
Lp spaces are interpolation spaces for linear operators between L2 and LΦ. Also suppose that an
estimate of type (2.30) holds for this Young function Φ and for the very special matrix-functions

A = eiφId, B = e−iφId, φ ∈ (−π/2, π/2).

Combining Remark 6 with considerations from [6, Section 1.6], we see that this estimate would
imply

sup
t∈(0,∞)

∥∥ exp(teiφ∆d)
∥∥
LΦ→LΦ 6 CΦ,φ,

where ∆d is the d-dimensional Laplacian and CΦ,φ is a finite constant. Interpolation gives

sup
t∈(0,∞)

∥∥ exp(teiφ∆d)
∥∥
Lp→Lp 6 Cp,φ (2.33)

for every p ∈ [2,∞) with a constant Cp,φ depending on p and φ, but independent of the ambient
dimension d. However, [6, Theorem 6.2] evaluates the left hand side of (2.33) and shows that it
blows up as d→ ∞ whenever |φ| > arccos |1−2/p|. Whichever conditions we impose on our complex
matrix functions in order to have a desired Orlicz-space estimate, we expect them to be satisfied
at least for some φ 6= 0, but then we arrive at a contradiction by choosing a sufficiently large p. A
similar argument applies to Orlicz spaces that lie at the left end of the Lp range for p ∈ (1, 2].
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Remark 11 (Bilinear vs. multilinear). Let us conclude with a remark that this paper is very bi-
(sub)linear in nature. It benefited from concentrating on estimates that simultaneously involve
two complementary Young functions, Φ and Φ∗. A recent paper by Carbonaro, Dragičević, and
the present authors [7] studied trilinear embeddings in Lp spaces. It is unclear to us how to even
formulate any Orlicz-space multi-(sub)linear embeddings, as we do not know how to meaningfully
define convex conjugation for more than two Young functions.

3. Generalized Hessians

A quantity introduced by Carbonaro and Dragičević in [6, Subsection 2.2] will play a crucial role
later in the proof. For X : C2 → [0,∞), A,B ∈ C

d×d, (u, v) ∈ C
2, and (ζ, η) ∈ (Cd)2 we define the

generalized Hessian of X with respect to A,B,

HA,B
X

[(u, v); (ζ, η)],

as the standard inner product of

(
Hess(X; (u, v)) ⊗ Id

)



Re ζ
Im ζ
Re η
Im η


 ∈ (Rd)4

and 


ReA − ImA 0 0

ImA ReA 0 0

0 0 ReB − ImB
0 0 ImB ReB







Re ζ
Im ζ
Re η
Im η


 ∈ (Rd)4.

Here one has to interpret Hess(X; (u, v)) as the 4× 4 real Hessian matrix of the function

R
4 → R, (ur, ui, vr, vi) 7→ X(ur + iui, vr + ivi).

Operation ⊗ is the Kronecker (a.k.a. tensor) product of matrices. We also introduce

H̃A,B
X

[(u, v); (ζ, η)] := HA,B
X

[
(u, v);

( u

|u|
ζ,

v

|v|
η
)]
,

as the replacements

ζ →
u

|u|
ζ, η →

v

|v|
η, (3.1)

will later significantly simplify numerous expressions.
The following lemma is much in the spirit of computations from [6] and [7]. However, in those

papers properties of power functions s 7→ |s|p are much appreciated, while here we will be dealing
with more general nonlinear functions.

Lemma 2. If we define

X1(u, v) := P (|u|) +Q(|v|),

X2(u, v) := |u|2R(|v|)

for some C2 functions P,Q,R : (0,∞) → R, then the following formulas hold for any A,B ∈ C
d×d,

(u, v) ∈ (C \ {0})2, and (ζ, η) ∈ (Cd)2:

H̃A,B
X1

[(u, v); (ζ, η)]

= Re

〈
Aζ,

1

2

(
P ′′(|u|) +

P ′(|u|)

|u|

)
ζ +

1

2

(
P ′′(|u|)−

P ′(|u|)

|u|

)
ζ̄

〉

Cd

+Re

〈
Bη,

1

2

(
Q′′(|v|) +

Q′(|v|)

|v|

)
η +

1

2

(
Q′′(|v|) −

Q′(|v|)

|v|

)
η̄

〉

Cd

,
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H̃A,B
X2

[(u, v); (ζ, η)]

= Re
〈
Aζ, 2R(|v|)ζ + |u|R′(|v|)

(
η + η̄

)〉
Cd

+Re

〈
Bη, |u|R′(|v|)

(
ζ + ζ̄

)
+

|u|2

2

(
R′′(|v|) +

R′(|v|)

|v|

)
η +

|u|2

2

(
R′′(|v|) −

R′(|v|)

|v|

)
η̄

〉

Cd

.

