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TRILINEAR EMBEDDING FOR DIVERGENCE-FORM OPERATORS

WITH COMPLEX COEFFICIENTS

ANDREA CARBONARO, OLIVER DRAGIČEVIĆ, VJEKOSLAV KOVAČ, AND KRISTINA ANA ŠKREB

Abstract. We prove a dimension-free Lp(Ω)×Lq(Ω)×Lr(Ω) → L1(Ω×(0,∞)) embedding
for triples of elliptic operators in divergence form with complex coefficients and subject to
mixed boundary conditions on Ω, and for triples of exponents p, q, r ∈ (1,∞) mutually related
by the identity 1/p+1/q+1/r = 1. Here Ω is allowed to be an arbitrary open subset of Rd.
Our assumptions involving the exponents and coefficient matrices are expressed in terms of
a condition known as p-ellipticity. The proof utilizes the method of Bellman functions and
heat flows. As a corollary, we give applications to (i) paraproducts and (ii) square functions
associated with the corresponding operator semigroups, moreover, we prove (iii) inequalities
of Kato–Ponce type for elliptic operators with complex coefficients. All the above results
are the first of their kind for elliptic divergence-form operators with complex coefficients on
arbitrary open sets. Furthermore, the approach to (ii),(iii) through trilinear embeddings
seems to be new.

1. Introduction and statement of the main results

Let Ω ⊆ Rd be an arbitrary open set. Denote by A(Ω) the family of all complex uniformly
strictly accretive (also called elliptic) d× d matrix functions on Ω with L∞ coefficients. That
is, A(Ω) is the set of all measurable A : Ω → Cd×d for which there exist λ,Λ > 0 such that
for almost all x ∈ Ω we have

Re 〈A(x)ξ, ξ〉 > λ|ξ|2 , ∀ξ ∈ Cd; (1.1)

|〈A(x)ξ, η〉| 6 Λ |ξ| |η| , ∀ξ, η ∈ Cd. (1.2)

Elements of A(Ω) will also more simply be referred to as accretive or elliptic matrices. For
any A ∈ A(Ω) denote by λ(A) the largest admissible λ in (1.1) and by Λ(A) the smallest Λ
in (1.2).

1.1. The p-ellipticity condition. The concept of p-ellipticity was introduced by the first
two authors of the present paper in [22] as follows.

Given A ∈ A(Ω) and p ∈ (1,∞), we say that A is p-elliptic if ∆p(A) > 0, where

∆p(A) := ess inf
x∈Ω

min
ξ∈Cd

|ξ|=1

Re
〈
A(x)ξ, ξ + |1− 2/p|ξ̄

〉
Cd . (1.3)

Equivalently, A is p-elliptic if there exists c = c(A, p) > 0 such that for a.e. x ∈ Ω,

Re
〈
A(x)ξ, ξ + |1− 2/p|ξ̄

〉
Cd > c|ξ|2 , ∀ξ ∈ Cd. (1.4)

It follows straight from (1.3) that ∆p is invariant under conjugation of p, meaning that
∆p(A) = ∆q(A) when 1/p + 1/q = 1. Furthermore, note that ∆2(A) = λ(A), so p-ellipticity
generalizes the notion of classical ellipticity. We will refer to ∆p(A) and Λ(A) collectively as
the p-ellipticity constants of A. In order to unify some computations, we extend the definition
(1.3) to all p ∈ (0,∞].
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Denote by Ap(Ω) the class of all p-elliptic matrix functions on Ω. It is known, see [22], that
{Ap(Ω) ; p ∈ [2,∞)} is a decreasing chain of matrix classes such that

{elliptic matrices on Ω} = A2(Ω) ,

{real elliptic matrices on Ω} =
⋂

p∈[2,∞)

Ap(Ω) . (1.5)

In [22] it was argued that p-ellipticity could be of interest for the Lp-theory of elliptic PDEs
with complex coefficients. So far, several examples have been found that support this thought.
The current paper aims to continue further in this direction, by establishing new applications
of p-ellipticity: trilinear embeddings, paraproducts, square function estimates and Kato–Ponce
inequalities.

A condition similar to (1.4), yet slightly weaker, was formulated in a different manner by
Cialdea and Maz’ya in [23, (2.25)]; see [22, Remark 5.14]. It was a result of their study of a
condition on sesquilinear forms known as Lp-dissipativity. In [22] the first two authors of the
present paper arrived at (1.4) from a different direction, that is, via bilinear embeddings and
generalized convexity of power functions; see Section 1.2 for more background.

While the first two authors of the present paper were preparing [22], M. Dindoš and J. Pipher
were working on their own article [28]. They discovered remarkable connections between (1.4)
and the regularity theory of elliptic PDEs. More precisely, they found the following sharp
condition which implies reverse Hölder inequalities for weak solutions of elliptic operators in
divergence form with complex coefficients: for some ε = ε(A, p) > 0 and almost all x ∈ Ω,

〈ReA(x)λ, λ〉Rd+〈ReA(x)η, η〉Rd+
〈(√

p′/p ImA(x)−
√
p/p′ ImA(x)T

)
λ, η
〉
Rd

> ε
(
|λ|2+|η|2

)

for all λ, η ∈ Rd. Here p′ = p/(p − 1) is the conjugate exponent of p. It turned out that
the above condition of theirs, devised independently of [22], namely, as a strengthening of
[23, (2.25)], was precisely a reformulation of (1.4). The same authors have since then been
successfully continuing their line of exploration of p-ellipticity in PDEs; see their recent paper
[29] and a preprint with Li [27].

1.2. Genesis of p-ellipticity. The idea of attaching a number to the pair (A, p), highlighting
positivity of that number as a key condition, writing it as in (1.3), studying its dynamics with
respect to A and p, etc., came as a synthesis of the first two authors’ long-term study of
Bellman functions, heat flows and generalized convexity.

Among the very first works where the Bellman-heat approach started getting developed
were Petermichl–Volberg [58] and Nazarov–Volberg [55]. Afterwards, in a series of papers
written by A. Volberg and the second author of the present paper [32, 33, 31] or by the first
two authors of the present paper [19, 20, 18], the heat flow method associated with a particular
Nazarov–Treil function Q (an example of a Bellman function), found in [55], was applied and
developed further.

For example, in [33] a scrutinous analysis of Q revealed fine convexity properties that were,
on one hand, indispensable for the main goal of [33] (a so-called bilinear embedding), and
unexpected on the other. That suggested that Q may possess further important convexity
properties, which was subsequently confirmed in above-cited works of the first two authors.
Another milestone on that path was [19], where the flow associated with Q was for the first time
studied for complex times. This led to a universal spectral multiplier theorem for generators of
symmetric contractive semigroups with the optimal angle, thus introducing the Bellman-heat
method into spectral multipliers and answering a question posed several years earlier by Stein.

As indicated above, the gist of each of those works was establishing the convexity of Q.
In [22] the concept of convexity of a function with respect to a matrix was introduced (see
Section 2.3 for the definition). When the matrix in question is the identity matrix, this is the
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usual convexity. In the same work the focus was fully shifted from the convexity of Q to the
convexity of its principal building blocks – power functions. The p-ellipticity condition (1.4)
was conceived there first as the uniform convexity of power functions |ζ|p with respect to A,
and then reshaped into (1.4); see [22, Remark 5.9]. Therefore the p-ellipticity emerged in [22]
after several years of gradually distilling the heat flow method through [32, 33, 31, 19, 20, 18].

Other works using the Bellman-heat approach include Domelevo–Petermichl [30], Mauceri–
Spinelli [48], Wróbel [61], Betancor–Dalmasso–Fariña–Scotto [12], Kucharski [45], the article
[44] by the latter two authors of the present paper, and [21] by the former two.

Since we will be dealing with pairs and triples of matrices, it is useful to introduce further
notation, as in [22, 21]:

∆p(A1, . . . , AN ) = min{∆p(A1), . . . ,∆p(AN )},
λ(A1, . . . , AN ) = min{λ(A1), . . . , λ(AN )},
Λ(A1, . . . , AN ) = max{Λ(A1), . . . ,Λ(AN )}.

1.3. Elliptic partial differential operators in divergence form. Suppose that either:

(a) U = H1
0 (Ω),

(b) U = H1(Ω), or
(c) U is the closure in H1(Ω) of the set of restrictions

{
u|Ω ; u ∈ C∞

c (Rd\Γ)
}
, where Γ is a

(possibly empty) closed subset of ∂Ω.

Here H1
0 (Ω) stands for the closure of C∞

c (Ω) in the Sobolev space H1(Ω) = W 1,2(Ω). Recall
that H1

0 (R
d) = H1(Rd); see [1, Corollary 3.19] for a reference.

We would like to define the divergence form operator LAu = −div(A∇u). A standard way
of achieving this is to use sesquilinear forms. Before proceeding we state that all the integrals
in this paper will be taken with respect to the Lebesgue measure. As the ambient space we
will typically take the complex Hilbert space H = L2(Ω).

Let the sesquilinear form a = aA,U be given by D(a) and

a(u, v) :=

∫

Ω
〈A∇u,∇v〉Cd for u, v ∈ U .

We define L = LA = LA,U to be the operator associated with aA,U . See [57, Section 1.2.3]
for information about this construction. The bottomline is that

〈LAu, v〉H =

∫

Ω
〈A∇u,∇v〉Cd , ∀u ∈ D(LA), v ∈ U , (1.6)

where the domain D(LA) is the set of all u ∈ U for which the right-hand side, regarded as an
antilinear functional on U with input v, extends boundedly to the whole L2(Ω). Depending
on the choice (a)–(c) of U , we say that L is subject to (a) Dirichlet, (b) Neumann or (c)
mixed boundary conditions, see [57, Section 4.1].

Consider the operator semigroup on L2(Ω) generated by −LA,U :

TA,U
t := exp(−tLA,U ) for t ∈ (0,∞).

The semigroup (TA,U
t )t>0 is known to be contractive and analytic on L2(Ω); see [42, Chapter

VI], [5] and [57, Chapters 1 and 4].

1.4. Trilinear embedding. The main result of this paper is the following dimension-free
trilinear embedding theorem. Recall that by the p-ellipticity constants of A we mean the
numbers ∆p(A), λ(A), Λ(A).
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Theorem 1.1. Let Ω ⊆ Rd be an open set and let the spaces U ,V ,W be as in Section 1.3.
Take p, q, r ∈ (1,∞) such that

1

p
+

1

q
+

1

r
= 1. (1.7)

Suppose that accretive matrices A,B,C : Ω → Cd×d are max{p, q, r}-elliptic. Then for f ∈(
Lp ∩ L2

)
(Ω), g ∈

(
Lq ∩ L2

)
(Ω) and h ∈

(
Lr ∩ L2

)
(Ω) we have

∫ ∞

0

∫

Ω

∣∣∣∇TA,U
t f

∣∣∣
∣∣∣∇TB,V

t g
∣∣∣
∣∣∣TC,W

t h
∣∣∣ dx dt . ‖f‖p ‖g‖q ‖h‖r . (1.8)

When Ω = Rd, the same conclusion holds under milder assumptions, namely, when

• A is p-elliptic and (1 + p/q)-elliptic,
• B is q-elliptic and (1 + q/p)-elliptic, (⋆)
• C is r-elliptic.

The implied embedding constants only depend on p, q, r and ∗-ellipticity constants of A,B,C
alluded to in the theorem’s assumptions.

The proof of Theorem 1.1 will be given in Section 6 (case of Ω = Rd) and Section 7 (for
general Ω), after all the needed preparatory results are established in Sections 2–5.

Remark 1.2. Introduce, for p ∈ (1,∞), the notation

p∗ := max{p, p′},
where p′ is the conjugate exponent of p, that is, 1/p+ 1/p′ = 1. Owing to the symmetry and
monotonicity properties of ∆p(A) specified in Section 1.1, we have that

A is s-elliptic and t-elliptic ⇐⇒ A is max{s∗, t∗}-elliptic.

In particular, in the special case p = q the assumptions (⋆) read that C is r-elliptic, while
A,B are p-elliptic for 2/p + 1/r = 1.

Observe also that 1+p/q and 1+q/p are conjugate exponents, therefore (1+p/q)-ellipticity
is the same as (1+ q/p)-ellipticity. Furthermore, note that 1+ p/q = p/r′ and 1+ q/p = q/r′.

1.5. Motivation. Bilinear versus trilinear. A bilinear embedding is, roughly, an estimate
of the following type:

∫ ∞

0

∫

X
|∇Ttf ||∇Ttg|dµ(x)dt . ‖f‖p ‖g‖q ,

where (Tt)t>0 is an operator semigroup acting on complex functions f, g which map from
some measure space (X,µ), and 1/p + 1/q = 1. Variants of bilinear embeddings have been
instrumental in proving an array of sharp results, e.g. Riesz transform estimates, general
spectral multiplier theorems, maximal regularity etc.; see [22, 21, 19] for the relevant literature.
The first two authors of the present paper proved bilinear embeddings for elliptic operators in
divergence form with complex coefficients [22, 21]; see Theorem 1.3 for the result’s statement.
Our colleagues C. Thiele and J. Bennett have asked us whether bilinear estimates in the
context of elliptic matrices admit a reasonable trilinear counterpart. Our answer to these
inquiries is Theorem 1.1. Apart from pushing the Bellman-heat technique further, this result
and its applications described in Section 1.7 extend the scope of p-ellipticity. We believe that
Theorem 1.1 bears potential for other applications in the future.

The special case Ω = Rd and A = B = C = I of Theorem 1.1 follows by applying classical
tools from harmonic analysis. The latter two authors of the present paper gave an alternative
proof for d = 1 in [44, Section 3.3], using a Bellman-heat argument and utilizing an original
function constructed in the same paper. Hence that function will be a natural starting point
for the proof of our Theorem 1.1.
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On Rd, embedding-type theorems for general complex elliptic matrices were first studied
by the first two authors of the present paper [22]. As mentioned above, their embedding
differs from the one in this paper by being bilinear. It was however also based on a Bellman-
heat argument, yet associated with another (simpler) function. Recently, the same authors
proved bilinear embedding for complex-coefficient operators under mixed boundary conditions
on arbitrary open sets Ω ⊆ Rd, see [21, 16]. Passing from Rd to general open sets Ω was
technically demanding and called for a major modification of the approach from [22]. This
is also the reason why the two cases of Theorem 1.1 (namely, Ω = Rd and Ω ( Rd) will be
treated in separate sections.

On top of grossly extending [44, Section 3.3], the trilinear embedding of Theorem 1.1 also
directly implies the above-said bilinear embeddings from [22, 21]. See Section 1.6 for a more
precise formulation of this statement and its proof.

The main challenge of the trilinear context when compared to the bilinear one is that
symmetry is lost, i.e., knowing p does not yet determine any of the other two exponents,
unlike in the bilinear case with a pair of mutually conjugate exponents. On the other hand,
the generalized convexity coefficient ∆p(A) is naturally fit for conjugation, as it is actually
invariant under conjugation of p. This is what makes the trilinear case significantly different
and more difficult.

Thus the proof of Theorem 1.1 is based on combining the elements from [44] on one hand,
and the technique from [22] (for Ω = Rd) and [21] (for general Ω) on the other.

1.6. Trilinear implies bilinear. Here we present a simple argument demonstrating that our
trilinear embedding (Theorem 1.1) implies the following bilinear estimate. The latter appeared
in [22] in the special case of Ω = Rd and in [21] with general open Ω ⊆ Rd. We formulate it
here for the sake of convenience.

Theorem 1.3. [22, 21] Let U ,V ⊆ H1(Ω) be as in Section 1.3. If p, q > 1 are conjugate
exponents and A,B ∈ Ap(Ω), then for all f, g ∈ (Lp ∩ Lq)(Ω) we have

∫ ∞

0

∫

Ω

∣∣∣∇TA,U
t f(x)

∣∣∣
∣∣∣∇TB,V

t g(x)
∣∣∣ dx dt . ‖f‖p‖g‖q, (1.9)

with the implied constants depending only on p, ∆p(A,B), λ(A,B) and Λ(A,B).

Let p, q,A,B,Ω,U ,V , f, g satisfy the assumptions of Theorem 1.9. We further require that
p 6= q, hence, by symmetry of (1.3) with respect to the interchange p ↔ q, we may assume
that p > 2 > q. Also, suppose that either Ω = Rd or A,B are real.

Choose 0 < ε < 1 − (p − 1)−1. Then q + ε < 2 < p − ε and (p − ε)−1 + (q + ε)−1 < 1, so
that there exists a unique r = r(ε) > 1 determined by

1

p− ε
+

1

q + ε
+

1

r(ε)
= 1. (1.10)

By interpolation of Lp spaces we also have f ∈ (Lp−ε ∩ L2)(Ω) and g ∈ (Lq+ε ∩ L2)(Ω).
Choose also δ > 0 and let C = δICd . By [22, Lemma 5.20] we have that C is r-elliptic.

Furthermore, take R > 0 such that the ball B(0, R) intersects the open set Ω and define
h = χΩ∩B(0,R), with χ denoting the characteristic function. Clearly, h ∈ (Lr ∩ L2)(Ω).
Finally, let W = H1

0 (Ω).
We would like to apply Theorem 1.1 for the triples of functions f, g, h, matrices (A,B, δI)

and indices (p − ε, q + ε, r(ε)) as chosen above and with arbitrarily small ε > 0. To this end
we need to make sure that the corresponding ∗-ellipticity conditions are satisfied.

• If Ω is arbitrary A,B are real, then for every s > 0 they are automatically s-elliptic
[22]. In particular, they are max{p, q, r}-elliptic regardless of the choice of p, q, r > 1.
We also know from [22] that real elliptic matrices are the only ones with this property.
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• If Ω = Rd and A,B are arbitrary (complex elliptic), then we have to verify that (⋆)
holds for indices (p − ε, q + ε, r(ε)).

Recall that p, q were conjugate expontents. Since A,B ∈ Ap(Ω) = Aq(Ω), we infer
from [22, Corollary 5.16] and the choice of ε that A ∈ Ap−ε(Ω) and B ∈ Aq+ε(Ω).
Similarly, for

s(ε) := 1 +
p− ε

q + ε

we have
2 < s(ε) =

q + p

q + ε
<
q + p

q
= p,

which means that A,B are also s(ε)-elliptic.
We may now apply (1.8) as follows:

∫ ∞

0

∫

Ω

∣∣∣∇TA,U
t f

∣∣∣
∣∣∣∇TB,V

t g
∣∣∣
∣∣∣T δI,W

t h
∣∣∣ dx dt . ‖f‖p−ε ‖g‖q+ε ‖h‖r(ε) . (1.11)

We first want to send ε→ 0.
By the continuity of Ls norms at s = p, q,∞ we have

lim
ε→0

‖f‖p−ε ‖g‖q+ε ‖h‖r(ε) = ‖f‖p ‖g‖q ‖h‖∞ = ‖f‖p ‖g‖q .

Since ε does not appear on the left-hand side in (1.11), we proved
∫ ∞

0

∫

Ω

∣∣∣∇TA,U
t f

∣∣∣
∣∣∣∇TB,V

t g
∣∣∣
∣∣∣T δI,W

t h
∣∣∣ dx dt . ‖f‖p ‖g‖q . (1.12)

A comment is in place at this point. As stated in Theorem 1.1, the embedding constants
implied in (1.8) also depend on r and ∆r(C). So when we move ε→ 0, one has to make sure
that the embedding constants stay finite. In fact this is indeed the case; see Corollary 7.12.
Moreover, the same Corollary 7.12 tells us that the embedding constants from (1.12) do not
depend on δ.