Proof. In the case of X1 the Hessian matrix Hess(X1; (u, v)) in the variables ur, ui, vr, vi is easily
evaluated to be the direct sum of matrices


P

′′(|u|) u2
r

|u|2
+ P ′(|u|)

|u|
u2
i

|u|2
(P ′′(|u|) − P ′(|u|)

|u| )urui

|u|2

(P ′′(|u|) − P ′(|u|)
|u| )urui

|u|2
P ′(|u|)
|u|

u2
r

|u|2 + P ′′(|u|)
u2
i

|u|2




and 
Q

′′(|v|) v2r
|v|2

+ Q′(|v|)
|v|

v2i
|v|2

(Q′′(|v|) − Q′(|v|)
|v| )vrvi

|v|2

(Q′′(|v|)− Q′(|v|)
|v| )vrvi

|v|2
Q′(|v|)

|v|
v2r
|v|2

+Q′′(|v|)
v2i
|v|2


 .

It is then tensored with the identity matrix Id, multiplied with the column-vector

[
Re ζ Im ζ Re η Im η

]T
, (3.2)

and the result is interpreted as a vector in (Cd)2, rather than in (Rd)4:

[
u
|u|P

′′(|u|)Re( ū
|u|ζ) + i u

|u|
P ′(|u|)
|u| Im( ū

|u|ζ)
v
|v|Q

′′(|v|)Re( v̄
|v|η) + i v

|v|
Q′(|v|)
|v| Im( v̄

|v|η)

]

=

[
u
|u|Id 0

0 v
|v|Id

] [
1
2(P

′′(|u|) + P ′(|u|)
|u| )( ū

|u|ζ) +
1
2 (P

′′(|u|) − P ′(|u|)
|u| )( ū

|u|ζ)
1
2(Q

′′(|v|) + Q′(|v|)
|v| )( v̄

|v|η) +
1
2 (Q

′′(|v|) − Q′(|v|)
|v| )( v̄

|v|η)

]
.

Taking the inner product

〈·, ·〉(Rd)4 = Re〈·, ·〉(Cd)2

with the vector
[
A 0

0 B

] [
ζ
η

]
=

[
Aζ
Bη

]
=

[
u
|u|Id 0

0 v
|v|Id

][
A( ū

|u|ζ)

B( v̄
|v|η)

]
(3.3)

we obtain a formula for HA,B
X1

[(u, v); (ζ, η)]. It remains to change the variables as in (3.1).

In the case of X2 the Hessian matrix Hess(X2; (u, v)) is




2R(|v|) 0 2urR
′(|v|) vr|v| 2urR

′(|v|) vi
|v|

0 2R(|v|) 2uiR
′(|v|) vr|v| 2uiR

′(|v|) vi
|v|

2urR
′(|v|) vr|v| 2uiR

′(|v|) vr|v| |u|2(R′′(|v|) v2r
|v|2 + R′(|v|)

|v|
v2i
|v|2 ) |u|2(R′′(|v|) − R′(|v|)

|v| )vrvi|v|2

2urR
′(|v|) vi

|v| 2uiR
′(|v|) vi

|v| |u|2(R′′(|v|) − R′(|v|)
|v| )vrvi

|v|2
|u|2(R

′(|v|)
|v|

v2r
|v|2

+R′′(|v|)
v2i
|v|2

)



.

This matrix tensored with Id and multiplied with the column-vector (3.2) gives:
[

u
|u|Id 0

0 v
|v|Id

][
2R(|v|) ū

|u|ζ + 2|u|R′(|v|)Re( v̄
|v|η)

2|u|R′(|v|)Re( ū
|u|ζ) + |u|2R′′(|v|)Re( v̄

|v|η) + i|u|2R′(|v|)
|v| Im( v̄

|v|η)

]
.

The desired formula follows by taking the inner product with (3.3) and substituting (3.1). �
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4. The Bellman function

Suppose that Φ and Φ∗ are as in the formulation of Theorem 1, i.e., they fulfil conditions (2.5a)–
(2.5f) and, thus, also conditions/properties (2.6)–(2.15). In particular, by recalling (2.6) we observe
that the surface

Y := {(u, v) ∈ C
2 : |v| = Φ′(|u|)} = {(u, v) ∈ C

2 : |u| = Φ′
∗(|v|)}

splits its complement into two regions: the “lower” region

Y↓ := {(u, v) ∈ C
2 : |v| < Φ′(|u|)} = {(u, v) ∈ C

2 : |u| > Φ′
∗(|v|)}

and the “upper” region

Y↑ := {(u, v) ∈ C
2 : |v| > Φ′(|u|)} = {(u, v) ∈ C

2 : |u| < Φ′
∗(|v|)}.

Also suppose that A,B : Rd → C
d×d are matrix functions as in the statement of Theorem 1. By

Remark 3 from Subsection 2.2 we have

∆Φ(A) = ∆p(A), ∆Φ∗
(B) = ∆p(B)

for p = M̃ + 1.
The so-called Bellman function method relies on boundedness and convexity properties of a care-

fully chosen auxiliary function; see the seminal paper by Nazarov, Treil, and Volberg [24] and
classical expository papers [23] and [25]. We need to construct a Bellman function relevant to the
present problem. Let us define X : C2 → [0,∞) as

X(u, v) :=





(1 + δ)
(
Φ(|u|) + Φ∗(|v|)

)
+ δ|u|2

∫ |u|

0

Φ′(s) ds

s2
for (u, v) ∈ Y↓ ∪ Y,

Φ(|u|) + Φ∗(|v|) + δ|u|2
∫ |v|

0

ds

Φ′
∗(s)

for (u, v) ∈ Y↑,

(4.1)

where

δ :=
m̃− 1

m̃
min

{∆p(A)