Next we want to send δ → 0. By the strong continuity of T I,W
s in L2(Ω) we have

h = lim
sց0

T I,W
s h

in the L2(Ω) sense. Choose k, n ∈ N. From (1.12) we trivially get
∫ ∞

0

∫

Ω
min

{∣∣∣∇TA,U
t f

∣∣∣ , k
} ∣∣∣∇TB,V

t g
∣∣∣
∣∣∣T (1/n)I,W

t h
∣∣∣ dx dt . ‖f‖p ‖g‖q . (1.13)

Therefore the integrand on the left-hand side (1.13) can be decomposed as XkY Zn, where
for every fixed t > 0 we have Xk(t) ∈ L∞(Ω), Y (t) ∈ L2(Ω), while Zn(t) ∈ L2(Ω) and
converges in L2(Ω) to h ∈ L2(Ω) as n → ∞. Consequently, for any fixed t > 0 one obtains∫
Ω(XkY Zn)(t) →

∫
Ω(XkY )(t)h as n → ∞, which through Fatou’s lemma transforms (1.13)

into ∫ ∞

0

∫

Ω
min

{∣∣∣∇TA,U
t f

∣∣∣ , k
} ∣∣∣∇TB,V

t g
∣∣∣ |h|dx dt . ‖f‖p ‖g‖q .

The embedding constants are the same as in (1.12), since those were independent of δ.
Recalling that we had h = χΩ∩B(0,R), we finally pass R→ ∞ and k → ∞ which gives (1.9).

Remark 1.4. The reason for restricting ourselves in this section to the cases of either Ω = Rd

or A,B real, was to apply Theorem 1.1 for triples (A,B, δI) and (p, q, r) with arbitrarily large
r. The underlying observation is that A,B,C ∈ Amax{p,q,r}(Ω) holds for all r > 1 only when
A,B,C are real, see [22, p. 3179] or (1.5). We believe that Theorem 1.1 might hold under
the more convenient conditions (⋆) for any open Ω, not only Ω = Rd, yet at this moment
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we cannot prove this. If we could, then the reasoning from this section would automatically
extend to the case of arbitrary open Ω and complex elliptic A,B.

Note also that if r → ∞ (as in this section), then p, q become conjugate exponents, therefore
the condition ∆1+q/p(A) > 0 from Theorem 1.1 becomes just ∆p(A) > 0, which is familiar to
us from Theorem 1.3. This makes the connection between the two results and the limiting
procedure from this section look more natural. Also, it supports our impression that the set
of conditions (⋆) could indeed be optimal for trilinear embeddings on any open sets.

1.7. Applications.

1.7.1. Paraproducts associated with semigroups. Let p, q, r,Ω, A,B,C,U ,V ,W , f, g, h be as
in Theorem 1.1. Define the trilinear form Θ by

Θ(f, g, h) := −
∫ ∞

0

∫

Rd

( d
dt
TA
t f
)
(TB

t g)(T
C
t h)dx dt =

∫ ∞

0

∫

Rd

(LAT
A
t f)(T

B
t g)(T

C
t h)dx dt.

Using (1.6) and the product rule it can be rewritten as

Θ(f, g, h) =

∫ ∞

0

∫

Rd

(TC
t h)

〈
A∇TA

t f,∇TB
t g
〉
Cd dx dt+

∫ ∞

0

∫

Rd

(TB
t g)

〈
A∇TA

t f,∇TC
t h
〉
Cd dx dt.

Theorem 1.1 gives
|Θ(f, g, h)|. ‖f‖p ‖g‖q ‖h‖r . (1.14)

In particular, Θ can be uniquely extended to a bounded trilinear form on Lp(Ω) × Lq(Ω) ×
Lr(Ω). It is natural to call it the paraproduct associated with semigroups (TA

t )t>0, (TB
t )t>0

and (TC
t )t>0. In order to arrive at a more familiar paraproduct-type expression, we define

ϕ(z) := e−z, ψ(z) := ze−z, (1.15)

and then rewrite Θ using the functional calculus notation, as

Θ(f, g, h) =

∫ ∞

0

∫

Rd

(
ψ(tLA)f

)(
ϕ(tLB)g

)(
ϕ(tLC)h

)
dx

dt
t
.

It is more common to reserve the word “paraproduct” for certain bilinear operators (f, g) 7→
Π(f, g), but one quickly arrives at a trilinear form by dualizing them with a third function h.

Paraproducts associated with semigroups were previously studied by several authors in
various settings, often more general than ours; see the papers by Bernicot [7], Bernicot and
Sire [11], Frey [38], Frey and Kunstmann [39], Bernicot and Frey [9], and Wróbel [60]. However,
in the context of divergence form operators, Theorem 1.1 allows the study of paraproducts
associated with three different semigroups, while the aforementioned literature was confined to
taking A = B = C, A∗ = B = C or A = B∗ = C. Moreover, the implicit constant in estimate
(1.14) only depends on the exponents p, q, r and the stated ∗-ellipticity constants of A,B,C,
so the result has a “dimensionless” flavor. We regard (1.14) rather as the first hint of a possible
general dimension-free theory of paradifferential calculus for complex elliptic operators.

1.7.2. Square functions. In [22] a question was raised about a connection between p-ellipticity
and square function estimates on Lp. Here we present a few observations in this direction.

Fix Ω ⊆ Rd and U as in Section 1.3. Set TA
t = TA,U

t . Consider the vertical Littlewood–
Paley–Stein square function defined for f ∈ L2(Ω) by the rule

GA
U (f)(x) :=

(∫ ∞

0

∣∣(∇TA
t f)(x)

∣∣2 dt
)1/2

.

When Ω = Rd, it was proved by Auscher [3, Chapter 6] that GA
U

is bounded on Lq(Rd) for
q−(A) < q < q+(A) and unbounded for q < q−(A) or q > q+(A), where (q−(LA), q+(LA))
is the maximal open interval of exponents p ∈ [1,∞] for which (

√
t∇TA

t )t>0 is uniformly
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bounded on Lp. We have q−(A) = 1 for all real A [3, Corollary 6.6]. While q+(I) = ∞, in
principle q+(A) can be arbitrarily close to 2 even for real elliptic matrices A. In order to have
a more convenient result for all q ∈ (2,∞), Auscher, Hofmann and Martell [4] considered the
conical square function, defined as

CA(f)(x) :=

(∫∫

Vx

∣∣∇(TA
t f)(y)

∣∣2 dy dt
td/2

)1/2

,

where Vx =
{
(y, t) ∈ Rd × (0,∞) ; |x− y| <

√
t
}

is a cone with respect to the parabolic metric
on Rd × (0,∞), given by d

(
(x, t), (y, s)

)
:=
√

|x− y|2 + |t− s|.
Again following Auscher [3], denote by (p−(LA), p+(LA)) the maximal open interval of

exponents p for which (TA
t )t>0 is uniformly bounded on Lp. Auscher, Hofmann and Martell [4,

Theorem 3.1.(2)] showed that CA is bounded on Lp(Rd) whenever p ∈ (p−(LA),∞). Moreover,
the lower bound is optimal and equals 1 when A is real [3, p.19].

The situation of Ω ( Rd is notably different, as it can be proved that if d > 3, then for every
p > 3 there exists a bounded, connected open set Ω ⊆ Rd with strongly Lipschitz boundary
such that, if either U = H1(Ω) (pure Neumann boundary conditions) or U = H1

0 (Ω) (pure
Dirichlet conditions), then GA

U
is not bounded on Lp(Ω) even for A = I (see [17]).

In the generality we consider in this paper, we cannot prove the trilinear inequality (1.8)
by means of the semigroup maximal operator TA

∗ : f 7→ supt>0

∣∣TA
t f
∣∣ and the vertical square

function GA
U

(compare with [44, p. 460]). Namely, we do not know whether TA
∗ is bounded

on Lp [17]. Moreover, when A = B = C are real matrices, Theorem 1.1 holds true for any
p, q, r ∈ (1,∞) such that 1/p + 1/q + 1/r = 1, while, as discussed above, the square function
GA

U
could be unbounded on Lp for p > 3, even for A = I.

In light of the discussion above, it is natural to consider yet another square function, in
the spirit of the P.-A. Meyer’s modified square function originally associated with a Poisson
diffusion semigroup [51, 52] (see also [24, Section 3]). Denote by (Tt)t>0 the Neumann heat
semigroup on Ω, i.e., Tt = T

I,H1(Ω)
t . The modified square function is defined by the rule

G̃A
U (f)(x) :=

(∫ ∞

0
Tt

(∣∣∇TA
t f
∣∣2
)
(x)dt

)1/2

, f ∈ L2(Ω).

We emphasize that the definition of G̃A
U
(f) features two different semigroups. Let us also

remark that in principle we could replace Tt by a more general sub-Markovian semigroup.
From the classical formula for the heat kernel on Rd we notice that when Ω = Rd, we have

CAf 6 e1/8(4π)d/4 G̃Af (1.16)

pointwise on Rd. Conversely, a bit more work shows that the boundedness of CA on Lp(Rd)

implies the boundedness of G̃A on the same space.
The following result of ours deals with the functional G̃A

U
, which thus by (1.16) majorizes

CA when Ω = Rd. Our theorem applies to arbitrary domains Ω, and, unlike most of the results
cited above, features dimension-free estimates.

Theorem 1.5. Let U be as in Section 1.3. If A ∈ A(Ω) and p > 2 are such that A is

p-elliptic, then the modified square function G̃A
U

is bounded on Lp(Ω). The norm estimates do
not depend on the underlying dimension d.

Proof. Take f ∈ (Lp ∩ L2)(Ω) and write G = G̃A
U
f . By duality, for s = (p/2)′ we have

‖G‖2p =
∥∥G2

∥∥
p/2

= sup

{∣∣∣
∫

Ω
G2 · φ̄

∣∣∣ ; φ ∈ (Ls ∩ L2)(Ω), ‖φ‖s = 1

}
.
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Since the identity matrix is r-elliptic for any r > 1, see e.g. [22, Lemma 5.20], we may apply
Theorem 1.1 with the triples of indices (p, p, s), matrices (A,A, I) and functions (f, f, φ̄). �

Remark 1.6. After the proofs of Theorems 1.1 and 1.5 were completed, the first two authors
of the present paper realized that Theorem 1.5 could also be proven by a variant of a bilinear
embedding based on a modification of the technique from [21]. This will be explained in their
paper in preparation [17].

1.7.3. Kato–Ponce-type inequalities and Bessel–Sobolev algebras. It was proven in [22, Theo-
rem 1.3], [34, Theorem 2] and [21, Lemma 17] that (TA

t )t>0 extends to a contractive analytic
semigroup on L℘(Ω) whenever A is ℘-elliptic; see Proposition 7.1 for a more explicit state-
ment. In this section we slightly abuse the notation and maintain the symbol LA for the
negative generator of (TA

t )t>0 in L℘(Ω). Let D℘(LA) denote its domain. The generator LA

is a sectorial operator (see [26], [35, Theorem II.4.6] or [41] for references) on L℘(Ω) of angle
< π/2, so

L℘(Ω) = N℘(LA)⊕ R℘(LA),

where N℘(LA) and R℘(LA) denote the kernel (null space) and the range of the operator LA.
Moreover, the projection QA

℘ onto N℘(LA) is given by QA
℘f = limt→+∞ TA

t f in L℘; see [26].
In particular,

{
QA

℘ ; A is ℘-elliptic
}

is a consistent family of contractive projections. See [26,
Theorem 3.8 and p. 63].

From this, (1.6) and (1.1) it is not hard to see that, if A is ℘-elliptic, then the kernel N℘(LA)
consists of all Lp functions which are constant on each connected component of Ω of finite
measure whose boundary does not intersect Γ, and are 0 on other connected components of
Ω. Here Γ is as in Section 1.3 (c).

In order to simplify our proofs, we shall always assume that N2(LA) = {0}. Under this
assumption, LA is thus an injective sectorial operator of angle ϑ ∈ (0, π/2) on L℘(Ω), provided
that A is ℘-elliptic. Then the complex powers Lz

A are well defined on L℘(Ω) for every z ∈ C;
see [41, Section 3.2] or [62, Chapter 2, Section 7] for the construction.

Let A be ℘-elliptic. By [21, Theorem 3], LA admits a bounded H∞-calculus of angle < π/2
on L℘(Ω) in the sense of [26]. It follows that LA has bounded imaginary powers (see [26] and
[41, Proposition 3.5.5] for the main properties) on L℘(Ω) and there exist θ℘ ∈ (0, π/2) and
C > 0 such that ∥∥Liu

A

∥∥
℘
6 Ceθ℘|u|, ∀u ∈ R. (1.17)

See [26, Theorems 4.2 and 5.1].

Theorem 1.7 (Kato–Ponce-type inequality). Choose numbers p1, q1, p2, q2, r ∈ (1,∞) and
denote ̺ = r′ = r/(r − 1). Assume that 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/̺. Suppose that

A ∈ A(Ω) is max{p1, p2, q1, q2, r}-elliptic. Let β ∈ (0, 1/̺). Then for all f ∈ Dp1(L
β
A)∩Lp2(Ω)

and g ∈ Dq2(L
β
A) ∩ Lq1(Ω) we have fg ∈ D̺(L

β
A) and

‖Lβ
A(fg)‖̺ . ‖Lβ

Af‖p1‖g‖q1 + ‖f‖p2‖L
β
Ag‖q2 .

When Ω = Rd, the same conclusion holds under milder assumptions, namely, when the triplets
(p1, q1, r) and (p2, q2, r) satisfy (⋆) from page 4.

The implied constants depend on β, p1, q1, p2, q2, r and ∗-ellipticity constants of A,B,C al-
luded to in the theorem’s assumptions.

The inequalities of the above kind, known also as fractional Leibniz rule, bear name after
the classical 1988 paper by Kato and Ponce [43] and have since then been studied profusely.
See e.g. Bernicot–Coulhon–Frey [8], Grafakos–Oh [40] and Li [47] for just a few of the very
many recent works on the subject.
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To the best of our knowledge, Theorem 1.7 is the first instance of a Kato–Ponce-type
inequality for general divergence-form operators with complex coefficients and on arbitrary
open sets Ω, and thus the first one that relates p-ellipticity to this type of estimates. We
emphasize that the condition it imposes (p-ellipticity) is algebraic and thus easy to verify.
Together with other examples presented in this paper it suggests that the trilinear embedding
and the route to its proof have a significant potential that might be explored in the future.

Remark 1.8. In Theorem 1.7 the upper bound β < 1/r′ is consistent with the upper bound
α < p0/p, p0 = 2, in Bernicot and Frey [10, Theorem 1.3]. Note that in [10, Theorem 1.3]
(restricted to the special case of divergence form operators on open sets satisfying the doubling
condition) p0 = 2 corresponds to [10, (G2)]: the estimate supt>0

∥∥√t∇TA
t

∥∥
2
< +∞, which

comes for free from the definition of LA by means of the sesquilinear form a and the analyticity
of (TA

t )t>0 in L2.

1.8. Organization of the paper. Here is the summary of each section.

• In Section 2 we summarize some of the main notions needed in the paper.
• In Section 3 we state the main result regarding the Bellman function X.
• In Section 4 we discuss the building blocks of X, namely, the power functions.
• In Section 5 we define X and prove the theorem announced in Section 3.
• In Section 6 we prove the trilinear embedding for Rd.
• In Section 7 we prove the trilinear embedding for general Ω.
• In Section 8 we prove the Kato–Ponce inequality announced in Section 1.7.3.

2. More notation and preliminaries

For a1, a2 > 0 we write a1 & a2 if there is a constant c > 0 such that a1 > ca2. Similarly we
define a1 . a2. If both a1 & a2 and a1 . a2, then we write a1 ∼ a2.

If z = (z1, . . . , zd) ∈ Cd and w is likewise, we write

〈z, w〉Cd =
d∑

j=1

zjwj

and |z|2 = 〈z, z〉Cd .
Let N denote the set of all positive integers.

2.1. Real form of complex operators. We explicitly identify Cd with R2d as follows. For
each d ∈ N consider the operator Vd : Cd → Rd × Rd, defined by

Vd(ξ1 + iξ2) = (ξ1, ξ2).

Let N, d ∈ N. We define another identification operator,

WN,d : Cd × . . . ×Cd
︸ ︷︷ ︸

N times

−→ R2d × . . .× R2d
︸ ︷︷ ︸

N times

,

by the rule

WN,d(ξ
1, . . . , ξN ) =

(
Vd(ξ

1), . . . ,Vd(ξ
N )
)

with ξj ∈ Cd for j = 1, . . . , N .
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2.2. Gradient and Hessian forms. Let Ω ⊆ Rd be an open set and u : Ω → C. Following
[36, Appendix A.3], we will denote by Du the gradient (∂x1

u, . . . , ∂xd
u) of u, while D2u will

denote the Hessian matrix of u, that is, the matrix of all second-order derivatives of u. We
will also regard Du and D2u as sets of all first- and, respectively, second-order derivatives of
u. In accordance with this notation we also have

|Du| =




d∑

j=1

|∂xj
u|2



1/2

and likewise

∣∣D2u
∣∣ =




d∑

j,k=1

|∂2xjxk
u|2



1/2

.

Sometimes we may also write Dju for ∂xj
u and similarly D2

jku for ∂2xjxk
u.

When the entries of u are complex, that is, if function u is defined on a subset of CN , then
by Du we mean

[
D
(
u ◦W−1

N,1

)]
◦WN,1 and the same for D2u.

2.3. Generalized Hessians and generalized convexity. Given a matrix A ∈ Cd×d, we
introduce, as in [22, 21], its derived real (2d) × (2d) matrix-form as follows:

M(A) =

[
ReA −ImA
ImA ReA

]
.

Let N, d ∈ N and Φ: CN → R of class C2. Choose and, respectively, denote

ω1, . . . , ωN ∈ C ω := (ω1, . . . , ωN )

X1, . . . ,XN ∈ Cd X := (X1, . . . ,XN )

A1, . . . , AN ∈ Cd×d
A := (A1, . . . , AN ).

(2.1)

Following [22, 21], we define the generalized Hessian form of Φ with respect to A as

HA

Φ [ω;X] =
〈[
D2Φ(ω)⊗ IRd

]
WN,d(X), [M(A1)⊕ . . .⊕M(AN )]WN,d(X)

〉
R2Nd .

We recall that D2Φ(ω) stands for the Hessian matrix of the function Φ ◦W−1
N,1 : (R

2)N → R,
calculated at the point WN,1(ω) ∈ (R2)N .

Observe that

[M(A1)⊕ . . . ⊕M(AN )]WN,d(X) = WN,d (A1X1, . . . , ANXN ) .

In particular, when N = 1 we have the formula already stated in [22, (2.4)]:

Vd(Aξ) = M(A)Vd(ξ)

for A ∈ Cd×d and ξ ∈ Cd.
To shed more light onto the notion of HA

Φ , let us illustrate it in the special case N = 2.
There, applying the block notation, we have

H
(A1,A2)
Φ [ω;X] =

〈
D2Φ(ω)




ReX1

ImX1

ReX2

ImX2


 ,




ReA1 −ImA1

ImA1 ReA1

ReA2 −ImA2

ImA2 ReA2







ReX1

ImX1

ReX2

ImX2




〉

(Rd)4

.

We say that Φ is convex with respect to A if HA

Φ [ω;X] > 0 for all ω,X.