8Λ(A)
,
∆p(B)

4Λ(B)
,

λ(A)∆p(B)

100max{Λ(A)2,Λ(B)2}

}
. (4.2)

Note that s 7→ Φ′(s)/s2 and s 7→ 1/Φ′
∗(s) are integrable in a neighborhood of s = 0, thanks to (2.14)

and (2.15).
In the particular case of mutually conjugate Lebesgue space Young functions (2.16), formula (4.1)

simplifies as

|u|p

p
+

|v|q

q
+

δ

2− q
×

{
2
p |u|

p +
(
2
q − 1

)
|v|q for |u|p > |v|q,

|u|2|v|2−q for |u|p < |v|q,
(4.3)

which is just a minor modification of (a two-variable version of) the Bellman function from [23,
Section 8]. At the first sight there seem to be many possibilities for X generalizing (4.3), but
inspection of desired properties below narrows down the choice severely. Thus, even if the above
choice for X might not be the most obvious one, we find it necessary and somewhat canonical; see
Remark 12 for a reasoning that lead us naturally to the above formula.

The main task is to prove several crucial estimates for this function X. Carbonaro and Dragičević
[6] established the required estimates in the particular case of power functions (2.16), namely for a
minor variant of (4.3). This required a series of upgrades from its basic properties discussed already
in [23] to their nontrivial extensions and additions addressed gradually in [16, 2, 6]. The power
functions played an important role in these papers, as emphasized already in the title of [6]. Here
we need to redo the calculations, as we are now working with more general Φ and Φ∗.

We begin with some smoothness of X.
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Lemma 3. The function X is C1 on the whole domain C
2 ≡ R

4. Moreover, it is C2 on (C \ {0})2 \
Y and its second-order partial derivatives are locally integrable, i.e., they are integrable on every
bounded measurable subset of (C \ {0})2 \ Y.

Proof. Define B : [0,∞)2 → [0,∞) by

B(x, y) :=





(1 + δ)
(
Φ(x) + Φ∗(y)

)
+ δx2

∫ x

0

Φ′(s) ds

s2
for y 6 Φ′(x), i.e., x > Φ′

∗(y),

Φ(x) + Φ∗(y) + δx2
∫ y

0

ds

Φ′
∗(s)

for y > Φ′(x), i.e., x < Φ′
∗(y),

where δ is as in (4.2). Thus, X(u, v) = B(|u|, |v|). In order to see that X is continuous on C
2, it

is sufficient to verify that B is continuous on [0,∞)2. Each of the two defining formulas for B is
clearly continuous on [0,∞)2, so it remains to see that they coincide on the critical curve

{(x, y) ∈ [0,∞)2 : y = Φ′(x)} = {(x, y) ∈ [0,∞)2 : x = Φ′
∗(y)}. (4.4)

On this curve we have

x2
∫ y

0

dt

Φ′
∗(t)

= x2
∫ Φ′(x)

0

dt

Φ′
∗(t)

=
[

t = Φ′(s)
dt = Φ′′(s) ds

]

= x2
∫ x

0

Φ′′(s) ds

s
=

[
integration by parts and (2.5d)

]

= xy + x2
∫ x

0

Φ′(s) ds

s2
= Φ(x) + Φ∗(y) + x2

∫ x

0

Φ′(s) ds

s2
. (4.5)

Here we used the well-known fact that Young’s inequality (2.3) becomes an equality when the pair
(s, t) lies on the critical curve, which also easily follows from (2.2). This confirms the continuity of
B and thus also of X.

Now we prove that all four first-order partial derivatives of X exist and are continuous on C
2.

Since

∂urX(ur + iui, vr + ivi) = ∂1B(|u|, |v|)
ur
|u|

(4.6)

and similar equalities hold for other derivatives, it is sufficient to show that B is C1 on (0,∞)2, that
its partial derivatives ∂1B(x, y), ∂2B(x, y) continuously extend to [0,∞)2, and that

lim
(0,∞)2∋(x,y)→(0,y0)

∂1B(x, y) = 0, (4.7)

lim
(0,∞)2∋(x,y)→(x0,0)

∂2B(x, y) = 0 (4.8)

for any x0, y0 ∈ [0,∞). In fact, we will prove stronger statements,

∂1B(x, y) = O(x) as x→ 0+, locally uniformly in y ∈ [0,∞), (4.9)

∂2B(x, y) = O(Φ′
∗(y)) as y → 0+, locally uniformly in x ∈ [0,∞), (4.10)

which respectively imply (4.7) and (4.8). Partial derivatives of B are

∂1B(x, y) =





(1 + 2δ)Φ′(x) + 2δx

∫ x

0

Φ′(s) ds

s2
for 0 < y < Φ′(x),

Φ′(x) + 2δx

∫ y

0

ds

Φ′
∗(s)

for 0 < x < Φ′
∗(y)

(4.11)

and

∂2B(x, y) =





(1 + δ)Φ′
∗(y) for 0 < y < Φ′(x),

Φ′
∗(y) +

δx2

Φ′
∗(y)

for 0 < x < Φ′
∗(y).

(4.12)
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The very same computation (4.5) shows that the two cases from (4.11) coincide on the critical curve
(4.4). Also, both cases from (4.12) simplify on the curve as (1 + δ)x, confirming that B is C1 but,
so far, only in the open quadrant (0,∞)2. It is clear that (4.11) and (4.12) continuously extend
to the closed first quadrant [0,∞)2. It is also straightforward to verify (4.9) and (4.10) and, while
doing so, we need to remember the limit from condition (2.5d). Finally, we recall (4.6) and similar
formulas for the other derivatives of X.

Regarding second-order derivatives, we have

∂2ur
X(ur + iui, vr + ivi) = ∂21B(|u|, |v|)

u2r
|u|2

+ ∂1B(|u|, |v|)
u2i
|u|3

,

∂ur∂ui
X(ur + iui, vr + ivi) = ∂21B(|u|, |v|)

urui
|u|2

− ∂1B(|u|, |v|)
urui
|u|3

,

∂ur∂vrX(ur + iui, vr + ivi) = ∂1∂2B(|u|, |v|)
urvr
|u||v|

,

etc. Second partial derivatives of B are

∂21B(x, y) =





(1 + 2δ)Φ′′(x) + 2δ
Φ′(x)

x
+ 2δ

∫ x

0

Φ′(s) ds

s2
for 0 < y < Φ′(x),

Φ′′(x) + 2δ

∫ y

0

ds

Φ′
∗(s)

for 0 < x < Φ′
∗(y),

∂1∂2B(x, y) =




0 for 0 < y < Φ′(x),
2δx

Φ′
∗(y)

for 0 < x < Φ′
∗(y),

∂22B(x, y) =





(1 + δ)Φ′′
∗(y) for 0 < y < Φ′(x),

Φ′′
∗(y)−

δx2Φ′′
∗(y)

Φ′
∗(y)

2
for 0 < x < Φ′

∗(y).

From these expressions and (2.14), (4.9), (4.10), we easily conclude that ∂2ur
X(u, v), ∂ur∂ui

X(u, v),

∂2ui
X(u, v) are

O(Φ′′(|u|)) +O
(Φ′(|u|)

|u|

)
+O(1) as u→ 0,

locally uniformly in v, that ∂ur∂vrX(u, v), ∂ur∂viX(u, v), ∂ui
∂vrX(u, v), ∂ui

∂viX(u, v) are bounded,
and that ∂2vrX(u, v), ∂vr∂viX(u, v), ∂

2
viX(u, v) are

O(Φ′′
∗(|v|)) +O

(Φ′
∗(|v|)

|v|

)
as v → 0,

locally uniformly in u. Recalling (2.5f) and (2.7c) we conclude that the second-order partial deriva-
tives of X are integrable in some neighborhood of each point of the two-dimensional coordinate
planes u = 0 and v = 0. Since the derivatives are obviously locally bounded outside of these two
planes, the proof is complete. �

Let us proceed with an upper bound on X.

Lemma 4. The function X satisfies

X(u, v) 6 2max
{
1,
M

m̃

}(
Φ(|u|) + Φ∗(|v|)

)
(4.13)

for (u, v) ∈ C
2.

Proof. The estimate will be verified separately in the two regions.
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Region Y↓ ∪ Y. In this region, (2.14) and (2.9) give

X(u, v) 6
(
1 + δ + δ

M

m̃− 1

)
Φ(|u|) + (1 + δ)Φ∗(|v|),

so, by δ 6 (m̃− 1)/100m̃, we conclude (4.13).
Region Y↑. Here we have, by |u| < Φ′

∗(|v|), (2.15), and (2.11),

X(u, v) 6 Φ(|u|) +
(
1 + δ

m̃

m̃− 1

m

m− 1

)
Φ∗(|v|)

6

(
1 +

1

100

m

m− 1

)(
Φ(|u|) + Φ∗(|v|)

)

and it remains to recall m > 2; see (2.13). �

We will also need certain derivative estimates for X. Recall that, by writing z = x+ iy ∈ C, we
can define operators of complex differentiation:

∂z =
∂x − i∂y

2
, ∂z̄ =

∂x + i∂y
2

.

Lemma 5. We have

|∂ūX(u, v)| 6 max{Φ′(|u|), |v|},

|∂v̄X(u, v)| 6 Φ′
∗(|v|)

for any (u, v) ∈ C
2.

Proof. It is sufficient to verify these estimates in (C\{0})2 \Y, since continuity of partial derivatives
will extend them to the whole domain C

2. Denote u = ur + iui, v = vr + ivi. Using the notation
from the proof of Lemma 3 we can write

∂ūX(u, v) =
1

2

(
∂urX(ur + iui, vr + ivi) + i∂ui

X(ur + iui, vr + ivi)
)

=
1

2

(
∂1B(|u|, |v|)

ur
|u|

+ i∂1B(|u|, |v|)
ui
|u|

)
=
∂1B(|u|, |v|)u

2|u|

and, analogously,

∂v̄X(u, v) =
∂2B(|u|, |v|) v

2|v|
.