The sharp condition (1.4) is equivalent to the strict generalized convexity of power functions
Fp (see (4.1) for the definition), that is, to the (uniform) positivity HA

Fp
[ω;X]. Prior to [22],
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the importance of this positivity was recognized and studied in a few special cases: when A is
either the identity [56, 33], real accretive [32], of the form eiφI [19], or of the form eiφB with
B real, constant and with a symmetric part which is positive definite [20]. Such problems are
also related to similar questions considered earlier by Bakry; see [6, Théorème 6]. The paper
[22] brought a systematic approach to convexity of power functions in presence of arbitrary
uniformly strictly accretive complex matrix functions A. See also Section 4.

3. The Bellman function

Bellman functions have been a powerful tool in harmonic analysis since the 1980’s papers
by Burkholder, e.g. [13, 14]. The method was given a huge boost by the pioneering works
by Nazarov, Treil and Volberg [53], who also gave it its name [54]. The exploration of heat
flows associated with Bellman functions started in the works by Petermichl and Volberg [58]
and Nazarov and Volberg [55]. See e.g. [22] for more recent references on the method and its
applications.

We use a three-variable Bellman function found by the latter two authors of the present
paper [44]. It is modelled over a two-variable Bellman function due to Nazarov and Treil [56].
Compared to [44, Theorem 1.1], the main novelty in the convexity estimate formulated here
is the presence of complex elliptic matrices, as specified below.

Denote

Υ =
{
(u, v, w) ∈ C3 ; (uvw = 0) ∨ (|u|p = |v|q) ∨ (|u|p = |w|r) ∨ (|v|q = |w|r)

}
.

Theorem 3.1. Suppose that p, q, r ∈ (1,∞) satisfy 1/p+ 1/q + 1/r = 1 and Ω ⊆ Rd is open.
Let the accretive matrices A,B,C : Ω → C satisfy (⋆) from page 4, that is, assume that:

• A is p-elliptic and (1 + p/q)-elliptic
• B is q-elliptic and (1 + q/p)-elliptic
• C is r-elliptic.

There exists a function X : C3 → R+ of class C1 on C3 and of class C2 on C3\Υ, such
that:

a) for all u, v, w ∈ C,

X(u, v, w) . |u|p + |v|q + |w|r;
b) for all u, v, w ∈ C,

|∂ūX|. (max {|u|p, |v|q, |w|r})1−1/p ,

|∂v̄X|. (max {|u|p, |v|q, |w|r})1−1/q ,

|∂w̄X|. |w|r−1

c) for almost every x ∈ Ω we have,

H
(A,B,C)(x)
X

[(u, v, w); (ζ, η, ξ)] & |w||ζ||η| (3.1)

for all (u, v, w) ∈ C3\Υ and (ζ, η, ξ) ∈
(
Cd
)3

.

The implied constants depend on p, q, r and ∗-ellipticity constants of A,B,C alluded to in the
theorem’s assumptions.

The theorem will be proven in Section 5. The crucial and the most difficult to verify is
property c). As indicated above, we will prove that the function from [44] satisfies the above
requirements, possibly after refining its parameters.
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4. Power functions

For p > 0 and N ∈ N define the power function (by which we actually mean powers of the
modulus) Fp : C

N → [0,∞) by
Fp(ζ) = |ζ|p. (4.1)

While these functions are, technically speaking, different for different values of the dimension
N , we will use the same symbol Fp to denote all of them. We also set F0 = 1, where 1

denotes the constant function of value 1 on CN . These functions played a fundamental rôle in
[16, 19, 21, 20, 22]. In fact, p-ellipticity was in [22] initially introduced as the (uniform strict)
positivity of generalized Hessians of power functions on C; see [22, Remark 5.9]. Namely, the
operator Ip : C

d → Cd, defined by

Ipξ = ξ + (1− 2/p)ξ, (4.2)

which clearly features in (1.4) and (1.3), appeared as a result of our expressing the Hessian of
Fp (as a function on C, that is, with N = 1) in an appropriate manner. See Lemma 4.4 for a
more general statement. Here is the formula, first stated in [22, (5.5)], that for N = 1 directly
relates D2Fp to Ip:

D2Fp(ζ)ξ =
p2

2
|ζ|p−2 sign ζ · Ip(sign ζ̄ · ξ)

for ζ ∈ C\{0} and ξ ∈ Cd. (Here sign z = z/|z|; furthermore, we implicitly identified Cd with
Rd × Rd.) See also [16, Remark 2.4].

Recall that if f, g are complex functions on some sets X,Y respectively, then their tensor
product f ⊗ g is the function on X × Y mapping (x, y) 7→ f(x)g(y). In [19, 20, 22] the first
two authors of the present paper analyzed the heat flow associated with the Nazarov–Treil
function Q introduced in [56]. Given that Q was a combination of tensor products Fp ⊗ 1,
1⊗ Fq and F2 ⊗ F2−q, where p, q are conjugate exponents, this eventually drew our attention
to the power functions Fp. However, tensor products of power functions also represent the
core of another Bellman function, namely, function X which was constructed by the latter two
authors of the present paper in [44] and whose generalized convexity we study in Theorem 3.1.
The main difference is that function X is a function of three complex variables and is made of
tensor products of up to three power functions, while Q was a function of two variables made
of tensor products of two power functions. This amounts to a significantly higher degree of
complexity of X compared to Q.

We continue with lower estimates of generalized Hessians of (tensor products of) power
functions. We single out the cases of 1, 2 or 3 factors, for they constitute the function X. In
fact, it turns out that it is slightly more convenient to express X by means of the following
multiples of power functions:

Gp(ζ) :=
|ζ|p
p
.

Likewise, in the context of power functions we find it fitting to renormalize the entries of
generalized Hessians and work with a modified quantity defined as

H̃A

Φ [ω;X] := HA

Φ [ω; (ω1X1, . . . , ωNXN )] (4.3)

for ω,X,A as in (2.1). With this notation introduced, we are in a position to formulate the
estimates that we will need in the proof of Theorem 3.1.

Proposition 4.1. [22, Corollary 5.10] For p > 0, u ∈ C\{0}, α ∈ Cd and A ∈ Cd×d we have

H̃A
Gp

[u;α] >
p

2
∆p(A)|u|p|α|2.
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Proposition 4.2. For r, s > 0, u1, u2 ∈ C\{0}, α1, α2 ∈ Cd and A,B ∈ Cd×d we have

H̃
(A,B)
Gr⊗Gs

[(u1, u2); (α1, α2)] >
|u1|r|u2|s

rs

(
r2

2
∆r(A)|α1|2 +

s2

2
∆s(B)|α2|2 − 2rsΛ(A,B)|α1||α2|

)
.

Proof. Follow the proof of [22, Corollary 5.12]. �

By now we see how to generalize this to arbitrary N -tuples of Lebesgue exponents and
matrix functions. Let us only explicate the case N = 3 which we will use in our proofs.

Proposition 4.3. For r, s, t > 0, u1, u2, u3 ∈ C\{0}, α1, α2, α3 ∈ Cd and A,B,C ∈ Cd×d we
have

H̃
(A,B,C)
Gr⊗Gs⊗Gt

[(u1, u2, u3); (α1, α2, α3)]

>
|u1|r|u2|s|u3|t

rst

(
r2

2
∆r(A)|α1|2 +

s2

2
∆s(B)|α2|2 +

t2

2
∆t(C)|α3|2

− 2Λ(A,B,C) (rs|α1||α2|+ rt|α1||α3|+ st|α2||α3|)
)
.

Proof. The proof can be carried out very similarly to the proofs of [22, Corollary 5.10] and
[22, Corollary 5.12]. Alternatively, one can first establish the identity

H̃
(A,B,C)
Gr⊗Gs⊗Gt

[(u1, u2, u3); (α1, α2, α3)]

=
|u1|r|u2|s|u3|t

2
Re
(
r2〈Aα1, Irα1〉Cd + rs〈Aα1, I∞α2〉Cd + rt〈Aα1, I∞α3〉Cd

+ rs〈Bα2, I∞α1〉Cd + s2〈Bα2, Isα2〉Cd + st〈Bα2, I∞α3〉Cd

+ rt〈Cα3, I∞α1〉Cd + st〈Cα3, I∞α2〉Cd + t2〈Cα3, Itα3〉Cd

)

and then simply use the definitions of the appropriate ellipticity constants. �

4.1. Generalized convexity of power functions in higher dimensions. Recall that the
power functions Fp and the operators Ip were introduced in (4.1) and (4.2), respectively.

Lemma 4.4. [21, Lemma 8] Suppose that p > 1 and N, d ∈ N. Let ω,X,A be as in (2.1).
Then, for ω 6= 0,

HA

Fp
[ω;X] = |ω|p−2HA

Fp
[ω/|ω|;X]. (4.4)

In case when |ω| = 1 we have, for Yj := ωjXj , the following formulæ:

(I)

p−1HA

Fp
[ω;X] =

N∑

j=1

Re 〈AjYj, Yj〉+ (p− 2)

N∑

j,k=1

Re 〈AjYj,ReYk〉

(II)

p−1HA

Fp
[ω;X] =

N∑

j=1

(
1− |ωj |2

)
Re 〈AjYj, Yj〉+

p

2

N∑

j=1

Re 〈AjYj, IpYj〉

+ (p− 2)
∑

j 6=k

Re 〈AjYj,ReYk〉 .

We note that in the special case N = 1, Lemma 4.4 was proven earlier in [22, Lemma 5.6].
The case of foremost interest for us in this paper will be N = 3.
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Corollary 4.5. [21, Corollary 9] Repeating the assumptions of Lemma 4.4 and introducing
the notation

∆p(A) := min
j=1,...,N

∆p(Aj) and Λ(A) := max
j=1,...,N

Λ(Aj),

we have, for |ω| = 1 and p > 2,

p−1HA

Fp
[ω;X] > ∆p(A)|X|2 − (p− 2)Λ(A)

∑

j 6=k

|ωj ||ωk||Xj ||Xk|.

We remarked at the beginning of Section 4 that, when N = 1 and A ∈ Cd×d, the A-convexity
of Fp is closely related to the condition ∆p(A) > 0; in fact, it is equivalent to ∆p(A) > 0 [22,
Proposition 5.8]. The case of N > 1 is in striking contrast with this: when N > 1, the power
function Fp : C

N → [0,∞) may fail to be A-convex even if ∆p(A) > 0; see [21, Example 7].
We may however fix this by perturbing the power function of ω ∈ CN by a sufficiently small

linear combination of power functions of individual components of ω. This is the content of the
following lemma. It extends [21, Section 4.3], where the case N = 2 was treated and proven
in a different, more geometrically flavoured manner. The lemma will be used in Section 7.

Lemma 4.6. If s > 2 and A := (A1, . . . , AN ) ∈
(
Cd×d

)N
are such that ∆s(A) > 0, then

there exists c = c(s,A, N) > 0 such that the function Ps : C
N → [0,∞), defined as

Ps(u1, . . . , uN ) := Fs(u1, . . . , uN ) + c

N∑

j=1

Fs(uj), (4.5)

satisfies

HA

Ps
[u;X] & |u|s−2|X|2 ∀u ∈ CN ,X ∈

(
Cd
)N
.

The implied constants depend on s, A and N . In particular, Ps is A-convex.

Proof. For the moment we will assume just that c > 0; the range of admissible c’s will be
getting restricted as the proof will progress.

We have, by Corollary 4.5 and (4.4),

HA

Ps
[u;X] & |u|s−2


|X|2 − σ

∑

j<k

|uj|
|u| · |uk||u| · |Xj | · |Xk|


+ c

N∑

j=1

|uj |s−2|Xj |2.

Here σ = σ(s,A) > 0.
By writing

vj :=
|uj |
|u| and yj :=

|Xj |
|X| ,

and using the trivial inequality

∑

j<k

(vjyj)(vkyk) 6
N − 1

2

N∑

j=1

(vjyj)
2,

we get

HA

Ps
[u;X] & |u|s−2|X|2


1− (N − 1)σ

2

N∑

j=1

(vjyj)
2 + c

N∑

j=1

vs−2
j y2j


 .

Denote σ̃ := (N − 1)σ/2.
We see that it suffices to show the following: there exists c = c(s,A, N) > 0 such that

c

N∑

j=1

vs−2
j y2j +

1

2
> σ̃

N∑

j=1

(vjyj)
2
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for all (v1, . . . , vN ), (y1, . . . , yN ) ∈ SN−1 ∩ [0,∞)N .

If s 6 4 then, since vj 6 1, we have vs−2
j > v2j , while for

T :=

N∑

j=1

(vjyj)
2

we clearly obtain cT + 1/2 > σ̃T for c > σ̃.

If s > 4, write s−2 = 2+ε, where ε > 0. Since y21+ . . .+y
2
N = 1, the elements

{
y21, . . . , y

2
N

}

represent a weighted counting measure on {1, . . . , N} of mass 1. Therefore, recalling that
ε > 0, Hölder’s inequality gives

N∑

j=1

v2+ε
j y2j >

(
N∑

j=1

v2j y
2
j

)1+ε/2

.

So it is enough to prove that there exists c > 0 such that cT 1+ε/2+1/2 > σ̃T for all T ∈ [0, 1].
An elementary analysis of the function f : [0,∞) → R, defined by f(T ) := cT 1+ε/2+1/2− σ̃T ,
confirms the existence of such c. �

4.2. Regularization. We would like to replace X by a function which satisfies the inequality
c) of Theorem 3.1 but is, in addition, also of class C2 everywhere on C3 (not only on C3\Υ).
A standard way of achieving this involves mollifiers.

Fix N ∈ N and a radial function ϕ ∈ C∞
c (CN ) such that 0 6 ϕ 6 1, suppϕ ⊆ BCN (0, 1)

and
∫
ϕ = 1. For ν ∈ (0, 1] and ω ∈ CN set ϕν(ω) = ν−2Nϕ(ω/ν). If Z : CN → R is locally

integrable, let the convolution Z ∗ ϕν : CN → R be defined for ω0 ∈ CN as

(Z ∗ ϕν)(ω0) =

∫

CN

Z(ω0 − ω)ϕν(ω)dω.

Explicit connection between this definition and the (perhaps slightly more standard) notion
of convolution on real euclidean spaces goes, as expected, through the identificaton operator
WN,1: if Ψ : CN → R, we define

∫

CN

Ψ(ω)dω :=

∫

R2N

(
Ψ ◦W−1

N,1

)
(x)dx.

We will frequently use the abbreviation Xν = X ∗ ϕν .
Taking Theorem 3.1 as a starting point and arguing as in [22, Section 5.1] we obtain the

following estimates.

Corollary 4.7. Let X be as in Theorem 3.1. Then for any u, v, w ∈ C and ν ∈ (0, 1] we have:

a’)

Xν(u, v, w) . (|u|+ ν)p + (|v|+ ν)q + (|w|+ ν)r;

b’)

|∂ūXν |. (max {(|u|+ ν)p, (|v| + ν)q, (|w| + ν)r})1−1/p ,

|∂v̄Xν |. (max {(|u|+ ν)p, (|v| + ν)q, (|w| + ν)r})1−1/q ,

|∂w̄Xν |. (|w| + ν)r−1;

c’) for A,B,C satisfying the ∗-ellipticity conditions as in Theorem 3.1 and almost every x ∈ Ω,

H
(A,B,C)(x)
Xν

[(u, v, w); (ζ, η, ξ)] & (|w| − ν)|ζ||η| ∀u, v, w ∈ C, ζ, η, ξ ∈ Cd.

The implied constants are the same as in the corresponding estimates of Theorem 3.1.
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5. Proof of Theorem 3.1

We can assume that p > q. Indeed, suppose that in such a case the function X from Theorem
3.1 exists. Now take a triplet of exponents (p, q, r) with 1/p + 1/q + 1/r = 1 and 1 < p < q
and a triplet of matrices (A,B,C) which together with (p, q, r) satisfy the assumptions of
Theorem 3.1. It is easy to verify that in this case the desired function can be taken to be
X(u, v, w) = X̃(v, u,w), where X̃ is a function which Theorem 3.1 gives in the case of the
triplets (q, p, r) and (B,A,C). In particular,

H
(A,B,C)
X

[(u, v, w); (ζ, η, ξ)] = H
(B,A,C)

X̃
[(v, u,w); (η, ζ, ξ)].

So we assume that p > q. This implies p > 2, for 1 − 2/p > 1 − 1/p − 1/q = 1/r > 0.
As announced earlier, we will prove that the function from [44], constructed by the latter
two authors of the present paper, can be marginally adapted so as to fit the requirements of
Theorem 3.1. Before recalling the definition of the function and embarking on the proofs, let
us introduce notation that we deem handy, since it simplifies the function’s coefficients.

For u ∈ C and p > 0 introduce the ad hoc notation

[u]p :=
|u|p
p
,

with [u] := [u]1 = |u|. Note that p has to be interpreted simply as the upper index in [u]p

and not as an exponent of a power. In other words, [u]p is not equal to the “pure power” |u|p,
but rather to a renormalized version of it. This will not cause confusions and, after all, the
distinction will only affect the coefficients of the function X below, making them appear more
elegant. Also observe that, in fact, [u]p = Gp(u), with Gp defined as in the previous section.

Next, we present the function from [44].

5.1. Case p > q . Define

X(u, v, w) :=




[u]p +D[v]q + E[w]r; |w|r 6 |v|q 6 |u|p,

[u]p +D[v]1+q/p[w] +

(
E − D

1 + q/p

)
[w]r; |v|q 6 |w|r 6 |u|p,

[u]1+p/q[w] +D[v]1+q/p[w] +

(
E − D + q/p

1 + q/p

)
[w]r; |v|q 6 |u|p 6 |w|r,

(1− q/p)[u]2[v]1−q/p[w] +

(
D − 1− q/p

2

)
[v]1+q/p[w] +

(
E − D + q/p

1 + q/p

)
[w]r; |u|p 6 |v|q 6 |w|r,

(1− q/p)[u]2[v]q−2q/p + [u]2[w]r−2r/p +

(
D − 1− q/p

2

)
[v]q + (E − 1/2)[w]r ; |u|p 6 |w|r 6 |v|q,

1/r

1− 2/p
[u]p + (1− q/p)[u]2[v]q−2q/p +

(
D − 1− q/p

2

)
[v]q +E[w]r ; |w|r 6 |u|p 6 |v|q.

Remark 5.1. The function X admits a certain type of homogeneity, as explained below.
Write

U := [u]p, a := 1/p,

V := [v]q, b := 1/q,

W := [w]r, c := 1/r
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and
Ω1 :=

{
(u, v, w) ∈ C3 ; |w|r 6 |v|q 6 |u|p} ,

Ω2 := { ; |v|q 6 |w|r 6 |u|p} ,
Ω3 := { ; |v|q 6 |u|p 6 |w|r} ,
Ω4 := { ; |u|p 6 |v|q 6 |w|r} ,
Ω5 := { ; |u|p 6 |w|r 6 |v|q} ,
Ω6 := { ; |w|r 6 |u|p 6 |v|q} .

Then we can observe that X(u, v, w) is a linear combination of




U, V, W in Ω1,
U, V 1−cW c, W in Ω2,
U1−cW c, V 1−cW c, W in Ω3,
U2aV b−aW c, V 1−cW c, W in Ω4,
U2aV 1−2a, U2aW 1−2a, V, W in Ω5,
U, U2aW 1−2a, V, W in Ω6.

The above-said homogeneity is intended in the sense that the sum of exponents of any of the
monomials above is always one. Consequently, we have

X

(
t1/pu, t1/qv, t1/rw

)
= tX(u, v, w)

valid for any u, v, w ∈ C and t > 0.

One has
X(u, v, w) =

1

p
Ar,p,q(|w|, |u|, |v|),

where A = Ap,q,r (note the permutation of variables and indices) is the function from [44,
p.464], with an adequate choice of its parameters A,B,C.