Region Y↓. We have computed the partial derivatives of B in (4.11) and (4.12). Thanks to (2.14)
and δ 6 (m̃− 1)/100m̃ we have

|∂ūX(u, v)| 6
(1
2
+ δ +

δ

m̃− 1

)
Φ′(|u|) 6 Φ′(|u|).

Obviously, also

|∂v̄X(u, v)| 6 Φ′
∗(|v|).

Region Y↑. This time, because of (2.15) and |u| < Φ′
∗(|v|),

|∂ūX(u, v)| 6
1

2
Φ′(|u|) + δ

m̃

m̃− 1
|v| 6 max{Φ′(|u|), |v|}

and

|∂v̄X(u, v)| 6
(1
2
+
δ

2

)
Φ′
∗(|v|) 6 Φ′

∗(|v|). �
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Let us finalize this section with a lower bound on the generalized Hessian of X. It can also be
thought of as a certain generalized convexity property of X. Carbonaro and Dragičević [6] pointed
out that the generalized convexity of their Bellman function was essentially inherited from the
generalized convexity of the power functions u 7→ |u|p and v 7→ |v|q, which is, in turn, guaranteed by
the p-ellipticity conditions ∆p(A) > 0 and ∆p(B) > 0. Namely, the Bellman function was forced to
contain mixed terms too, but a small weight was placed on them, not to ruin convexity properties
of the whole expression. The same philosophy applies here and the desired convexity properties of
X are essentially inherited from those of its “main” terms u 7→ Φ(|u|) and v 7→ Φ∗(|v|); also see
Remark 12 below.

Lemma 6. We have

H
A(x),B(x)
X

[(u, v); (ζ, η)] >
1

10

(M̃
m̃

m̃− 1

M̃ − 1

)1/2
Cp(A,B)−1|ζ||η| (4.14)

for x ∈ R
d, (u, v) ∈ (C \ {0})2 \ Y, and (ζ, η) ∈ (Cd)2.

Proof. Using substitutions (3.1) the lower bound (4.14) can be rewritten as

H̃
A(x),B(x)
X

[(u, v); (ζ, η)] >
1

10

(M̃
m̃

m̃− 1

M̃ − 1

)1/2
Cp(A,B)−1|ζ||η| (4.15)

and it will be verified separately in the two regions.
Region Y↓. In this region Lemma 2 can be applied with

P (t) = (1 + δ)Φ(t) + δt2
∫ t

0

Φ′(s) ds

s2
, Q(t) = (1 + δ)Φ∗(t),

noting that

1

2

(
P ′′(t) +

P ′(t)

t

)
=

(1
2
+ δ

)
Φ′′(t) +

(1
2
+ 2δ

)Φ′(t)

t
+ 2δ

∫ t

0

Φ′(s) ds

s2
,

1

2

(
P ′′(t)−

P ′(t)

t

)
=

(1
2
+ δ

)
Φ′′(t)−

1

2

Φ′(t)

t
.

That way we end up with

H̃
A(x),B(x)
X

[(u, v); (ζ, η)]

= Re

〈
A(x)ζ,

1

2

(
Φ′′(|u|) +

Φ′(|u|)

|u|

)
ζ +

1

2

(
Φ′′(|u|)−

Φ′(|u|)

|u|

)
ζ

〉

Cd

+ (1 + δ)Re

〈
B(x)η,

1

2

(
Φ′′
∗(|v|) +

Φ′
∗(|v|)

|v|

)
η +

1

2

(
Φ′′
∗(|v|)−

Φ′
∗(|v|)

|v|

)
η

〉

Cd

+ 2δΦ′′(|u|)Re
〈
A(x)ζ,Re ζ

〉
Cd + 2δ

(Φ′(|u|)

|u|
+

∫ |u|

0

Φ′(s) ds

s2

)
Re

〈
A(x)ζ, ζ

〉
Cd︸ ︷︷ ︸

>0

.

Definition (2.23), positivity of Φ′,Φ′′,Φ′
∗,Φ

′′
∗ , and the choice of δ estimate this from below as

H̃
A(x),B(x)
X

[(u, v); (ζ, η)]

>
1

2
∆Φ(A)

(
Φ′′(|u|) +

Φ′(|u|)

|u|

)
|ζ|2 +

1 + δ

2
∆Φ∗

(B)
(
Φ′′
∗(|v|) +

Φ′
∗(|v|)

|v|

)
|η|2 − 2δΛ(A)Φ′′(|u|)|ζ|2

>
1

4
∆p(A)Φ

′′(|u|)|ζ|2 +
1

2
∆p(B)Φ′′

∗(|v|)|η|
2

>
1

2

(
∆p(A)∆p(B)

)1/2(
Φ′′(|u|)Φ′′

∗(|v|)
)1/2

|ζ||η|
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>
1

2
Cp(A,B)−1

(
Φ′′(|u|)Φ′′

∗(|v|)
)1/2

|ζ||η|.

Recall that in Y↓ we have |u| > Φ′
∗(|v|). For the proof of (4.15) it remains to observe that, since

Φ′′ is increasing by (2.5d),

Φ′′(|u|)Φ′′
∗(|v|) > Φ′′(Φ′

∗(|v|))Φ
′′
∗(|v|) = (Φ′ ◦ Φ′

∗)
′(|v|) = 1.