This function is of class C1 on C3 and of class C2 on the complement of Υ; see [44]. The
properties a) and b) are rather straightforward to verify, therefore we focus on proving c).
First we notice that the inequality (3.1) is equivalent to

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] & |u||v||w||α||β|. (5.1)

This is the inequality that we will actually be proving.
Using the estimates from Section 4 we want to choose coefficients D,E > 0, which may

depend on p, q, r and all the ∗-ellipticity constants of A,B,C that were assumed to be positive
in the formulation of Theorem 3.1, such that all of the coefficients above are positive and the
estimate (5.1) holds in the interior of each of the six domains Ω1, . . . ,Ω6. Note that we will
not have positivity of all ellipticity constants of A,B,C appearing in the computation below.
For instance, ∆1(C) is never positive [22], but the only control of this quantity we will need
is that |∆1(C)| is at most a constant times Λ(C).

Write
(A,B,C) := (|α|, |β|, |γ|)
(u, v,w) := (|u|, |v|, |w|).

Denote also Λ := Λ(A,B,C).

Domain #1: w
r < v

q < u
p. By combining (4.3) with Proposition 4.1 we have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] >
p∆p(A)

2
u
p
A
2 +

Dq∆q(B)

2
v
q
B
2 +

Er∆r(C)

2
w
r
C
2

>
√
Dpq∆p(A)∆q(B)upvq AB+ 0.
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Taking into account the characteristic inequalities of the current subdomain, and recalling
that p > 2, gives

√
upvq = u · up(1/2−1/p)

v
q/2 > u · vq(1/2−1/p)

v
q/2 = u · v · vq/r > uvw.

Hence we proved

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] >
√
Dpq∆p(A)∆q(B) uvwAB.

Domain #2: v
q < w

r < u
p. By combining (4.3) and Propositions 4.1, 4.2, we obtain

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

>
p

2
∆p(A)u

p
A
2

+Dv
1+q/p

w

(
(1 + q/p)∆1+q/p(B)

2
B
2 − 2ΛBC+

∆1(C)

2(1 + q/p)
C
2

)

+

(
E − D

1 + q/p

)
r

2
∆r(C)wr

C
2.

Recall that ∆1(C) 6 0 always and that ∆1+q/p(B) > 0 by our assumption. Moreover, in
the current domain we have v

1+q/p
w 6 w

r. Hence we may continue as

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

>
p∆p(A)

2
u
p
A
2 +

D(1 + q/p)∆1+q/p(B)

2
v
1+q/p

wB
2 (5.2)

− (2DΛ)v1+q/p
wBC+

(
Er∆r(C)

2
− D(r∆r(C) + |∆1(C)|)

2(1 + q/p)

)
v
1+q/p

wC
2. (5.3)

The key term is the one containing B
2. We will split it into a sum of two parts, by splitting

the factor 1 + q/p in that term: one summand (for example, the one containing 1) will be
added to the bottom row (5.3) in order to make it nonnegative, while the other summand
(containing q/p) will be left in the middle row (5.2) for the purpose of obtaining (5.1).

In the current domain we have

u
p−2 > w

r(p−2)/p = w
r(1/q−1/p) · w > v

1−q/p
w,

therefore

u
p
v
1+q/p

w = u
p−2 ·

(
u
2
v
1+q/p

w

)
> (uvw)2.

Hence (5.2) can be estimated as

>
√
Dq∆p(A)∆1+q/p(B) uvwAB.

Regarding (5.3), when augmented by the other term with B
2 and divided by v

1+q/p
w, it

becomes

>
D∆1+q/p(B)

2
B
2 − (2DΛ)BC+

(
Er∆r(C)

2
− D(r∆r(C) + |∆1(C)|)

2(1 + q/p)

)
C
2. (5.4)

Clearly, if E is large enough, the above expression becomes nonnegative uniformly in B,C.
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Domain #3: v
q < u

p < w
r. By combining (4.3) and Propositions 4.1, 4.2 we get

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

> u
1+p/q

w

(
(1 + p/q)∆1+p/q(A)

2
A
2 − 2ΛAC+

∆1(C)

2(1 + p/q)
C
2

)

+Dv
1+q/p

w

(
(1 + q/p)∆1+q/p(B)

2
B
2 − 2ΛBC+

∆1(C)

2(1 + q/p)
C
2

)

+

(
E − D + q/p

1 + q/p

)
r

2
∆r(C)wr

C
2.

Similarly as before, we actually estimate explicitly the terms with A
2 and B

2, while the
terms containing C will just be dismissed as positive, which will be achieved by the splitting
trick, used in domain #2, and the parameter E being sufficiently large. This means that we
break up each of the terms containing A

2 or B2 into a sum of two parts, by splitting the factors
1 + p/q and 1 + q/p in those terms, in the sense of treating each of the summands separately.

Parts of the terms with A
2, B2 containing the summand 1 from 1+p/q or 1+ q/p will serve

for dismissing the terms with C, for which we apply the estimates v
1+q/p

w 6 u
1+p/q

w 6 w
r.

On the other hand, parts of the terms with A
2, B

2 containing p/q resp. q/p will get
estimated through the inequality u

1+p/q
v
1+q/p > (uv)2 as follows:

w

2

(
p

q
∆1+p/q(A)u

1+p/q
A
2 +

Dq

p
∆1+q/p(B)v1+q/p

B
2

)
>
√
D∆1+p/q(A)∆1+q/p(B) uvwAB.

Domain #4: u
p < v

q < w
r. By combining (4.3) and Propositions 4.1, 4.2, 4.3, we have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

>
u
2
v
1−q/p

w

2

[
2∆2(A)A

2 +
(1− q/p)2

2
∆1−q/p(B)B2 +

1

2
∆1(C)C2

− 2Λ (2(1− q/p)AB+ 2AC+ (1− q/p)BC)

]

+

(
D − 1− q/p

2

)
v
1+q/p

w

(
(1 + q/p)∆1+q/p(B)

2
B
2 − 2ΛBC+

∆1(C)

2(1 + q/p)
C
2

)

+

(
E − D + q/p

1 + q/p

)
r

2
∆r(C)wr

C
2.

By using that in the current domain we have

u
2
v
1−q/p

w 6 uvw 6 v
1+q/p

w 6 w
r,

let us rewrite the above estimate of H̃(A,B,C)
X

in a manner that focuses on the essential: for
certain γ1, . . . , γ10 > 0, depending on p, q, r and the ∗-ellipticity constants of A,B,C, we have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

> γ1 u
2
v
1−q/p

w A
2

+(γ2D − γ3) v
1+q/p

w B
2

+(γ4E − γ5D − γ6) w
r
C
2

−γ7 uvw AB

−γ8 u
2
v
1−q/p

w AC

−(γ9D + γ10) v
1+q/p

w BC.
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In order to obtain (5.1) we first estimate

1

2

(
γ1 u

2
v
1−q/p

w A
2 + (γ2D − γ3) v

1+q/p
w B

2
)
>
√
γ1(γ2D − γ3)uvwAB.

Choose D large enough so that
√
γ1(γ2D − γ3) > γ7. Since in the current domain we also

have √
u2v1−q/pwr+1 > u

2
v
1−q/p

w
√

v1+q/pwr+1 > v
1+q/p

w,

we may next choose E large enough so that, simultaneously,

1

2

(
γ1 u

2
v
1−q/p

w A
2 + (γ4E − γ5D − γ6) w

r
C
2
)
> γ8 u

2
v
1−q/p

w AC

1

2

(
(γ2D − γ3) v

1+q/p
w B

2 + (γ4E − γ5D − γ6) w
r
C
2
)
> (γ9D + γ10) v

1+q/p
w BC.

By combining all the above inequalities, we prove, for such choices of D and E, that

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] >
(√

γ1(γ2D − γ3)− γ7

)
uvwAB. (5.5)

Recall that, by our choice of D, the constant in parentheses is strictly positive.

Domain #5: u
p < w

r < v
q. By combining (4.3) and Propositions 4.1 and 4.2, we obtain

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

> (1− q/p)u2vq−2q/p

(
∆2(A)

q − 2q/p
A
2 − 2ΛAB+

(q − 2q/p)∆q−2q/p(B)

4
B
2

)

+ u
2
w
r−2r/p

(
∆2(A)

r − 2r/p
A
2 − 2ΛAC+

(r − 2r/p)∆r−2r/p(C)

4
C
2

)

+

(
D − 1− q/p

2

)
q

2
∆q(B)vqB2

+ (E − 1/2)
r

2
∆r(C)wr

C
2.

In the current domain we have w
r > u

2
w
r−2r/p. Furthermore, p > q implies that p > 2,

therefore r − 2r/p > 0. Putting this together, we see that the sum of the third and the fifth
line above is nonnegative for E sufficiently large.

Regarding the sum of the second and the fourth line, use that u
2
v
q−2q/p 6 uv

1+q/r 6 v
q,

which returns (for E large as explained above),

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

>
1/q − 1/p

1− 2/p
∆2(A)u

2
v
q−2q/p

A
2 − 2Λ(1 − q/p)uv1+q/r

AB

+
q

2

[(
D − 1− q/p

2

)
∆q(B)−

(1− q/p)(1 − 2/p)|∆q−2q/p(B)|
2

]
v
q
B
2.

Since
√
u2vq−2q/p · vq = uv

1+q/r > uvw, the last two lines can be estimated as & uvwAB if D
is sufficiently large.
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Domain #6: w
r < u

p < v
q. We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

>
1/r

1− 2/p
· p
2
∆p(A)u

p
A
2

+ (1− q/p)u2vq−2q/p

(
∆2(A)

q − 2q/p
A
2 − 2ΛAB+

(q − 2q/p)∆q−2q/p(B)

4
B
2

)

+

(
D − 1− q/p

2

)
q

2
∆q(B)vqB2

+
Er

2
∆r(C)wr

C
2.

The first and the last term on the right-hand side are positive by our assumptions, while the
remaining two can be estimated exactly as in Domain #5, since we have the same expression
and the relations between u, v are also the same.

5.2. Case p = q . Define

X(u, v, w) :=





[u]p + [v]p + E[w]r; |w|r 6 min{|u|p, |v|p},
[u]p + [v]2[w] + (E − 1/2)[w]r ; |v|p 6 |w|r 6 |u|p,
[u]2[w] + [v]p + (E − 1/2)[w]r ; |u|p 6 |w|r 6 |v|p,
[u]2[w] + [v]2[w] + (E − 1)[w]r ; max{|u|p, |v|p} 6 |w|r.

This function is of class C1 on C3 and of class C2 outside of Υ. It satisfies estimates a) and
b) of Theorem 3.1. Now let us prove c). This time we only have available the positivity of the
following ∗-ellipticity constants: ∆p(A), ∆p(B), ∆r(C) and, consequently, also that of ∆2(A),
∆2(B).

Domain #1: w
r < min{up, vp}. We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] >
p

2
∆p(A)u

p
A
2 +

p

2
∆p(B)vpB2 +

Er

2
∆r(C)wr

C
2

> p
√

∆p(A)∆p(B)upvpAB+ 0.

We conclude noting that u
p > u

2
w and v

p > v
2
w.

Domain #2: v
p < w

r < u
p. We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] >
p

2
∆p(A)u

p
A
2

+
1

2
v
2
w

(
2∆2(B)B2 − 4Λ(B,C)BC+

∆1(C)

2
C
2

)

+

(
E − 1

2

)
r

2
∆r(C)wr

C
2.

By the splitting trick and using that w
r > v

2
w and u

p
v
2
w > (uvw)2, we get the desired

estimate for adequately large E.

Domain #3: u
p < w

r < v
p. This case is completely symmetric to the previous one (with re-

spect to switching u ↔ v) and so is the desired conclusion, so there is nothing left to prove.
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Domain #4: max{up, vp} < w
r. We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] >
(E − 1)r

2
∆r(C)wr

C
2

+
1

2
u
2
w

(
2∆2(A)A

2 − 4Λ(A,C)AC +
∆1(C)

2
C
2

)

+
1

2
v
2
w

(
2∆2(B)B2 − 4Λ(B,C)BC+

∆1(C)

2
C
2

)
.

Again we split the two terms involving A
2 and B

2 into two halves. One part we estimate as
(
∆2(A)u

2
A
2 +∆2(B)v2B2

)
w > 2

√
∆2(A)∆2(B) uvwAB.

The remaining parts of the terms involving A
2 and B

2 we add to the other terms so as to
make them nonnegative for large E, just as we have been doing in the case p > q (this time
we use that w

r > max{u2w, v2w}).
The proof of Theorem 3.1 is now complete. �

Remark 5.2. Verification of convexity properties of the function X performed in Sections 5.1
and 5.2 can be automatized to a large extent using a computer algebra system. In fact, this
has already been done in [44], but for a weaker (i.e., purely scalar) type of convexity (case
A = B = C = I). In [44] a computer-based algebraic manipulation also helped in finding
the exact formula for X(u, v, w). In the present paper we included the “manual” verification
of the aforementioned properties in order to show that their checking is actually manageable
without any aid of computer. This even resulted in our simplifying a few lengthy expressions
from [44]. Still, we redid computer-based verification for our own peace of mind.

5.3. Supplementary estimate. The next estimate reflects (i.e., is in the spirit of) [21, (30)].
It may be viewed as a supplement to Theorem 3.1. It will be used in Section 7.

Proposition 5.3. Function X admits the estimates
∣∣D2X(u, v, w)

∣∣ . v
−(1−q/p)

w

+ u
p/q + u

p−2

+ v
q/p + v

q−2 + v
q(1−2/p) + v

+ w
r−2 + w

r(1−2/p) + w.

(5.6)

Here, as before, (u, v,w) := (|u|, |v|, |w|).
The implied constants depend on p, q, r,A,B,C and their ∗-ellipticity constants.

Proof. As usual when dealing with X, one considers each of the six defining domains separately.
We will present the complete proof in one of them only (case p > q, domain #2), as an
exemplary sample; the others will be left out.

Recall that X is constituted of tensor products of power functions Fs(ζ) = |ζ|s with 1, 2 or
3 nontrivial factors. Let us single out their estimates:

|D2Fp(u)| . u
p−2

|D2(Fp ⊗ Ft)(u, v)| . u
p−2

v
t + u

p−1
v
t−1 + u

p
v
t−2

|D2(Fp ⊗ Ft ⊗ Fs)(u, v, w)| . u
p−2

v
t
w
s + u

p−1
v
t−1

w
s + u

p−1
v
t
w
s−1

+ u
p
v
t−1

w
s−1 + u

p
v
t−2

w
s + u

p
v
t
w
s−2.

Upper estimate of |D2X| in case p > q, domain #2.
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Here we have v
q < w

r < u
p and X(u, v, w) is a linear combination of up, v1+q/p

w and w
r.

We obtain
|D2X| . u

p−2 + (vq/p−1
w + v

q/p + v
1+q/p

w
−1) + w

r−2.

Use that in the given domain we have v
1+q/p

w
−1 6 w

r−2. Consequently,

|D2X|. u
p−2 + v

q/p + w
r−2 + v

q/p−1
w.

Of course, other terms in (5.6) are contributions of analogous estimates in other regions. �

5.4. Auxiliary results on the Hölder triples of exponents. Here we gather a few simple
results regarding the types of triples (p, q, r) that we are considering in this paper — that
is, triples of numbers p, q, r ∈ (1,∞) satisfying (1.7). Such (p, q, r) are said to be the Hölder
triple of exponents or to fulfill the Hölder scaling condition.

The first two results below are motivated by the estimates of DX and D2X; see Theorem
3.1 (b) and Proposition 5.3, respectively. They have very similar proofs, so we will only prove
the second one of these two.

Lemma 5.4. For a Hölder triple of exponents p, q, r ∈ (1,∞) satisfying p > q denote

P := {p− 1, q − 1, r − 1, q(1− 1/p), r(1− 1/p), p(1− 1/q), r(1− 1/q)} .
Then

maxP = max{p, r} − 1

minP = min{q, r} − 1.

Lemma 5.5. For a Hölder triple of exponents p, q, r ∈ (1,∞) satisfying p > q denote

S := {p− 2, q − 2, r − 2, 1, q(1− 2/p), r(1− 2/p), p/q, q/p} .
Then

max S = max{p, r} − 2

minS = min{q, r} − 2.

Proof. Write M := max{p, r} and m := min{q, r}. Recall that p > 2, as we saw on page 17.
Similarly, m 6 3 6M .

Let us start with the first identity. We have:
• q − 2 6 p− 2 6 max{p − 2, r − 2} =M − 2;
• q(1− 2/p) 6 p(1− 2/p) = p− 2 6M − 2;
• r(1− 2/p) 6M(1− 2/M) =M − 2;
• q/p 6 1 6 p/q = p(1− 1/p − 1/r) 6M(1 − 1/M − 1/M) =M − 2. (♠)

By mirroring the above inequalities we prove the second identity. �

The last auxiliary result of this section will be used for the proof of Corollary 6.2 below.

Lemma 5.6. Take a Hölder triple of exponents p, q, r ∈ (1,∞). Then

p, q, r, 1 + p/q, 1 + q/p ∈ [M ′,M ],

where M := max{p, q, r} and M ′ is the conjugate exponent of M .

Proof. Since the assumptions and the desired conclusions of the lemma are invariant under
the reversal of p and q, we may assume that p > q.

From (♠) above we see that 2 6 1 + p/q 6 M − 1 < M . Since 1 + q/p is the conjugate
exponent to 1 + p/q, it follows that M ′ 6 1 + q/p 6 2.

It remains to show that p, q, r ∈ [M ′,M ]. We prove this when M = p; the proof in the case
M = r is identical. Since 1/p′ = 1/q + 1/r, one gets 1/p′ > max{1/q, 1/r}, meaning that
M ′ = p′ < min{q, r}. �
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5.5. More about the constants in Theorem 3.1. A scrutinous analysis of the proof of
Theorem 3.1 reveals information on the growth of constants there. We record some of these
pieces of information here, as we may need them later.

Proposition 5.7. Let X be the Bellman function from Section 5.1 adapted to the case p > q
and D,E the parameters that appear in its definition. The estimates of X, as specified in
Theorem 3.1, involve constants that can be bounded as follows:

• in a),

X 6
1

p
|u|p + D

q
|v|q + E

r
|w|r; (5.7)

• in c),

H
(A,B,C)
X

>
(√

α1D − α2 − α3

)
|w||ζ||η|,

where the constants α1,2,3 are all positive and depend on p, q and the ∗-ellipticity and
L∞ constants of A,B, while D is chosen in a manner such that

√
α1D − α2−α3 > 0.

For example,

D = Dp,q,A,B =
α2 + (α3 + 1)2

α1
, (5.8)

making
√
α1D − α2 − α3 = 1. Such a choice is possible if E is large enough.

Assume that E is admissible in the sense of X satisfying the conclusions of Theorem 3.1.
Then for any 0 < δ 6 1, the constant δ−1E is admissible if we replace the triple (A,B,C) by
(A,B, δC).

In the special case C = I, we may arrange for E to stay bounded as we move r → ∞ in the
sense of sending ε→ 0 in (1.10).

Proof. Consider each of the six domains separately and put together the calculations performed
there. For parts (a) and (c) they can be done rather easily. The size of E is mostly determined
by the requirement that the “discarded” terms in the calculation of D2X in each of the six
subdomains – indeed be positive. For example, in the subdomain Ω4, the identity (5.8) reflects
(5.5) from page 21.

For the sake of completeness, we will present the proof of (5.7) in subdomain Ω4 where the
function X is defined as

X(u, v, w) =
1

2
|u|2|v|1−q/p|w|+ 1

1 + q/p

(
D − 1− q/p

2

)
|v|1+q/p|w|+

(
E

r
− D + q/p

r(1 + q/p)

)
|w|r.

We can apply Young’s inequality to get

|u|2|v|1−q/p|w| 6 2

p
|u|p +

(
1

q
− 1

p

)
|v|q + 1

r
|w|r

|v|1+q/p|w| 6
(
1− 1

r

)
|v|q + 1

r
|w|r

and hence

X(u, v, w) 6
1

2
· 2
p
|u|p +

[
1

2

(
1

q
− 1

p

)
+

1

1 + q/p

(
D − 1− q/p

2

)
·
(
1− 1

r

)]
|v|q

+

[
1

2r
+

1

r(1 + q/p)

(
D − 1− q/p

2

)
+
E

r
− D + q/p

r(1 + q/p)

]
|w|r

=
1

p
|u|p + D

q
|v|q + E

r
|w|r,

which gives us exactly (5.7). All the other subdomains are treated in a similar way.
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Let us now address the second statement. Again we present the proof in the case of only
one subdomain, namely, Ω2. The principle that works there also applies to other subdomains.

Starting from (5.4), in order for it to become nonnegative, we see that it suffices for E to
satisfy the inequality

(
Er∆r(C)− D(r∆r(C) + |∆1(C)|)

1 + q/p

)
∆1+q/p(B) > 4DΛ2. (5.9)

Replace C by δC, write Eδ for the corresponding constant (that we are looking for), and
notice that ∆s(δC) = δ∆s(C) for δ > 0. Eventually we get

δ

(
Eδr∆r(C)− D(r∆r(C) + |∆1(C)|)

1 + q/p

)
∆1+q/p(B) > 4DΛ2.

At the same time we have δ < 1, therefore it is sufficient to have the following inequality:
(
δEδr∆r(C)− D(r∆r(C) + |∆1(C)|)

1 + q/p

)
∆1+q/p(B) > 4DΛ2.

But this is exactly (5.9) for Eδ = δ−1E.
In fact we also used that for δ ∈ (0, 1] we have Λ(A,B, δC) 6 Λ(A,B,C).

Regarding the case C = I, the crucial observation is that in the inequalities determining
E, we have r,∆r(C) appearing only as the product r∆r(C); see (5.9) for the situation in the
subdomain Ω2, for example. But for r > 2 we have r∆r(I) = 2, [22, (5.18)], which of course
stays bounded as r → ∞. Finally use that ∆s(A) depends on s in a continuous manner. �

6. Proof of Theorem 1.1 for Ω = Rd

As noted on page 3, in case of Ω = Rd we have U = V = W = H1
0 (R

d) = H1(Rd), so
that there we may drop the symbol for space from the notation for operators and semigroups.
That is, we will write LA instead of LA,U and TA

t instead of TA,U
t , and the same for other

operators and semigroups.
We closely follow [22, Section 6]. We will for the moment assume that the entries of A,B,C

are bounded C1 functions with bounded derivatives. Once the proof for smooth A,B,C is over,
we will apply the regularization argument from [22, Appendix] to pass to the case of arbitrary
(nonsmooth) A,B,C. Also, we will initially work with f, g, h ∈ C∞

c (Rd) and then pass to
f, g, h as in the formulation of Theorem 1.1.

The heat flow. Let X be as in Theorem 3.1. Here we use the ∗-ellipticity assumptions on
A,B,C. Take f, g, h ∈ C∞

c (Rd). Suppose that ψ ∈ C∞
c (Rd) is radial, ψ ≡ 1 in the unit ball,

ψ ≡ 0 outside the ball of radius 2, and 0 < ψ < 1 elsewhere. For R > 0 define the dilates
ψR(x) := ψ(x/R).

Let ϕν be as in Section 4.2. Abbreviate X ∗ ϕν = Xν and γt = (TA
t f, T

B
t g, T

C
t h). With

these choices made and fixed, define for t > 0 the quantity ER,ν by

ER,ν(t) =

∫

Rd

ψR · Xν(γt) .

This flow is regular [22, Section 4.1]. Fix T > 0. We want to estimate the integral

−
∫ T

0
E′
R,ν(t)dt (6.1)

from above and below.
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Upper estimate of the integral (6.1). Corollary 4.7 (a) leads to

−
∫ T

0
E′
R,ν(t)dt 6 ER,ν(0) =

∫

Rd

ψR·Xν(f, g, h).

∫

Rd

ψR [(|f |+ ν)p + (|g|+ ν)q + (|h| + ν)r] .

By the Lebesgue dominated convergence theorem we may send first ν → 0 and then R → ∞
and obtain

lim sup
R→∞

lim sup
ν→0

(
−
∫ T

0
E′
R,ν(t)dt

)
. ‖f‖pp + ‖g‖qq + ‖h‖rr . (6.2)

Lower estimate of the integral (6.1). Recall the differential operators

∂z =
∂x − i∂y

2
and ∂z̄ =

∂x + i∂y
2

.

For R > 0 define ωR =
{
x ∈ Rd ; R 6 |x| 6 2R

}
, so that supp ∇ψR ⊆ ωR. By applying

[22, Proposition 4.3] and Corollary 4.7 (c) we obtain

−
∫ T

0
E′
R,ν(t)dt &

∫ T

0

∫

Rd

ψR(|TC
t h| − ν)|∇TA

t f ||∇TB
t g|

+ 2Re

∫ T

0

∫

ωR

(
[(∂ūXν) ◦ γ] ·

〈
∇ψR, A∇TA

t f
〉
Cd

+ [(∂v̄Xν) ◦ γ] ·
〈
∇ψR, B∇TB

t g
〉
Cd + [(∂w̄Xν) ◦ γ] ·

〈
∇ψR, C∇TC

t h
〉
Cd

)
.

(Note that the assumption on the entries of A,B,C being C1 with bounded derivatives was
used in order to justify applying [22, Proposition 4.3].) We would like to study this inequality
as ν → 0 and R → ∞. Since X is of class C1, we have ∂ūXν → ∂ūX, ∂v̄Xν → ∂v̄X and
∂w̄Xν → ∂w̄X pointwise on C3, as ν → 0.

Recall the estimates of Corollary 4.7 (b). Thus, by using [22, Lemma 6.1] and the dominated
convergence theorem,

lim inf
ν→0

(
−
∫ T

0
E′
R,ν(t)dt

)
&

∫ T

0

∫

Rd

ψR|∇TA
t f ||∇TB

t g||TC
t h|

+2Re

∫ T

0

∫

ωR

(
[(∂ūX) ◦ γ] ·

〈
∇ψR, A∇TA

t f
〉
Cd

+ [(∂v̄X) ◦ γ] ·
〈
∇ψR, B∇TB

t g
〉
Cd + [(∂w̄X) ◦ γ] ·

〈
∇ψR, C∇TC

t h
〉
Cd

)
.

Hence, by Theorem 3.1 (b), the second part of [22, Lemma 6.1] and Fatou’s lemma,

lim inf
R→∞

lim inf
ν→0

(
−
∫ T

0
E′
R,ν(t)dt

)
&

∫ T

0

∫

Rd

|∇TA
t f ||∇TB

t g||TC
t h|. (6.3)

Summary (for smooth A,B,C). The combination of (6.2) and (6.3) immediately gives
∫ T

0

∫

Rd

|∇TA
t f ||∇TB

t g||TC
t h| . ‖f‖pp + ‖g‖qq + ‖h‖rr .

Now replace f, g, h by a1f, a2g, a3h where aj are positive numbers such that a1a2a3 = 1. After
minimizing over all triples (a1, a2, a3) as above and applying Lemma 6.1 below, we get

∫ T

0

∫

Rd

|∇TA
t f ||∇TB

t g||TC
t h| . ‖f‖p ‖g‖q ‖h‖r .

At this point send T → ∞ and use the monotone convergence theorem. This gives the trilinear
embedding for smooth A,B,C.
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Proof for nonsmooth A,B,C. In order to extend the trilinear embedding to arbitrary
(nonsmooth) A,B and C, we adapt the argument from [22, Section 6] as follows. We shall
assume the notation from [22, Appendix].

Suppose that A,B,C satisfy conditions (⋆) of Theorem 1.1 and let Aε, Bε, Cε be their
smooth approximations as in [22, Section A.1]. It follows from [22, Lemma A.5 (iv)] that, for
sufficiently small ε > 0, matrices Aε, Bε, Cε also satisfy (⋆). We will work with such ε.

Denote
f̃A(x, t) :=

(
PA
t f
)
(x).

Choose 0 < a < b <∞. Applying the Minkowski’s integral inequality to the second identity
from the proof of [22, Lemma A.4] gives

∥∥∥∇xf̃
A −∇xf̃

Aε

∥∥∥
L2(Rd×(a,b))

=
1

2π

(∫

Rd×(a,b)

∣∣∣∣
∫

γ
e−tζ∇U(ε, ζ)f(x)dζ

∣∣∣∣
2

dx dt

)1/2

6
1

2π

∫

γ

(∫

Rd×(a,b)

∣∣∣e−tζ∇U(ε, ζ)f(x)
∣∣∣
2

dx dt

)1/2

d|ζ|

=
1

2π

∫

γ

(∫ b

a
e−2tRe ζ dt

)1/2(∫

Rd

|∇U(ε, ζ)f(x)|2 dx
)1/2

d|ζ|.

Write

F (δ) = Fa,b(δ) :=

∫ b

a
e−2tδ dt.

Of course, F is a continuous function on R that can be expressed explicitly. On the other
hand, by [22, Lemma A.1] we have

(∫

Rd

|∇U(ε, ζ)f(x)|2 dx
)1/2

. ‖MA−AεT0(ζ)f‖L2(Rd) ,

with implicit constants depending on A. Therefore
∥∥∥∇xf̃

A −∇xf̃
Aε

∥∥∥
L2(Rd×(a,b))

.

∫

γ

√
F (Re ζ) ‖MA−AεT0(ζ)f‖L2(Rd) d|ζ|. (6.4)

Since Λ(A),Λ(Aε) 6 Λ, we have ‖MA−AεT0(ζ)f‖L2(Rd) . ‖T0(ζ)f‖L2(Rd) . |ζ|−1/2 ‖f‖L2(Rd)

as in [22, proof of Lemma A.4]. Hence the integrands in (6.4) admit, uniformly in ε > 0, the
majorant

√
F (Re ζ)/|ζ|, which belongs to L1(γ,d|ζ|). Thus we may use Lebesgue’s dominated

convergence when passing ε→ 0. Since for ζ ∈ γ we have ‖MA−AεT0(ζ)f‖L2(Rd) → 0 as ε→ 0

[22, proof of Lemma A.4], we conclude that

lim
ε→0

∥∥∥∇xf̃
A −∇xf̃

Aε

∥∥∥
L2(Rd×(a,b))

= 0.

In a similar fashion we show that

lim
ε→0

∥∥∥f̃A − f̃Aε

∥∥∥
L2(Rd×(a,b))

= 0.

That is,
f̃A = lim

ε→0
f̃Aε in H1

(
Rd × (a, b)

)
.

Of course, the same is valid for B,Bε and C,Cε.
Now a standard theorem in measure theory implies that there exists a sequence (εl)l∈N such

that f̃Aεl → f̃A and ∇f̃Aεl → ∇f̃A as l → ∞ almost everywhere on Rd × (a, b), and the same
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for (B, g) and (C, h). Consequently, Fatou’s lemma gives
∫ b

a

∫

Rd

|∇TA
t f ||∇TB

t g||TC
t h|dx dt 6 lim inf

l→∞

∫ b

a

∫

Rd

|∇TAεl
t f ||∇TBεl

t g||TCεl
t h|dx dt

6 lim inf
l→∞

∫ ∞

0

∫

Rd

|∇TAεl
t f ||∇TBεl

t g||TCεl
t h|dx dt.

Recall that we have already established the trilinear embedding for triples of smooth matrices
and that ∆s(Aε) → ∆s(A) as ε→ 0 [22, Lemma A.5 (iv)]. Passing a→ 0 and b→ ∞ finishes
the proof of Theorem 1.1 for functions in f, g, h ∈ C∞

c . It remains to prove it for a larger class
of functions, as specified in the formulation of the theorem.

6.1. Proof for arbitrary f, g, h. We assume that the trilinear embedding (1.8) holds for
triples of functions from C∞

c (Rd). Take f ∈
(
Lp ∩ L2

)
(Rd). Let

(
fn
)
n∈N

be such a sequence
in C∞

c (Rd) that fn → f in both Lp and L2. (Scrutinous reading of the proof of convergence in a
single Lr reveals that simultaneous convergence in a pair of Lebesgue spaces may be achieved.)
By the bilinear embedding theorem [22, Theorem 1.1] on L2×L2 we conclude that

(
∇f̃An

)
n∈N

is
a Cauchy sequence in L2

(
Rd× (0,∞)

)
. Therefore it is Cauchy in H = HM := L2

(
Rd× (0,M)

)

for every fixed M > 0. Consequently, there exists Ψ ∈ H such that ∇f̃An → Ψ in H as n→ ∞.
At the same time we know that the semigroup (TA

t f)t>0 is contractive on L2(Rd), which implies
that f̃An → f̃A in H as n → ∞. Here we use that we work on Rd × (0,M) instead of working
on Rd × (0,∞) straight away. Hence

(
f̃An
)
n∈N

is a Cauchy sequence in H1
(
Rd × (0,M)

)
. By

using completeness of H1, the fact that convergence in H1 implies convergence in H and, once
again, that f̃An → f̃A in H, we conclude that f̃An → f̃A in H1

(
Rd × (0,M)

)
. In particular,

∇f̃An → ∇f̃A in H. Now a standard theorem provides the existence of an increasing sequence
of positive integers (nk)k∈N so that

a.e. (x, t) ∈ Rd × (0,M) :





f̃Ank
→ f̃A

∇f̃Ank
→ ∇f̃A

as k → ∞. (6.5)

Of course, we can analogously find gn, hn ∈ C∞
c (Rd) and arrange that (6.5) also holds (for

the same subsequence) for (g,B) and (h,C). Now use that
∫ M

0

∫

Ω

∣∣∇TA
t fn

∣∣ ∣∣∇TB
t gn

∣∣ ∣∣TC
t hn

∣∣ dx dt . ‖fn‖p ‖gn‖q ‖hn‖r ,

apply (6.5), Fatou’s lemma and the fact that fn → f in L2(Rd) and the same for g, h. Since
the implied constants do not depend on M , we may finally send M → ∞ and complete the
proof of Theorem 1.1 for f ∈ Lp ∩ L2, g ∈ Lq ∩ L2 and h ∈ Lr ∩ L2. �

Lemma 6.1. Suppose that the numbers p1, . . . , pn > 1 are related by

1

p1
+ . . .+

1

pn
= 1.

Then for every sequence f1, . . . , fn > 0 we have

min





n∑

j=1

(ajfj)
pj ; a1, . . . , an > 0,

n∏

j=1

aj = 1



 =

n∏

j=1

p
1/pj
j fj.
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Proof. The lemma follows from Young’s inequality and, on the other hand, the choice of

aj =

(∏n
k=1 p

1/pk
k fk

)1/pj

p
1/pj
j fj

which confirms that the minimum is actually attained. �

Let us finally prove that the assumptions (⋆) of Theorem 1.1, pertaining to the case Ω = Rd,
are indeed milder than A,B,C ∈ Amax{p,q,r}(R

d), as indicated in the formulation of Theorem
1.1. As a matter of fact, this is a quick consequence of Lemma 5.6.

Corollary 6.2. Let p, q, r ∈ (1,∞) be such that 1/p + 1/q + 1/r = 1. If A is max{p, q, r}-
elliptic, then A is t-elliptic for any t ∈ {p, q, r, 1 + p/q, 1 + q/p}.
Proof. This follows from Lemma 5.6 and the fact that ∆t(A) is invariant under conjugation
of t and, as a function of t, decreases on [2,∞). �

The proof of Theorem 1.1 for Ω = Rd is now complete.

7. Proof of Theorem 1.1 for general Ω

For the sake of simplifying the notation, we will only prove the theorem in the case when
U = V = W . The proof of the general case is exactly the same. Consequently, we will again
omit writing U ,V ,W in the notation, just like we did in Section 6. We will occasionally
abbreviate A = (A,B,C).

We first remark that in order to pass from Rd to arbitrary open sets there, we cannot merely
imitate Section 6. The reason is explained in [21, Section 1.4]. Instead, here we closely follow
[21], adapting the argument there to the current trilinear context. Hence in this section we
will always assume that Ω ⊆ Rd is open and U is one of the subspaces of Section 1.3.

We first recall a basic result on Lp extensions of semigroups (TA
t )t>0.

Proposition 7.1. [21, Lemma 17] Let s > 2 and A ∈ As(Ω). There exists ϑ = ϑ(s) ∈ (0, π/2)
such that (TA

t )t>0 for any ℘ ∈ [s′, s] extends to a semigroup which is analytic and contractive
in L℘(Ω) in the cone {z ∈ C \ {0} ; | arg z| < ϑ}. We denote the negative generator of (TA

t )t>0

on L℘ by L
(℘)
A .

Let us start with a reduction in the spirit of [21, Section 6.1].

Proposition 7.2. Suppose that A,B,C, p, q, r are as in the formulation of Theorem 1.1 and
X = X(u, v, w) as in Theorem 3.1. Assume that
∫

Ω
|∇f| |∇g| |h| . Re

∫

Ω

(
∂uX (f, g, h)LAf+ ∂vX (f, g, h)LBg+ ∂wX (f, g, h)LCh

)
(7.1)

for f ∈ D(LA), g ∈ D(LB), h ∈ D(LC) such that f, g, h, LAf, LBg, LCh ∈
(
Lp ∩Lp′ ∩Lr

)
(Ω).

Then the statement of Theorem 1.1 holds.

Proof. By symmetry it is enough to prove Theorem 1.1 for p > q. Let f, g, h ∈
(
Lp ∩ Lp′ ∩

Lr
)
(Ω). This intersection is contained in Lq (cf. the end of the proof of Lemma 5.6).

Define γ : [0,∞) → C3 by

γt = γ(t) :=
(
TA
t f, T

B
t g, T

C
t h
)

and E : [0,∞) → [0,∞) by

E(t) =

∫

Ω
X(γt).



TRILINEAR EMBEDDING FOR DIVERGENCE-FORM OPERATORS 31

Recall that ∆p′(A) = ∆p(A). Theorem 3.1 (b) and Proposition 7.1 imply that E is well
defined, continuous on [0,∞), differentiable on (0,∞) with a continuous derivative and

− E′(t) = 2Re

∫

Ω

(
∂uX(γt)LAT

A
t f + ∂vX(γt)LBT

B
t g + ∂wX(γt)LCT

C
t h
)
; (7.2)

see [22, Proposition 4.3] or [21, Section 6.1]. Since E is nonnegative and γ(0) = (f, g, h), we
have, by Theorem 3.1 (a),

−
∫ ∞

0
E′(t)dt 6 E(0) =

∫

Ω
X(f, g, h). ‖f‖pp + ‖g‖qq + ‖h‖rr . (7.3)

Analyticity of the semigroups yields TA
t f ∈ D

(
L
(p)
A

)
∩D

(
L
(p′)
A

)
∩D

(
L
(r)
A

)
, and the same for

(g,B) and (h,C). By consistency of the semigroups and Hölder’s inequality, we have

D
(
L
(p)
A

)
∩D

(
L
(p′)
A

)
∩D

(
L
(r)
A

)
⊆ D

(
L
(2)
A

)
⊆ U

and the same for B,C. Therefore we may apply (7.1) with (f, g, h) =
(
TA
t f, T

B
t g, T

C
t h
)
= γt.