Region Y↑. In this region Lemma 2 applies with

P (t) = Φ(t), Q(t) = Φ∗(t), R(t) = δ

∫ t

0

ds

Φ′
∗(s)

.

Taking into account

R′(t) =
δ

Φ′
∗(t)

, R′′(t) =
−δΦ′′

∗(t)

Φ′
∗(t)

2

that lemma gives

H̃
A(x),B(x)
X

[(u, v); (ζ, η)]

= Re

〈
A(x)ζ,

1

2

(
Φ′′(|u|) +

Φ′(|u|)

|u|

)
ζ +

1

2

(
Φ′′(|u|) −

Φ′(|u|)

|u|

)
ζ

〉

Cd

+Re

〈
B(x)η,

1

2

(
Φ′′
∗(|v|) +

Φ′
∗(|v|)

|v|

)
η +

1

2

(
Φ′′
∗(|v|) −

Φ′
∗(|v|)

|v|

)
η

〉

Cd

+ 2δ
( ∫ |v|

0

ds

Φ′
∗(s)

)
Re

〈
A(x)ζ, ζ

〉
Cd

+ 2δ
|u|

Φ′
∗(|v|)

Re
〈
A(x)ζ,Re η

〉
Cd + 2δ

|u|

Φ′
∗(|v|)

Re
〈
B(x)η,Re ζ

〉
Cd

− δ
|u|2Φ′′

∗(|v|)

Φ′
∗(|v|)

2
Re

〈
B(x)η,Re η

〉
Cd + δ

|u|2

|v|Φ′
∗(|v|)

Re
〈
B(x)η, i Im η

〉
Cd .

Noting Φ′,Φ′′,Φ′
∗,Φ

′′
∗ > 0 we see that the last expression is at least

1

2
∆Φ(A)

(
Φ′′(|u|) +

Φ′(|u|)

|u|

)
|ζ|2 +

1

2
∆Φ∗

(B)
(
Φ′′
∗(|v|) +

Φ′
∗(|v|)

|v|

)
|η|2

+ 2δλ(A)
( ∫ |v|

0

ds

Φ′
∗(s)

)
|ζ|2 − 2δ

(
Λ(A) + Λ(B)

) |u|

Φ′
∗(|v|)

|ζ||η|

− δΛ(B)
( |u|2Φ′′

∗(|v|)

Φ′
∗(|v|)

2
+

|u|2

|v|Φ′
∗(|v|)

)
|η|2.

We can disregard the first term as nonnegative. Since in Y↑ we have |u| < Φ′
∗(|v|), this whole

expression is, in turn, bounded from below by

2δλ(A)
( ∫ |v|

0

ds

Φ′
∗(s)

)
|ζ|2 +

(1
2
∆p(B)− δΛ(B)

)(
Φ′′
∗(|v|) +

Φ′
∗(|v|)

|v|

)
|η|2 − 2δ

(
Λ(A) + Λ(B)

)
|ζ||η|.

The last display can be viewed as a quadratic form in |ζ| and |η|, and it is at least

(
2δλ(A)∆p(B)

Φ′
∗(|v|)

|v|

∫ |v|

0

ds

Φ′
∗(s)

)1/2
|ζ||η| − 2δ

(
Λ(A) + Λ(B)

)
|ζ||η|

>

(
δλ(A)∆p(B)

M̃

M̃ − 1

)1/2
|ζ||η| >

1

10

(m̃− 1

m̃

M̃

M̃ − 1

)1/2
Cp(A,B)−1|ζ||η|,

where we also used (2.15) and the fact that δ was given by (4.2). This proves (4.15) again. �
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Remark 12. Let us finalize this section with a short reasoning that can lead naturally to formula
(4.1) for the Bellman function X(u, v). First, the main terms Φ(|u|) and Φ∗(|v|) need to be included,
as they are responsible for the generalized convexity, as we have already remarked. In Lemma 6 we
need a concrete quantitative lower bound on the generalized Hessian of X and these two terms would
be sufficient in the region Y↓. However, in the region Y↑ we compensate convexity with a “hidden
term” (in the language of [23, Section 8.2]) of the form δ|u|2R(|v|) for a sufficiently small δ > 0. In
order to still have the upper bound of Lemma 4, the best we can do (in complete generality) in the
region Y↑ is to estimate |u|2R(|v|) 6 Φ′

∗(|v|)
2R(|v|). We would like this to be controlled by Φ∗(|v|),

so it makes sense to take R(|v|) to be roughly Φ∗(|v|)/Φ
′
∗(|v|)

2. However, the last expression is not
a particularly good choice, as its convexity would also need to be characterized by properties of
the third derivative Φ′′′

∗ . Luckily, the assumptions from Subsection 2.1 offer many possibilities for
quantities that are comparable to Φ∗/(Φ

′
∗)

2 and the most convenient choice is the primitive function

of 1/Φ′
∗, leading to R(|v|) =

∫ |v|
0 1/Φ′

∗. It is important that X is C1, so its definitions on Y↓ and Y↑

need to match nicely. For this reason, computation (4.5) then reveals us how to complete its formula

on Y↓. Note that the term δ|u|2
∫ |u|
0 Φ′(s) ds/s2 is particularly interesting, as it was not visible in

the classical special case (4.3).