Together with (7.2) and (7.3) we then obtain
∫ ∞

0

∫

Ω

∣∣∇TA
t f
∣∣ ∣∣∇TB

t g
∣∣ ∣∣TC

t h
∣∣ dx dt . ‖f‖pp + ‖g‖qq + ‖h‖rr .

Using again Lemma 6.1 completes the proof of Theorem 1.1 for f, g, h ∈
(
Lp ∩ Lp′ ∩ Lr

)
(Ω).

In order to pass to f ∈ Lp∩L2, g ∈ Lq∩L2 and h ∈ Lr∩L2, we argue just as in Section 6.1,
that is, by considering triples from C∞

c (Ω), only replacing [22, Theorem 1.1] by [21, Theorem
2]. �

We will thus focus on proving (7.1). Given functions f, g, h, denote

L (X)(f, g, h) = Re

∫

Ω

(
(∂uX) (f, g, h)LAf+ (∂vX) (f, g, h)LBg+ (∂wX) (f, g, h)LCh

)
.

(7.4)
Proving (7.1) thus means proving

∫

Ω
|∇f| |∇g| |h| . L (X)(f, g, h) (7.5)

for f ∈ D(LA), g ∈ D(LB), h ∈ D(LC) such that f, g, h, LAf, LBg, LCh ∈
(
Lp ∩Lp′ ∩Lr

)
(Ω).

7.0. Scheme of the proof of (7.1). Our plan is to start with the right-hand side of (7.1),
integrate by parts in the sense of (1.6), arrive at the (generalized) Hessian form of X, and
finally use convexity properties of X (Theorem 3.1). When doing so we will encounter several
technical obstacles which we will tackle one by one, each time by approximating the integrand
with an adequately constructed sequence of functions. As said before, our inspiration for this
part of the paper is [21].

7.1. First approximation. In order to apply integration by parts (1.6) to the right-hand
side of (7.1), we must have (∂uX)(f, g, h) ∈ U and the same for ∂vX, ∂wX. In particular,
these functions should belong to H1(Ω). Moreover, we would like to apply the chain rule to
∇[(∂uX)(f, g, h)] and obtain the Hessian matrix of X. Based on standard results regarding
the chain rule for Sobolev functions, we would for that purpose need ∇u,v,wX to be of class
C1. Hence we first replace X by its smooth version.

Let ϕν be as in Section 4.2. For the reasons just explained, one could try to replace L (X)

by L (X ∗ ϕν) and then terminate the approximation by sending ν → 0.



32 A. CARBONARO, O. DRAGIČEVIĆ, V. KOVAČ, AND K. A. ŠKREB

7.2. Second approximation. We want to integrate by parts as in (1.6), but we still cannot
prove that ∂u,v,w(X ∗ ϕν)(f, g, h) ∈ U . The problem is that ∂u,v,w(X ∗ ϕν)(f, g, h) is not a
Lipschitz function; see [21, proof of Lemma 19] or [34, Lemma 4] cited there. In order to fix
this, we multiply X∗ϕν by compactly supported smooth functions which are identically equal
to 1 on gradually larger sets.

Thus, choose a radial function ψ ∈ C∞
c (C3) such that ψ > 0, ψ = 1 on {|ω| 6 3} and ψ = 0

on {|ω| > 4}. For n ∈ N define ψn(ω) = ψ(ω/n). We try to consider the flow

L (ψn · (X ∗ ϕν)) (f, g, h)

and then send n→ ∞ and ν → 0.

7.3. Third approximation. As explained earlier and demonstrated in the proof of the case
Ω = Rd (Section 6), the gist of our method is the (global) quantitative generalized convexity
– that is, lower estimates of generalized Hessians – of X and its approximations. For X, this
convexity is made explicit in Theorem 3.1 (c). In case of X∗ϕν we have a very similar estimate
in Corollary 4.7 (c). However, if we pass to ψn ·(X∗ϕν), then we quickly see that in the domain
where ψn is not (locally) constant, which is {3n < |ω| < 4n}, this estimate might break. This
problem was already encountered in [21] where we considered a two-variable function Q instead
of X. There we solved it by adding to ψn · (Q ∗ϕν) a perturbation comprising power function
in several variables and a correction factor (νq−2). The size of that correction factor was
determined on the basis of upper L∞ estimates of the Hessian of ψn · (Q ∗ϕν) for |ω| ∼ n, see
[21, (34)].

However, as said before, in [21] we dealt with a different Bellman function. That is, working
with X calls for a new set of estimates. Assessing the magnitude of

∥∥D2 [ψn · (X ∗ ϕν)]
∥∥
∞

for
|ω| ∼ n requires some effort. We do that next and summarize the outcome in Corollary 7.7.

Let s+ := max{s, 0} denote the positive part of the real number s.

Lemma 7.3. Let ν ∈ (0, 1] and α ∈ R. Denote Φα := Fα ⊗ 1⊗ 1, that is, Φα : C3 → [0,∞)
acts as Φα(u, v, w) = |u|α. If α > −2 (so that Φα ∈ L1

loc) then for ω = (u, v, w) ∈ C3 we have

|(Φα ∗ ϕν) (ω)| . να + |u|α+ .

If −2 < β < 0 and Ψβ := F1 ⊗ Fβ ⊗ 1, then

|(Ψβ ∗ ϕν) (ω)| . νβ (|u|+ 1) .

Proof. The proof is an adaptation of the proof of [21, Lemma 14]. Let N = 3. Then we have
∫

CN

|u′|αϕν(u− u′, y − y′)du′ dy′

= ν−2

∫

C

|u′|α
[
ν−2(N−1)

∫

CN−1

ϕ

(
u− u′

ν
,
y − y′

ν

)
dy′
]

du′

= ν−2

∫

C

|u′|α
∫

CN−1

ϕ

(
u− u′

ν
, z′
)

dz′ du′

= να
∫

{|u′′−u/ν|<1}

∣∣u′′
∣∣α
∫

{|z′|<1}
ϕ
(
u/ν − u′′, z′

)
dz′ du′′

6 να ‖ϕ‖∞ |BCN−1(0, 1)|
∫

{|u′′−u/ν|<1}

∣∣u′′
∣∣α du′′.

Denote the last integral by Iα(u/ν). We analyze it depending on the sign of α.
If −2 < α < 0, then we clearly have

lim
|ū|→∞

Iα(ū) = 0.
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Therefore in this case Iα is a bounded function on C, that is, Iα(u/ν). 1.
If α > 0, then

Iα(ū). α

∫

BC(ū,1)
(|ū|α + 1) du′′ . |ū|α + 1.

Therefore ναIα(u/ν) . |u|α + να, as claimed.

Regarding the second part of the proof,
∫

C3

|u′||v′|βϕν(u− u′, v − v′, w − w′)du′ dv′ dw′

= ν−4

∫

C2

|u′||v′|β
[
ν−2(N−2)

∫

CN−2

ϕ

(
u− u′

ν
,
v − v′

ν
,
w − w′

ν

)
dw′

]
du′ dv′

= ν−4

∫

C2

|u′||v′|β
∫

CN−2

ϕ

(
u− u′

ν
,
v − v′

ν
, z′
)

dz′ du′ dv′

6

(
ν

∫

{|u′′−u/ν|<1}
|u′′|du′′

)(
νβ
∫

{|v′′−v/ν|<1}
|v′′|β dv′′

)
‖ϕ‖∞ |BN−2

C (0, 1)|.

The already completed part of the proof shows that the we can continue as

. νI1(u/ν) · νβIβ(u/ν) . (|u|+ ν)νβ. �

Remark 7.4. Upon obvious changes of the lemma’s modification, the above proof would
clearly work for any N ∈ N\{1}, not only N = 3.

The next result is modelled after [21, Lemma 14] and the estimate [21, (34)] derived from
it. Its gradient estimates complement those of Corollary 4.7.

Notation. Until the end of this section we will assume that p, q, r ∈ (1,∞) are such that
1/p + 1/q + 1/r = 1 (i.e., that the exponents satisfy the Hölder scaling) and p > q. Given a
triple of such (p, q, r), we will denote

m := min{q/p + 1, r}
M := max{p, r}. (7.6)

Corollary 7.5. Let X be as in Theorem 3.1. Take ν ∈ (0, 1]. Then for every ω ∈ C3 we have

(i) |(X ∗ ϕν)(ω)| . u
p + v

q + w
r + 1,

(ii) |D(X ∗ ϕν)(ω)| . |ω|m−1 + |ω|M−1,
(iii)

∣∣D2(X ∗ ϕν)(ω)
∣∣ . νm−2

(
|ω|M−2 + |ω|+ 1

)
.

The implied constants depend on p, q, r,A,B,C and their ∗-ellipticity constants arising from
the assumption (⋆), but not on ω, ν. The constants in (ii) and (iii) may also depend on d.

Proof. Item (i) follows from Corollary 4.7 (a).
Let us prove (iii). Recalling the convention from Section 2.2, we have

∣∣D2(X ∗ ϕν)(ω)
∣∣ 6

d∑

j,k=1

∣∣D2
jk(X ∗ ϕν)(ω)

∣∣

6

d∑

j,k=1

∫

C3

∣∣D2
jkX
∣∣ (y)ϕν(ω − y)dy

. d

∫

C3

∣∣D2X
∣∣ (y)ϕν(ω − y)dy

=
(∣∣D2X

∣∣ ∗ ϕν

)
(ω).
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We justify the second estimate above as in [22, Section 5.1], [21, Section 5.2] or [19, Section
5]. Now use, consecutively, Proposition 5.3 and Lemma 7.3 to arrive at
(∣∣D2X

∣∣ ∗ ϕν

)
(ω) . ν−(1−q/p)(w + 1)

+
(
νp/q + u

p/q
)
+
(
νp−2 + u

p−2
)

+
(
νq/p + v

q/p
)
+
(
νq−2 + v

(q−2)+
)

+
(
νq(1−2/p) + v

q(1−2/p)
)

+ (ν + v)

+
(
νr−2 + w

(r−2)+
)
+
(
νr(1−2/p) + w

r(1−2/p)
)
+ (ν + w).

By taking into account that 0 < ν 6 1, we simplify this through Lemma 5.5 as
(∣∣D2X

∣∣ ∗ ϕν

)
(ω) . νmin{q,r}−2 + |ω|M−2 + ν−(1−q/p)(|ω|+ 1).

Since q/p < q(1/p + 1/r) = q − 1, we have min{q, r, q/p + 1} = m, which settles (iii).
We conclude by proving (ii). Let j ∈ {1, . . . , 2N}. Since X ◦W−1

3,1 and ϕν ◦W−1
3,1 are even

functions in each of the variables in R6, the function (X ∗ϕν) ◦W−1
3,1 also has this property, so

Dj(X ∗ ϕν)(0) = 0. (7.7)

Hence, by item (iii) and the mean value theorem, if |ω| < ν 6 1 we get

|Dj(X ∗ ϕν)(ω)| 6 max
|η|61

∣∣D2(X ∗ ϕν)(η)
∣∣ |ω|. νm−2|ω|. |ω|m−1.

By Corollary 4.7 (b) and Lemma 5.4, if |ω| > ν we get

|Dj(X ∗ ϕν)(ω)| . |ω|max{p,r}−1 + |ω|min{q,r}−1.

Recalling that q > q/p+ 1, we complete the proof of (ii). �

Remark 7.6. An important property required for Rn,ν in [21] was that

F ∈ Lp ∩ Lq ⇒ (DRn,ν)(F ) ∈ Lp′ + Lq′ . (7.8)

It was needed in [21, (37)], namely, to justify the use of the Lebesgue dominated convergence
theorem there, for which one needed the integrand to be in L1 uniformly with respect to n,
and to this end one applied the Hölder’s inequality. In order to achieve the above property,
one may pose the following question: if F ∈ Lp, for which γ do we necessarily have |F |γ ∈ Lp′?
Of course, the (unique) answer is γ = p− 1. Therefore we achieve (7.8) if we prove

|(DRn,ν)(ω)|. |ω|p−1 + |ω|q−1.

This is precisely [21, Theorem 16 (iv)]. It follows (in part) from

|D(Q ∗ ϕν)(ω)|. |ω|p−1 + |ω|q−1, (7.9)

which is [21, Lemma 14 (ii)].
Trying to repeat the argument from [21] in the current (trilinear) setting, we would thus

probably like to have the estimate

|D(X ∗ ϕν)(ω)|. |ω|p−1 + |ω|q−1 + |ω|r−1.

Instead, Corollary 7.5 (ii) gives

|D(X ∗ ϕν)(ω)|. |ω|p−1 + |ω|q/p + |ω|r−1. (7.10)

Yet in spite of some discrepancy at the first glance, the estimate (7.10) is consistent with
(7.9), because when 1/p+1/q = 1 (which was the case in [21], but not here), we exactly have
q/p = q − 1. So we seem to be on the right path.

An estimate like (7.10), however, permits the implication

F ∈ Lp ∩ Lq ∩ Lr ⇒ [D(X ∗ ϕν)] (F ) ∈ Lp′ + Lp + Lr′ .
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For reasons hinted at here and which will become completely apparent later, see Section 7.6,
we will initially assume that F = (f, g, h) ∈ Lp ∩Lp′ ∩Lr. Note that, by the end of the proof
of Lemma 5.6 and an interpolation of Lebesgue spaces, this implies F ∈ Lq. To reach the
class of f, g, h as stated in the formulation of Theorem 1.1, we will then apply approximation
arguments.

The next estimate has its roots in [21, (34)].

Corollary 7.7. If |ω| ∼ n for some n ∈ N, then for any ν ∈ (0, 1] we have

|D [ψn · (X ∗ ϕν)] (ω)| . |ω|M−1

∣∣D2 [ψn · (X ∗ ϕν)] (ω)
∣∣ . νm−2|ω|M−2.

Proof. For both inequalities we use the Leibniz rule. Regarding the first-order derivatives,

|D [ψn · (X ∗ ϕν)]| . |ψn ·D(X ∗ ϕν)|+ |Dψn · (X ∗ ϕν)|

. |D(X ∗ ϕν)|+
1

n
|X ∗ ϕν |.

Now apply Corollary 7.5 (i), (ii).
Regarding the second-order derivatives,

∣∣D2 [ψn · (X ∗ ϕν)]
∣∣ . |ψn ·D2(X ∗ ϕν)|+ |Dψn ·D(X ∗ ϕν)|+ |D2ψn · (X ∗ ϕν)|

. |D2(X ∗ ϕν)|+
1

n
|D(X ∗ ϕν)|+

1

n2
|X ∗ ϕν |.

Now apply Corollary 7.5. �

Now we seem to be in a position to fix the problem described at the beginning of this section
(Section 7.3). Following [21], we try by adding to ψn · (X ∗ ϕν) a function which is:

• A-convex everywhere;
• strictly A-convex for |ω| ∼ n, to the extent sufficient to compensate for the lack of

convexity of ψn · (X ∗ ϕν) there.

Based on the analysis leading to Corollary 7.7, and on Lemma 4.6, we think of adding the
function νm−2PM (u, v, w), where m and M are as in (7.6) and PM is as in (4.5). Therefore
at this stage our candidate is

ψn · (X ∗ ϕν) + νm−2PM .

By this we mean that we want to consider the flow

L
(
ψn · (X ∗ ϕν) + νm−2PM

)
(f, g, h)

and then send n→ ∞ and ν → 0.

7.4. Fourth (and final) approximation. In order to perform integration by parts, we need
properties akin to [21, Theorem 16]. We see that the perturbation νm−2PM is still not sufficient
for that. For example, its second-order derivatives are not in L∞, its gradient and Hessian do
not converge to the gradient and, respectively, Hessian of X ∗ ϕν as n→ ∞, and so on.

Again we resort to [21] for a hint on how to resolve this. Namely, we try to replace
the perturbation PM by its smooth tamed version, as follows. This section will serve as a
preparation for that step, while the actual construction will then be made in Section 7.5.

Given a > 1 define

Da(t) =

{
ta ; 0 6 t 6 1,

at− (a− 1) ; t > 1.
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Observe that Da ◦Db = Dab and that Da is continuously differentiable on [0,∞) with

D′
a(t) = a

{
ta−1 ; 0 6 t 6 1,
1 ; t > 1.

For s > 2, n ∈ N, ε > 0 and N ∈ N define the function Fs,n,ε by

Fs,n,ε(ω) = nsD s+ε
2

(∣∣∣
ω

n

∣∣∣
2
)

ω ∈ CN .

Explicitly,

Fs,n,ε(ω) =





n−ε|ω|s+ε ; |ω| 6 n,

s+ ε

2
ns−2|ω|2 −

(
s+ ε

2
− 1

)
ns ; |ω| > n.

Let A1, . . . , AN be accretive matrices on Ω ⊆ Rd. Write A = (A1, . . . , AN ). Suppose that
∆s(A) > 0 and let c = c(s,A, N) > 0 be any constant fitting Lemma 4.6. Note that the
dependence of c on A is limited to ∆s(A) and Λ(A).

By continuity of ∆t(A) in t we have ∆s+ε(A) > 0 for sufficiently small ε > 0. Choose and
fix such an ε > 0. In analogy with (4.5) we then define function Ps,n,ε : C

N → [0,∞) by

Ps,n,ε(u1, . . . , uN ) := Fs,n,ε(u1, . . . , uN ) + c

N∑

j=1

Fs,n,ε(uj).

Define the set Θn ⊆ CN by

Θn = {|(u1, . . . , uN )| = n} ∪
N⋃

j=1

{|uj | = n}.

The next proposition is based on [21, Proposition 12].

Proposition 7.8. Under the above assumptions on A, s, ε, we have:

(i) Ps,n,ε ∈ C1(CN ) ∩ C2(CN \Θn) for all n ∈ N. Moreover,

DPs,n,ε → 0 pointwise in CN ,

D2Ps,n,ε → 0 pointwise in CN \
⋃

k∈N

Θk

as n→ ∞.
(ii) Ps,n,ε is A-convex in CN \Θn, for all n ∈ N. Moreover, for all n ∈ N, X = (X1, . . . ,XN )

with Xj ∈ Cd, and u ∈ CN \Θn with |u| > n, we have

HA

Ps,n,ε
[u;X] > (s+ ε)ns−2λ(A)|X|2.

(iii) There exists C > 0 that does not depend on n such that for all n ∈ N we have

|(DPs,n,ε)(ω)| 6 C|ω|s−1, ∀ω ∈ CN ,
∣∣(D2Ps,n,ε)(ω)

∣∣ 6 C|ω|s−2, ∀ω ∈ CN \Θn.

(iv) For every n ∈ N there exists C(n) > 0 such that

|(DPs,n,ε)(ω)| 6 C(n)|ω|, ∀ω ∈ CN .

(v) For all n ∈ N we have
∣∣D2Ps,n,ε

∣∣ ∈ L∞(CN \Θn).
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Proof. Item (i) holds since, fixing u = (u1, . . . , uN ), for n large enough (n > |u|) we have

Ps,n,ε(u) = n−ε


|u|s+ε + c

N∑

j=1

|uj |s+ε


 , (7.11)

where the term in the parentheses is clearly independent of n.
We now prove item (ii). Suppose first that |u| < n; then |uj | < n for j = 1, . . . , N . In this

case (7.11) holds, therefore Ps,n,ε(u) = n−εPs+ε(u) for all u ∈ CN \ Θn and the A-convexity
follows from Lemma 4.6.

Suppose now that |u| > n. Then

Ps,n,ε(u) =
s+ ε

2
ns−2|u|2 +

(
1− s+ ε

2

)
ns + c

N∑

j=1

Fs,n,ε(uj).