5. Proof of Theorem 1

As discussed in Section 2.3, to prove Theorem 1 it is enough to establish the dehomogenized
estimate (2.31) from Remark 8. In its proof we will use the heat flow method and closely follow the
outline by Carbonaro and Dragičević [6, Section 6] (also see [7, Section 6]). We will be very brief
because what follows is a straightforward adaptation of their arguments. On the other hand, we still
include a few details to indicate how certain formulas generalize from powers to Young functions Φ
and Φ∗.

5.1. Regularization. In the proof of Theorem 1 we will need a smoother version of the constructed
Bellman function (4.1). To be more precise, we want to replace X by a function that satisfies similar
properties to those in Lemmas 4–6 but is, in addition, also of class C∞ everywhere on C

2, and
not only in (C \ {0})2 \ Y. Mollification of the Bellman function for this purpose has already been
employed in [29] and [26]. In a similar context, this “regularization” was performed in almost exactly
the same way in [6, Subsection 5.1].

Let us fix a nonnegative radial C∞ function ϕ on C
2 ≡ R

4, supported in the standard unit ball,
and such that

∫
C2 ϕ = 1. For a given ν ∈ (0, 1] and (w, z) ∈ C

2 we define ϕν(w, z) := ν−4ϕ(w/ν, z/ν).

Note that ϕν are L1-normalized dilates of ϕ. Consider

Xν := X ∗ ϕν ,

i.e.,

Xν(u, v) :=

∫

C2

X(u− w, v − z)ϕν(w, z) dw dz

for (u, v) ∈ C
2. Here dw and dz denote integration with respect to the two-dimensional Lebesgue

measure on C ≡ R
2; it should not be confused with complex integration. Clearly, Xν is of class

C∞ on the whole C
2, since it is a convolution of X with a smooth function. We still consider fixed

Φ,Φ∗, A,B that satisfy hypotheses of Theorem 1.

Proposition 7. (a) For ν ∈ (0, 1] and (u, v) ∈ C
2 we have:

0 6 Xν(u, v) 6 2max
{
1,
M

m̃

}(
Φ(|u|+ ν) + Φ∗(|v| + ν)

)
.
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(b) For ν ∈ (0, 1] and (u, v) ∈ C
2 we have:

∣∣∂ūXν(u, v)
∣∣ 6 max

{
Φ′(|u|+ ν), |v|+ ν

}
,

∣∣∂v̄Xν(u, v)
∣∣ 6 Φ′

∗(|v| + ν).

(c) For ν ∈ (0, 1], x ∈ R
d, (u, v) ∈ C

2, and (ζ, η) ∈ (Cd)2 we have:

H
A(x),B(x)
Xν

[(u, v); (ζ, η)] >
1

10

(M̃
m̃

m̃− 1

M̃ − 1

)1/2
Cp(A,B)−1|ζ||η|.

Proof. Estimate (a). By the definition of Xν and estimate (4.13) from Lemma 4 we easily get

Xν(u, v) 6 2max
{
1,
M

m̃

}∫

C2

(
Φ(|u− w|) + Φ∗(|v − z|)

)
ϕν(w, z) dw dz

6 2max
{
1,
M

m̃

}(
Φ(|u|+ ν) + Φ∗(|v| + ν)

)
.

Here, in the last inequality, we used
∫
C2 ϕν = 1 and that for (w, z) in the support of ϕν we have

|u− w| 6 |u|+ ν and |v − z| 6 |v|+ ν, while Φ and Φ∗ are increasing.
Estimates (b). Recall that Lemma 3 guarantees that the first-order partial derivatives of X are

continuous. By Lemma 5 we have

∣∣∂ūXν(u, v)
∣∣ =

∣∣∣
∫

C2

∂ūX(u− w, v − z)ϕν(w, z) dw dz
∣∣∣

6

∫

C2

max
{
Φ′(|u− w|), |v − z|

}
ϕν(w, z) dw dz

6 max
{
Φ′(|u|+ ν), |v|+ ν

}

and analogously ∣∣∂v̄Xν(u, v)
∣∣ 6 Φ′

∗(|v|+ ν).

Here we used that Φ′ and Φ′
∗ are increasing too; recall (2.6).

Estimate (c). Lemma 3 also guarantees that the second-order derivatives of X are locally inte-
grable functions on R

4 defined on the complement of the critical surface and coordinate hyperplanes.
Combining classical results [12, Theorem 6.3.11] and [20, Theorem 2.1] we see that the second-order
partial derivatives of X can equally well be computed in the weak (i.e., distributional) sense. In
particular, the generalized Hessian of X ∗ ϕν is the convolution of the generalized Hessian of X and
ϕν . The former exists almost everywhere and satisfies the bound (4.14) from Lemma 6 at those
points. Therefore, we still have