Therefore, by [22, (5.7)],

HA

Ps,n,ε
[u;X] = (s+ ε)ns−2

N∑

j=1

Re 〈AjXj,Xj〉+ c
N∑

j=1

H
Aj

Fs,n,ε
[uj;Xj ]

> (s+ ε)ns−2λ(A)|X|2 + c

N∑

j=1

H
Aj

Fs,n,ε
[uj ;Xj ].

Since

H
Aj

Fs,n,ε
[uj ;Xj ] =





n−εH
Aj

Fs+ε
[uj;Xj ] ; |uj | < n;

s+ ε

2
ns−2H

Aj

F2
[uj;Xj ] ; |uj | > n

and ∆s+ε(A) > 0, we deduce from [22, Proposition 5.8 and Corollary 5.16] thatHAj

Fs,n,ε
[uj ;Xj ] >

0 for every j ∈ {1, . . . , N}, which finishes the proof of item (ii).
Item (iii) follows from the estimate

|DFs,n,ε(ω)|.





n−ε|ω|s+ε−1 ; |ω| 6 n,

ns−2|ω| ; |ω| > n

. |ω|s−1

(7.12)

and similarly for second-order derivatives.
Item (iv) likewise follows from (7.12).
Item (v) follows by noting that outside a ball in CN , the function Fs,n,ε is defined as

A|ω|2 +B for some constants A,B. �

Now we pass to the estimates for Ps,n,ε ∗ ϕν . Since Ps,n,ε ∈ C1(CN ) and its second-order
partial derivatives exist on CN \ Θn and extend to a locally integrable function on CN , by
the ACL characterization of Sobolev spaces (see, for example, [59, Théorème V, p. 57] or [46,
Theorem 11.45]) we have

D(Ps,n,ε ∗ ϕν) = (DPs,n,ε) ∗ ϕν ,

D2(Ps,n,ε ∗ ϕν) = (D2Ps,n,ε) ∗ ϕν .
(7.13)

The following statement closely resembles [21, Proposition 15]. For the reader’s convenience,
we give a complete proof (which to a significant extent uses Proposition 7.8).

Proposition 7.9. Assume the conditions on s,A, ε as on page 36 and let ν ∈ (0, 1).
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(i) We have

D (Ps,n,ε ∗ ϕν) → 0,

D2 (Ps,n,ε ∗ ϕν) → 0

pointwise in CN as n→ ∞.
(ii) The function Ps,n,ε ∗ϕν is A-convex in CN . Moreover, for all n ∈ N, X = (X1, . . . ,XN )

with Xj ∈ Cd, and all ω ∈ CN with |ω| > 2n,

HA

Ps,n,ε∗ϕν
[ω;X] > (s + ε)ns−2λ(A)|X|2.

(iii) There exists C > 0 that does not depend on n and ν such that for any š 6 2 we have

|D(Ps,n,ε ∗ ϕν)(ω)| 6 C
(
|ω|s−1 + |ω|š−1

)
, ∀ω ∈ CN , ∀n ∈ N.

(iv) For every n ∈ N there exists C(n) > 0 (that does not depend on ν) such that

|D(Ps,n,ε ∗ ϕν)(ω)| 6 C(n)|ω|, ∀ω ∈ CN .

(v) We have
∣∣D2(Ps,n,ε ∗ ϕν)

∣∣ ∈ L∞(CN ) with

∥∥D2(Ps,n,ε ∗ ϕν)
∥∥
∞

6 C

for some C > 0 that does not depend on ν.

Proof. Item (i) follows by combining (7.13), Proposition 7.8 (i) and (iii) with the dominated
convergence theorem.

Item (v) follows from (7.13) and Proposition 7.8 (v).
By (7.13) we have

H
A(x)
Ps,n,ε∗ϕν

[ω;X] =

∫

CN

H
A(x)
Ps,n,ε

[ω − ω′;X]ϕν(ω
′)dω′,

for all x ∈ Ω, ω ∈ CN and X ∈ (Cd)N . If we assume that |ω| > 2n, since the support of
the integrand is contained in BCN (0, ν), we have |ω − ω′| > 2n − ν > n. Therefore we may
estimate the integrand by means of Proposition 7.8 (ii) almost everywhere on BCN (0, ν) and
thus prove item (ii).

Let us address item (iii). We proceed much as in the proof of Corollary 7.5 (ii). First
consider |ω| 6 1. By smoothness and evenness properties of Ps,n,ε ∗ ϕν ,

D(Ps,n,ε ∗ ϕν)(0) = 0. (7.14)

Hence, the second identity in (7.13), the second estimate of Proposition 7.8 (iii) and the mean
value theorem imply

|D(Ps,n,ε ∗ ϕν)(ω)| 6 C|ω| 6 C|ω|š−1, ∀|ω| 6 1, ∀n ∈ N.

Now take |ω| > 1. From the first identity in (7.13), the first estimate of Proposition 7.8 (iii)
and Lemma 7.3 we get

|D(Ps,n,ε ∗ ϕν)(ω)| 6 C|ω|s−1.

Thus we proved (iii).
Finally, item (iv) follows from item (v), (7.14) and the mean value theorem. �
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7.5. The sequence Xn,ν. Here we finally present the function that will be the backbone of
our heat-flow process. We start by summarizing the assumptions.

Let p, q, r ∈ (1,∞) satisfy 1/p + 1/q + 1/r = 1 and p > q. Let M,m be as in (7.6).
Furthermore, take an open set Ω ⊆ Rd and A,B,C ∈ AM (Ω). Write A = (A,B,C). Choose
ε > 0 such that we also have A,B,C ∈ AM+ε(Ω).

We will apply the results from Section 7.4 with N = 3 and s = M . Since ε will stay fixed
throughout the process, for the sake of transparency we will drop it from the indices. Thus
we will write just PM,n instead of PM,n,ε.

The final stage of our construction is the function

Xn,ν := ψn · (X ∗ ϕν) + Cνm−2(PM,n ∗ ϕν)

with C > 0 to be defined in the following theorem. The latter is a “three-variable counterpart”
of [21, Theorem 16] and the function Xn,ν is the analogue of Rn,ν from [21].

Theorem 7.10. Let ν ∈ (0, 1]. There exists C > 0, depending on ψ, p, q, r,A and the ∗-
ellipticity constants stipulated in Theorem 1.1, but not depending on ν or n, such that Xn,ν is
A-convex in C3 for all n ∈ N. Moreover, the following statements hold.

(i) We have
DXn,ν → D(X ∗ ϕν),

D2Xn,ν → D2(X ∗ ϕν)

pointwise in C3 as n→ ∞.
(ii) For any n ∈ N there exists C = C(n, ν,C) > 0 such that

|(DXn,ν)(ω)| 6 C|ω|, ∀ω ∈ C3.

(iii) There exists C > 0 that does not depend on n such that

|(DXn,ν)(ω)| 6 Cνm−2
(
|ω|m−1 + |ω|M−1

)

for all ω ∈ C3, n ∈ N and ν ∈ (0, 1].
(iv) For any n ∈ N and ν > 0 we have

(∂ūXn,ν)(0, v, w) = (∂v̄Xn,ν)(u, 0, w) = (∂w̄Xn,ν)(u, v, 0) = 0,

for all u, v, w ∈ C.
(v) |D2Xn,ν | ∈ L∞(C3).

Proof. We address the statements of the theorem one by one.
• Let us first prove the A-convexity in the region {|ω| < 3n} ∪ {|ω| > 4n}. It follows from

the A-convexity of X ∗ ϕν and PM,n ∗ ϕν . Indeed, from Corollary 4.7 (c) we have

H
(A,B,C)(x)
Xν

[ω;X] & − ν|X|2.
By combining this with Proposition 7.9 (ii) we get, for sufficiently large C ,

H
(A,B,C)(x)
Xn,ν

[ω;X] &
[
Cνm−2(M + ε)nM−2λ(A)− ν

]
|X|2.

Since ν ∈ (0, 1] and m− 2 6 0 we thus get

H
(A,B,C)(x)
Xn,ν

[ω;X] &
[
C(M + ε)nM−2λ(A)− 1

]
ν|X|2.

Thus we see that this quantity is positive if C is large enough.
In order to achieve A-convexity in the region {3n 6 |ω| 6 4n}, we choose C large enough

and combine Corollary 7.7 with the second part of Proposition 7.9 (ii).
• Item (i) is a trivial consequence of Proposition 7.9 (i) and the definition of ψn · (X ∗ ϕν).
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• From (7.7) and the fact that ψn ≡ 1 in a neighbourhood of 0, we conclude that

(D [ψn · (X ∗ ϕν)])(0) = 0.

Hence, by the mean value theorem and the fact that ψn · (X ∗ ϕν) ∈ C∞
c (C3), we get

|(D [ψn · (X ∗ ϕν)])(ω)| 6 C(ν, n)|ω|.
Item (ii) follows from here and Proposition 7.9 (iv).

• In order to prove (iii) we separately estimate |D [ψn · (X ∗ ϕν)] (ω)| and |D (PM,n ∗ ϕν) |.
The estimate of |D [ψn · (X ∗ ϕν)] (ω)| follows by Corollary 7.5 (ii) (for |ω| 6∈ [3n, 4n], since
Dψn ≡ 0 there) and Corollary 7.7 (for |ω| ∈ [3n, 4n]).

On the other hand, the estimate of |D (PM,n ∗ ϕν) | is Proposition 7.9 (iii), used with s =M
and š = m.

• To prove item (iv) just observe that Xn,ν is smooth and even in each of the variables,
because both X ∗ ϕν and PM,n ∗ ϕν have this property.

• Item (v) follows from Proposition 7.9 (v) and the fact that ψn · (X ∗ ϕν) ∈ C2
c (C

3). �

As a consequence of Theorem 7.10, items (iv) and (v), we have the following invariance
result, which is modelled after (and proven exactly as) [21, Lemma 19].

Lemma 7.11. If f, g, h ∈ U then ∂uXn,ν (f, g, h) ∈ U , and the same for ∂vXn,ν and ∂wXn,ν.

7.6. Completion of the proof of Theorem 1.1. Recall that we need to prove (7.5). So
take f, g, h ∈ U such that f, g, h, LAf, LBg, LCh ∈

(
Lp ∩ Lp′ ∩ Lr

)
(Ω). As noted before, this

intersection is contained in Lq.
Recalling the notation (7.4), we will first prove that

L (X)(f, g, h) = lim
νց0

lim
n→∞

L (Xn,ν)(f, g, h). (7.15)

Let us justify (7.15). First consider the limit as n → ∞. We want to use the Lebesgue
dominated convergence theorem. Thus we must prove that for all n ∈ N, the integrands in

L (Xn,ν)(f, g, h) = Re

∫

Ω

(
(∂uXn,ν) (f, g, h)LAf+(∂vXn,ν) (f, g, h)LBg+(∂wXn,ν) (f, g, h)LCh

)

(7.16)
admit a majorant which lies in L1(Ω) and is independent of n. It is enough to treat the first
summand, as the other two can be estimated in exactly the same manner.

By Theorem 7.10 (iii) we have, with ω = (f, g, h),

|(∂uXn,ν) (f, g, h)LAf| . |ω|p−1 |LAf|+ |ω|q/p |LAf|+ |ω|r−1 |LAf| .
(We omitted copying from Theorem 7.10 (iii) the power of ν, since at this stage we consider
it as constant.) The above majorant clearly does not depend on n. We claim that it belongs
to L1. Indeed, use that LAf ∈ Lp ∩Lp′ ∩Lr and that |ω| ∈ Lp ∩Lq ∩Lr. It then follows that

|ω|p−1 |LAf|+ |ω|q/p |LAf|+ |ω|r−1 |LAf| ∈ Lp′ · Lp + Lp · Lp′ + Lr′ · Lr,

which by the Hölder’s inequality belongs to L1. Thus, by Theorem 7.10 (i), we proved

lim
n→∞

L (Xn,ν)(f, g, h) =L (X ∗ ϕν)(f, g, h). (7.17)

Now let us take the limit as ν ց 0. We argue as before, just that now the adequate estimates
are provided by Corollary 7.5 (ii). From the fact that X ∈ C1(C3) and the Lebesgue dominated
convergence theorem we thus deduce that

lim
νց0

L (X ∗ ϕν)(f, g, h) =L (X)(f, g, h). (7.18)

The combination of (7.18) and (7.17) returns (7.15).
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By Lemma 7.11, we can integrate by parts the integral in (7.16) and, from the chain rule
for the composition of smooth functions with vector-valued Sobolev functions, deduce as in
[22, Corollary 4.2] that

2Re

∫

Ω

(
∂uXn,ν (f, g, h)LAf+ ∂vXn,ν (f, g, h)LBg+ ∂wXn,ν (f, g, h)LCh

)

=

∫

Ω
H

(A,B,C)
Xn,ν

[W3,1 (f, g, h) ;W3,d (∇f,∇g,∇h)] ,

so we merge this with (7.17) into

2L (X ∗ ϕν)(f, g, h) = lim
n→∞

∫

Ω
H

(A,B,C)
Xn,ν

[W3,1 (f, g, h) ;W3,d (∇f,∇g,∇h)] . (7.19)

By Theorem 7.10, the function Xn,ν is A-convex in C3, so the integrand on the right-hand
side of (7.19) is nonnegative for all n ∈ N. Hence, by (7.19), Fatou’s lemma and Theorem 7.10
(i), followed by Corollary 4.7 (c),

2L (X ∗ ϕν)(f, g, h) >

∫

Ω
H

(A,B,C)
X∗ϕν

[W3,1 (f, g, h) ;W3,d (∇f,∇g,∇h)]

&

∫

Ω
|∇f||∇g|(h− ν),

for all ν ∈ (0, 1), where the implied constant may depend on p, q, r,A,B,C and their ∗-
ellipticity constants alluded to in Theorem 1.1, but not on ν. The desired inequality (7.1) now
follows from (7.18).

7.7. Growth of the embedding constants. Here we make more explicit the behaviour of
the embedding constants appearing in Theorem 1.1.

Corollary 7.12. Under the assumptions of Theorem 1.1, when p > q, the embedding constant
in (1.8) can be estimated as

.

(
1

p

)1/p (D
q

)1/q (E
r

)1/r

.

Here D,E are parameters of the function X from Section 5.1, with D chosen specifically as in
(5.8). In particular, while the constant E in general depends on the choice of the matrix C,
the constant D does not.

If C = I, the constant stays bounded when considering the triple (p − ε, q + ε, r(ε)) with
conjugate exponents p, q and sending ε → 0, as described in Section 1.6. More precisely, in
the limit ε→ 0 the constants get majorized by

.
D1/q

p1/pq1/q
.

Proof. The statement follows from Proposition 5.7 and the “polarization trick” (see the way
Lemma 6.1 was used on pages 27 and 31). Choosing D as in (5.8) gives

√
α1D − α2−α3 = 1.

Note that just the last factor depends on r. And since in the case of C = I we saw
(Proposition 5.7) that E stays bounded as r → ∞, we proved the last part, too, as in this
situation the rightmost term disappears with r → ∞. �

Lemma 7.13. Let Ω,U ,V ,W , p, q, r, A,B,C, f, g, h be as in the formulation of Theorem 1.1.
Then for every s > 1 we have

∫ ∞

0

∫

Ω

∣∣∇TA
stf
∣∣ ∣∣∇TB

st g
∣∣ ∣∣TC

t h
∣∣ dx dt . s−1/r′‖f‖p‖g‖q‖h‖r.
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The implied embedding constants only depend on p, q, r and ∗-ellipticity constants of A,B,C
alluded to in the assumptions.

Proof. Change the variable by st = t′ and apply Proposition 5.7 and Corollary 7.12. �

8. Proof of Theorem 1.7

In this section we prove Theorem 1.7. The proof consists of the following principal elements:

• dualization (Proposition 8.6);
• Littlewood–Paley decomposition (Section 8.2.2);
• subordination to the imaginary powers of LA (Section 8.1.2);
• holomorphic functional calculus for LA [21, Theorem 3];
• trilinear embedding (Theorem 1.1) with control of the embedding constants for (A,B, δC)

in terms of δ > 0 (Corollary 7.12).

We first either review or create anew some necessary tools.

8.1. Preliminaries. Fix A ∈ A(Ω). Recall that for simplicity we assume that LA is injective
in L2(Ω). We will systematically use the holomorphic functional calculus for injective sectorial
operators on Banach spaces, see [49, 26, 41].

8.1.1. Abstract Littlewood-Paley decomposition. For every α > 0 define

ψα(z) := zαe−z, φα(z) :=
1

Γ(α)

∫ ∞

1
ψα(sz)

ds
s
, Re z > 0.

A rapid calculation shows that for α ∈ N+ we have

φα(z) =

α−1∑

j=0

ψj(z)

j!
=




α−1∑

j=0

zj

j!


 e−z. (8.1)

It follows that on L2(Ω) we have

φα(tLA) =

α−1∑

j=0

1

j!
ψj(tLA) =

α−1∑

j=0

(tLA)
jTA

t

j!
, ∀α ∈ N+. (8.2)

If A is χ-elliptic, then, by [21], the identity holds true in Lχ(Ω).
The next result can be referred to as the Calderón reproducing formula, see [8, Proposition

2.11] for a similar version.

Lemma 8.1. Let χ ∈ (1,+∞). Suppose that A is χ-elliptic. Then we have

• limt↓0 φα(tLA)f = f in Lχ(Ω),
• limt↑∞ φα(tLA)f = 0 in Lχ(Ω),

for every α > 0 and f ∈ Lχ(Ω).

Proof. By [21] the operator LA has bounded H∞-calculus of angle ϑχ < π/2 in Lχ(Ω). For
every ϑ ∈ [0, π/2) we have φα ∈ H∞(Sϑ). Therefore, for 0 < ε < π/2− ϑχ,

sup
t>0

‖φα(tLA)‖χ . ‖φα‖H∞(Sϑχ+ε)
<∞. (8.3)

Also, for all z ∈ C+ we have

φα(tz) = 1− 1

Γ(α)

∫ t

0
(sz)αe−zs ds

s
,
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yielding
lim
tց0

φα(tz) = 1

lim
t→∞

φα(tz) = 0.

Now the lemma follows from a well-known convergence lemma due to A. McIntosh [49]; see
[26, Lemma 2.1], [2, Theorem D] and [41, Proposition 5.4.1]. �

8.1.2. Mellin transform and Cowling’s subordination. Let m ∈ L1(R+, dλ/λ). The Mellin
transform Mm of m is the Fourier transform of m ◦ exp:

Mm(u) :=

∫ ∞

0
m(λ)λ−iu dλ

λ
, u ∈ R.

If Mm belongs to L1(R), then we have the Mellin inversion formula

m(λ) =
1

π

∫ +∞

−∞
Mm(u)λiu du, λ > 0. (8.4)

Let A ∈ A(Ω) be χ-elliptic. Then, as we remarked in Section 1.7.3, the operator LA has
bounded imaginary powers in Lχ(Ω) [21] and we have the estimates (1.17).

Suppose now that m ∈ L1(R+, dλ/λ) is such that Mm ∈ L1(R) and that the estimate

|Mm(u)| 6 Ce−c|u|, ∀u ∈ R

holds for some C > 0 and c > θχ. Then we can use (8.4) to extend m holomorphically
to Sϑχ+ε for small ε > 0. Assuming the notation from the proof of Lemma 8.1, we have
m ∈ H∞(Sϑχ+ε). The McIntosh convergence lemma [49] that we already used in the proof of
Lemma 8.1, together with (8.4) shows that

m(LA) =
1

π

∫ +∞

−∞
Mm(u)Liu

A du, (8.5)

where the integral converges in the strong operator topology of B(Lχ(Ω)).
For details and proofs (in the self-adjoint case) see [25, 50, 19].

We shall apply Cowling’s subordination to the functions ψα. Note that Mψα(u) = Γ(α−iu)
for u ∈ R, hence, by Stirling’s formula,

|Mψα(u)| 6 Cα(1 + |u|)α−1/2e−π|u|/2, u ∈ R. (8.6)

Therefore Mψα ∈ L1(R), which shows that the inversion formula (8.4) applies with m = ψα.
Fix A ∈ A(Ω) and α > 0. By (8.5), for every f ∈ L2(Ω) and t > 0 we have

ψα(tLA)f =
1

π

∫ +∞

−∞
[Mψα] (u) t

iuLiu
A f du, (8.7)

where the right-hand side should be interpreted as a Bochner integral that converges in L2(Ω).
Since both TA

t and ∇TA
t are L2-bounded, we may apply these operators to (8.7). Together

with ψα(2tLA) = 2αTA
t ψα(tLA), we then have subordination estimates

|ψα(2tLA)f | 6
2α

π

∫ +∞

−∞
|Mψα(u)|

∣∣TA
t L

iu
A f
∣∣ du (8.8)

|∇ψα(2tLA)f | 6
2α

π

∫ +∞

−∞
|Mψα(u)|

∣∣∇TA
t L

iu
A f
∣∣ du (8.9)

almost everywhere in Ω.
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8.1.3. Modified trilinear embedding. The next result follows from Theorem 1.1 and, at the
same time, extends it.

Proposition 8.2. Let Ω ⊆ Rd be an open set and let the spaces U ,V ,W be as in Section 1.3.
Take p, q, r ∈ (1,∞) such that 1/p + 1/q + 1/r = 1. Suppose that the accretive matrices
A,B,C : Ω → Cd×d are max{p, q, r}-elliptic. Write LA = LA,U , LB = LB,V and LC = LC,W .
Let ηαj

, j = 1, 2, 3, denote either ψαj
with αj > 0, or φαj

with αj ∈ N+. Then for every

f ∈
(
Lp ∩ L2

)
(Ω), g ∈

(
Lq ∩ L2

)
(Ω) and h ∈

(
Lr ∩ L2

)
(Ω) we have

∫ ∞

0

∫

Ω
|∇ηα1

(tLA)f | |∇ηα2
(tLB)g| |ηα3

(tLC)h| dx dt . ‖f‖p ‖g‖q ‖h‖r . (8.10)

When Ω = Rd, the same conclusion holds under milder assumptions, namely, (⋆) from page
4. The implied embedding constants only depend on α1,2,3, p, q, r and ∗-ellipticity constants of
A,B,C alluded to in the theorem’s assumptions.

Proof. By using (8.1) we reduce to prove (8.10) in the case when ηαj
is either ψα with α > 0,

or e−λ. For simplicity, we only prove the estimate
∫ ∞

0

∫

Ω
|∇ψα(tLA)f |

∣∣∇TB
t g
∣∣ ∣∣TC

t h
∣∣ dx dt . ‖f‖p ‖g‖q ‖h‖r ; (8.11)

the other cases can be proved similarly.
By using, consecutively, (8.9) and Theorem 1.1 we obtain
∫ ∞

0

∫

Ω
|∇ψα(tLA)f |

∣∣∇TB
t g
∣∣ ∣∣TC

t h
∣∣ dx dt

. α

∫ +∞

−∞
|Mψα(u)|

∫ ∞

0

∫

Ω

∣∣∣∇TA/2
t Liu

A f
∣∣∣
∣∣∇TB

t g
∣∣ ∣∣TC

t h
∣∣ dx dt du

. α‖g‖q‖h‖r
∫ +∞

−∞
|Mψα(u)|

∥∥Liu
A f
∥∥
p
du

and (8.11) follows by combining (8.6) with (1.17). �

Recall that the estimate (1.17) was a consequence of [21] and that, to the best of our
knowledge, in the generality considered here, no analogous results are available.

8.1.4. Integration by parts. Let Ω ⊆ Rd be an open set and let U ⊆ H1(Ω) be one of the
subspaces introduced in Section 1.3. For every ε > 0 define Φε : C → C by the rule

Φε(z) :=
z

1 + ε
√

|z|2 + 1
.

Lemma 8.3. Let f ∈ U . For every ε > 0 we have Φε(f) ∈ U ∩ L∞(Ω), |Φε(f)| 6 |f | and
|∇Φε(f)| 6 2 |∇f |. Moreover, as ε → 0 we get Φε(f) → f and ∇Φε(f) → ∇f , in both cases
almost everywhere on Ω and in L2(Ω).

Proof. The function Φε is of class C∞ and both Φε and its gradient are bounded on C.
When U = H1(Ω), the lemma easily follows from the characterization of Sobolev spaces

in terms of absolute continuity on lines [64, Theorem 2.1.4], the chain rule for differentiable
functions and Lebesgue dominated convergence theorem. One can also apply directly to Φε(f)
a version of the chain rule for weak derivatives [64, Theorem 2.1.11] adapted to complex
functions.

When U is of the types (a) or (c) from Section 1.3, all there is left to prove is that
Φε ∈ U . Consider a sequence (φn)n∈N ∈ C∞

c (Rd\Γ) converging to f in H1(Ω). Then
Φε(φn) ∈ C∞

c (Rd\Γ) and the chain rule together with the Lebesgue dominated convergence
theorem show that Φε(φn) converges to Φε(f) in H1(Ω), as n→ ∞. �
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Lemma 8.4. Let p, q, r ∈ (1,∞) such that 1/p+1/q+1/r = 1 and let A ∈ A(Ω) be p-elliptic.
Suppose that u ∈ D2(LA) ∩Dp(LA), v ∈ U ∩ Lq(Ω) and w ∈ U ∩ Lr(Ω). Then

∣∣∣∣
∫

Ω
LAu · vw

∣∣∣∣ 6 2Λ

(∫

Ω
|∇u| |∇v| |w|+

∫

Ω
|∇u| |∇w| |v|

)
. (8.12)

Suppose furthermore that

|∇u| (|w| |∇v|+ |v| |∇w|) ∈ L1(Ω). (8.13)

Then we have ∫

Ω
LAu · vw =

∫

Ω
〈A∇u,∇v̄〉w +

∫

Ω
〈A∇u,∇w̄〉 v. (8.14)

Proof. For ε > 0 set vε = Φε(v) and wε = Φε(w). Lemma 8.3 gives vε, wε ∈ U ∩L∞(Ω). It is
well known that the Leibniz rule holds in H1 ∩ L∞, see [37, Theorem 4.4]. This means that
vεwε ∈ H1(Ω) ∩ L∞(Ω) and

∇(vεwε) = vε∇wε + wε∇vε . (8.15)

We want to show a little bit more, namely, that

vεwε ∈ U . (8.16)

If U = H1(Ω), this has just been proved. Assume now that U is of type (c) from Section 1.3.
We saw in the proof of Lemma 8.3 that, for some sequences (φn)n∈N, (ψn)n∈N ∈ C∞

c (Rd\Γ),
Φε(φn) → Φε(v)
Φε(ψn) → Φε(w)

}
in H1(Ω).

By Lemma 8.3 and the Lebesgue dominated convergence theorem, it is from here not difficult
to see that Φε(φn)Φε(ψn) → Φε(v)Φε(w) = vεwε in H1(Ω), as n→ ∞. This proves (8.16).

Since u ∈ D2(LA), it follows from (1.6) and (8.15) that
∫

Ω
LAu · vεwε =

∫

Ω
〈A∇u,∇v̄ε〉wε +

∫

Ω
〈A∇u,∇w̄ε〉 vε. (8.17)

By (1.2) and Lemma 8.3, the right-hand side of (8.17) is bounded by the right-hand side of
(8.12), uniformly in ε > 0. By Lemma 8.3 and the Lebesgue dominated convergence theorem,
the left-hand side of (8.17) converges to the left-hand side of (8.14) as ε→ 0.

Under the assumption (8.13), the right-hand side of (8.17) converges to the right-hand side
of (8.14), by Lemma 8.3 and the Lebesgue dominated convergence theorem. �

Corollary 8.5. Let Ω ⊆ Rd be an open set and U ⊆ H1(Ω) one of the closed subspaces
introduced in Section 1.3. Take p, q, r ∈ (1,∞) such that 1/p + 1/q + 1/r = 1. Let A ∈ A(Ω)
be max{p, q, r}-elliptic and α1, α2, γ > 0. Furthermore, fix f ∈ (Lp∩L2)(Ω), g ∈ (Lq ∩L2)(Ω)
and h ∈ (Lr ∩ L2)(Ω). Then with As := (A+AT )/2 and for almost every t > 0 we have

∫

Ω
ψα1

(tLA)f ·ψα2
(tLA)g · LA∗ψγ(tLA∗)h−

∫

Ω
LAψα1

(tLA)f · ψα2
(tLA)g · ψγ(tLA∗)h

−
∫

Ω
ψα1

(tLA)f · LAψα2
(tLA)g · ψγ(tLA∗)h

=− 2

∫

Ω

〈
As∇ψα1

(tLA)f,∇ψα2
(tLA)g

〉
ψγ(tLA∗)h. (8.18)

Proof. By Proposition 8.2 and Tonelli’s theorem, for almost every t > 0 the function

|∇ψα1
(tLA)f | |∇ψγ(tLA∗)h| |ψα2

(tLA)g|+ |∇ψα2
(tLA)g| |∇ψγ(tLA∗)h| |ψα1

(tLA)f |
+ |∇ψα1

(tLA)f | |∇ψα2
(tLA)g| |ψγ(tLA∗)h|
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belongs to L1(Ω). Now (8.18) follows integrating by parts each term in the left-hand side of
(8.18) by means of Lemma 8.4. �

8.2. Proof of Theorem 1.7.

8.2.1. Step 1: Duality and density. As recalled in Section 1.7.3, for every χ ∈ {p1, p2, q1, q2, r}
the semigroup (TA

t )t>0 extends to an analytic and contractive semigroup on Lχ(Ω) in a cone
of positive angle in C. It is well-known [63] and it can be easily proved by using functional
calculus [41, Example 3.4.6] that strong continuity (in particular, analyticity) together with
contractivity imply that the fractional power −Lβ

A for β ∈ (0, 1) generates an analytic and
contractive semigroup on Lχ(Ω) for every χ ∈ {p1, p2, q1, q2, r}. These semigroups are consis-
tent, because they are subordinated to the consistent semigroups (TA

t )t>0, see [15, 62, 35]. An
approximation argument based on the above facts shows that D2(L

β
A) ∩Dχ1

(Lβ
A) ∩Lχ2(Ω) is

dense in Dχ1
(Lβ

A)∩Lχ2(Ω) and the same for A replaced by A∗. Here the domain of fractional
power is endowed with the graph norm, ‖·‖χ1

+ ‖Lβ
A · ‖χ1

. It also follows that the Hermitian

dual
(
Lβ
A∗

)∗ of Lβ
A∗ on Lχ′

(Ω) coincides with Lβ
A on Lχ(Ω).

In light of the considerations above, Theorem 1.7 is equivalent to the following statement.

Proposition 8.6. Under the assumptions of Theorem 1.7, for f ∈ Dp1(L
β
A)∩D2(L

β
A)∩Lp2(Ω),

g ∈ Dq2(L
β
A) ∩D2(L

β
A) ∩ Lq1(Ω) and h ∈ Dr(L

β
A∗) ∩D2(L

β
A∗) we have

∣∣∣∣
∫

Ω
fgLβ

A∗hdx
∣∣∣∣ .

(∥∥∥Lβ
Af
∥∥∥
p1
‖g‖q1 + ‖f‖p2

∥∥∥Lβ
Ag
∥∥∥
q2

)
‖h‖r.

So in the continuation we focus on proving the above result.

8.2.2. Step 2: Littlewood-Paley decomposition. Fix α ∈ N, α > 2. By Lemma 8.1 we have
∫

Ω
fgLβ

A∗hdx = −
∫ ∞

0

∫

Ω

d
dt

(
φα(tLA)f · φα(tLA)g · φα(tLA∗)Lβ

A∗h
)

dx dt.

Observe that the left-hand side above does not depend on α. Thus in principle we could have
just worked with α = 2. Still, we opted for keeping a generic α, in order to underline and
understand better its role.

It follows from the very definition of φα or (8.2) that for M ∈ A(Ω) and w ∈ L2(Ω) we have

− d
dt
φα(tLM )w =

1

(α− 1)!
LMψα−1(tLM )w.

Therefore, for the sake of proving Proposition 8.6 we need to estimate three terms:

I1 :=

∫ ∞

0

∫

Ω
LAψα−1(tLA)f · φα(tLA)g · φα(tLA∗)Lβ

A∗h dx dt,

I2 :=

∫ ∞

0

∫

Ω
LAψα−1(tLA)g · φα(tLA)f · φα(tLA∗)Lβ

A∗h dx dt,

I3 :=

∫ ∞

0

∫

Ω
φα(tLA)f · φα(tLA)g · LA∗ψα−1(tLA∗)Lβ

A∗h dx dt.

We shall show that the critical term is I3. We label it the resonant term, owing to its
resemblance to the equally named terms Π(f, g) from [10].
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8.2.3. Estimating the terms I1 and I2. Below we provide details for the estimate of I1 only,
because I2 can be treated similarly.

We expand φα(tLA) and φα(tLA∗) by means of (8.2) and reduce the estimate of I1 to
bounding from above a finite sum of double integrals of the type

∫ ∞

0

∫

Ω
LAψα−1(tLA)f · ψk(tLA)g · ψj(tLA∗)Lβ

A∗hdx dt, 0 6 j, k 6 α− 1. (8.19)

Now we can either 1) subordinate ψj(tLA) and ψk(tLA∗) to the imaginary powers and make
a reduction to the case k = j = 0, or 2) control each term separately, as we show below.

Observe that

ψα−1(tLA)f · ψj(tLA∗)Lβ
A∗h = ψα−β−1(tLA)L

β
Af · ψj+β(tLA∗)h.

Hence in order to estimate (8.19) it suffices to estimate terms of the type
∫ ∞

0

∫

Ω
LAψα−β−1(tLA)L

β
Af · ψk(tLA)g · ψj+β(tLA∗)h dx dt. (8.20)

We now integrate by parts the inner integral by using the first part of Lemma 8.4 with
u = ψα−β−1(tLA)L

β
Af , v = ψk(tLA)g and w = ψj+β(tLA∗)h, and we apply the trilinear

embedding from Proposition 8.2 which gives the estimate

|I1| . ‖Lβ
Af‖p1‖g‖q1‖h‖r.

By using the very same arguments we also get |I2| . ‖Lβ
Ag‖q2‖f‖p2‖h‖r.

Remark 8.7. At this level of generality, we cannot estimate I1 (or I2) starting from (8.20)
and using two vertical square functions of the type

(∫ +∞

0
|ψγ(tLE)u|2

dt
t

)1/2

, γ > 0.

Indeed by [21] the square functions are bounded, but for estimating the factor ψk(tLA)g in
(8.20) we either need the boundedness of the maximal heat semigroup on Lχ(Ω) for χ-elliptic
matrices, or the uniform boundedness of the semigroups in L∞(Ω) which, in our generality,
are respectively unknown and false.

8.2.4. Decomposing the resonant term I3. We expand φα(tLA) by means of (8.2) and integrate
by parts by means of Corollary 8.5. In such a manner the estimate of I3 reduces to estimating
a finite number of terms of the type

J1 :=

∫ ∞

0

∫

Ω
LAψj(tLA)f · ψk(tLA)g · ψα−1(tLA∗)Lβ

A∗h dx dt

J2 :=

∫ ∞

0

∫

Ω
ψj(tLA)f · LAψk(tLA)g · ψα−1(tLA∗)Lβ

A∗h dx dt

and the term

J3 :=

∫ ∞

0

∫

Ω

〈
As∇φα(tLA)f,∇φα(tLA)g

〉
ψα−1(tLA∗)Lβ

A∗hdx dt.

8.2.5. Estimating the terms J1 and J2. We transfer the fractional power “from h to f ”:

LAψj(tLA)f · ψk(tLA)g · ψα−1(tLA∗)Lβ
A∗h

= t−βL1−β
A ψj(tLA)L

β
Af · ψk(tLA)g · ψα+β−1(tLA∗)h

= ψj+1−β(tLA)L
β
Af · ψk(tLA)g · LA∗ψα+β−2(tLA∗)h.
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We now proceed much as we did for I1: we integrate over Ω, we integrate by parts by means
of the first part of Lemma 8.4 and we apply Proposition 8.2. This gives the estimate

|J1| . ‖Lβ
Af‖p1‖g‖q1‖h‖r.

A similar argument gives |J2| . ‖Lβ
Ag‖q2‖f‖p2‖h‖r.

8.2.6. The term J3. Write ψα−1(tLA∗)Lβ
A∗h = t−βψα+β−1(tLA∗)h. Lemma 8.1 (ii) gives

〈
As∇φα(tLA)f,∇φα(tLA)g

〉
= −

∫ ∞

t

d
ds

〈
As∇φα(sLA)f,∇φα(sLA)g

〉
ds

=

∫ ∞

t

〈
As∇LAψα−1(sLA)f,∇φα(sLA)g

〉
ds

+

∫ ∞

t

〈
As∇φα(sLA)f,∇LAψα−1(sLA)g

〉
ds.

In accordance with this decomposition and (1.2) we have |J3| 6 Λ(J ′
3 + J ′′

3 ), where

J ′
3 =

∫ ∞

0
t−β

∫ ∞

t

∫

Ω
|∇LAψα−1(sLA)f | |∇φα(sLA)g| |ψα+β−1(tLA∗)h| dx ds dt,

J ′′
3 =

∫ ∞

0
t−β

∫ ∞

t

∫

Ω
|∇φα(sLA)f | |∇LAψα−1(sLA)g| |ψα+β−1(tLA∗)h| dx ds dt.

8.2.7. Estimating the term J ′
3. Writing t−βLAψα−1(sLA)f = (s/t)βψα−β(sLA)L

β
Af s

−1 we get

J ′
3 =

∫ ∞

0

∫ ∞

t

(s
t

)β ∫

Ω

∣∣∣∇ψα−β(sLA)L
β
Af
∣∣∣ |∇φα(sLA)g| |ψα+β−1(tLA∗)h| dx ds dt

s

=

∫ ∞

1
sβ−1

(∫ ∞

0

∫

Ω

∣∣∣∇ψα−β(stLA)L
β
Af
∣∣∣ |∇φα(stLA)g| |ψα+β−1(tLA∗)h| dx dt

)
ds.

Through the subordination to the imaginary powers (8.8), (8.9), we reduce the estimate of J ′
3

to proving
∫ ∞

1
sβ−1

(∫ ∞

0

∫

Ω

∣∣∣∇TA
stL

iu1

A Lβ
Af
∣∣∣
∣∣∣∇TA

stL
iu2

A g
∣∣∣
∣∣∣TA∗

t Liu3

A∗ h
∣∣∣ dx dt

)
ds

. β

∥∥∥Liu1

A Lβ
Af
∥∥∥
p

∥∥∥Liu2

A g
∥∥∥
q

∥∥∥Liu3

A∗ h
∥∥∥
r

(8.21)

for all u1, u2, u3 ∈ R and 0 < β < 1/r′. In order to prove (8.21), just apply Lemma 7.13.
This finishes the proof of Proposition 8.6 and thus of Theorem 1.7. �
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