H
A(x),B(x)
Xν

[(u, v); (ζ, η)] =

∫

C2

H
A(x),B(x)
X

[(u− w, v − z); (ζ, η)]ϕν (w, z) dw dz

>
1

10

(M̃
m̃

m̃− 1

M̃ − 1

)1/2
Cp(A,B)−1|ζ||η|. �

5.2. Proof for smooth matrix functions. First, we assume that the entries of A and B are
bounded C1 functions that also have bounded derivatives. In addition to the previously fixed
Φ,Φ∗, A,B, now we also take f, g ∈ C∞

c (Rd). Let us choose any radial C∞ function ψ : Rd → [0, 1]
that is constantly 1 on the standard unit ball, while vanishing on its double dilate around the origin.
This time we normalize dilates of ψ in L∞ norm and write ψR(x) := ψ(x/R) for any R ∈ (0,∞) and
x ∈ R

d. Finally, for each ν ∈ (0, 1] recall the mollified Bellman function Xν from Subsection 5.1.
Just as in [6], for given R ∈ (0,∞) and ν ∈ (0, 1] we define ER,ν : [0,∞) → [0,∞) as

ER,ν(t) :=

∫

Rd

ψR(x)Xν

(
(TA

t f)(x), (T
B
t g)(x)

)
dx.
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The following manipulations were justified in [6, Section 3.1] and [6, Section 4.1]. Proposition 7 (a)
gives an upper bound on the following integral for a fixed time T ∈ (0,∞):

−

∫ T

0
E ′
R,ν(t) dt = ER,ν(0) − ER,ν(T ) 6 ER,ν(0)

=

∫

Rd

ψR(x)Xν

(
f(x), g(x)

)
dx

6 2max
{
1,
M

m̃

}∫

Rd

ψR(x)
(
Φ(|f(x)|+ ν) + Φ∗(|g(x)| + ν)

)
dx.

On the other hand, [6, Proposition 4.3] and Proposition 7 (c) give a lower bound on the same
integral:

−

∫ T

0
E ′
R,ν(t) dt = −

∫ T

0

∫

Rd

ψR(x)
∂

∂t
Xν

(
(TA

t f)(x), (T
B
t g)(x)

)
dxdt

=

∫ T

0

∫

Rd

ψR(x)H
A(x),B(x)
Xν

[(
(TA

t f)(x), (T
B
t g)(x)

)
;
(
(∇TA

t f)(x), (∇T
B
t g)(x)

)]
dxdt+RT,R,ν

>
1

10

(M̃
m̃

m̃− 1

M̃ − 1

)1/2
Cp(A,B)−1

∫ T

0

∫

Rd

ψR(x)
∣∣(∇TA

t f)(x)
∣∣ ∣∣(∇TB

t g)(x)
∣∣ dxdt+RT,R,ν ,

where RT,R,ν is the remainder (a.k.a. the error-term in [6]), given as

RT,R,ν := 2Re

∫ T

0

∫

Rd

(
(∂ūXν)

(
(TA

t f)(x), (T
B
t g)(x)

) 〈
(∇ψR)(x), A(x)(∇T

A
t f)(x)

〉
Cd

+ (∂v̄Xν)
(
(TA

t f)(x), (T
B
t g)(x)

) 〈
(∇ψR)(x), B(x)(∇TB

t g)(x)
〉
Cd

)
dxdt.

Proposition 7 (b) controls this remainder as

|RT,R,ν | 6 2Λ(A)

∫ T

0

∫

Rd

|∇ψR(x)|Φ
′
(
|(TA

t f)(x)|+ ν
)
|(∇TA

t f)(x)|dxdt

+ 2Λ(A)

∫ T

0

∫

Rd

|∇ψR(x)|
(
|(TB

t g)(x)| + ν
)
|(∇TA

t f)(x)|dxdt

+ 2Λ(B)

∫ T

0

∫

Rd

|∇ψR(x)|Φ
′
∗

(
|(TB

t g)(x)| + ν
)
|(∇TB

t g)(x)|dxdt.

By reasoning as in the proof of [6, Lemma 6.1], semigroup L∞ estimates and Davies-Gaffney-type
estimates now easily show

lim sup
R→∞

lim sup
ν→0+

|RT,R,ν | = 0

for any fixed T ∈ (0,∞). Thus, we first let ν → 0+ and then send R → ∞, both in the upper
estimate and in the lower estimate above. Combining the two immediately gives us

1

10

(M̃
m̃

m̃− 1

M̃ − 1

)1/2
Cp(A,B)−1

∫ T

0

∫

Rd

∣∣(∇TA
t f)(x)

∣∣ ∣∣(∇TB
t g)(x)

∣∣ dxdt

6 2max
{
1,
M

m̃

}∫

Rd

(
Φ(|f(x)|) + Φ∗(|g(x)|)

)
dx.

In the limit as T → ∞ we obtain precisely (2.31).
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5.3. Proof for non-smooth matrix functions. Extension of the estimate (2.31) to arbitrary A
and B is performed exactly as in [6]. In [6, Appendix] the authors define smooth approximations

Aε and Bε such that ∇TAε
t f → ∇TA

t f in the L2 norm as ε → 0+, λ(A) 6 λ(Aε) 6 Λ(Aε) 6 Λ(A),
∆p(Aε) > ∆p(A), etc. The proof is then finalized as in [6, Section 6], by applying the previously
established smooth case and letting ε→ 0+.
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Basel Textbooks]. Birkhäuser/Springer, New York, second edition, 2013.
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