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Abstract
Let G = (VG, EG) be a simple and connected graph. A set M ⊆ EG is called a matching
of G if no two edges of M are adjacent. The number of edges in M is called its size.
A matching M is maximal if it cannot be extended to a larger matching in G. The
smallest size of a maximal matching is called the saturation number of G. In this paper
we are concerned with the saturation numbers of lexicographic product of graphs. We also
address and solve an open problem about the size of maximum matchings in graphs with
a given maximum degree ∆.
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1. Introduction
Matchings in graphs serve as useful models of many problems in engineering and in

natural and social sciences. Whenever we have a collection G of interacting elements or
entities capable of forming exclusive “monogamous” pairings by choosing one of several
possible mates, we can study it by studying matchings in the corresponding graph G: The
entities are represented by its vertices, their potential pairings by its edges, and actually
formed pairings by matchings in G. Examples range from human marriages to adsorption
of dimers on structured substrates. The exclusivity of pairings is reflected in the fact
that no two edges from a matching can have a vertex in common. Another immediate
consequence of the exclusivity condition is that the maximum number of formed pairs
cannot exceed one half of the number of entities. The number of pairs is called the size of
the matching and it is one of the most important matching-related graph invariants.

In most cases, small matchings are not interesting. As a rule, one is almost always
interested in large matchings. A matching can be large in at least two different senses.
One way to have a large matching is to have many edges in it. Matchings containing the
largest possible number of edges are called maximum matchings. Another way to have
a large matching is to have a matching that cannot be extended to a valid matching by
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adding an edge. Such matchings are called maximal matchings. Obviously, any maximum
matching is also maximal, but the opposite is generally not true.

There is a huge difference between maximum and maximal matchings. The maximum
ones are well researched and well understood. There is a well developed structural theory
for them and they are (reasonably) easy to construct. No such theory is available for
maximal matchings so far.

All maximum matchings are of the same size. This size reflects the highest possible yield
of any process modeled by matchings on a given graph. Maximal matchings, however,
usually come in a range of different sizes. At the upper end of this range are maximum
matchings. The lower end is far more interesting, since it provides the information on the
lowest possible efficiency of the considered process. Unfortunately, it is algorithmically
difficult to compute the cardinality of a smallest maximal matching even for quite restricted
classes of graphs. Hence, it is of considerable interest to know this quantity, known as the
saturation number, for as many classes of graphs as possible.

In this paper we study the saturation number of graphs that arise via binary operation
known as the composition or the lexicographic product of two graphs. Besides, we improve
a previously known lower bound on the saturation number in terms of maximum degree.

2. Preliminaries
In this section we give definitions and notations that will be used in the paper. For more

information on matching-related stuff we recommend the classical monograph by Lovász
and Plummer [18], and for general references we recommend [7] or [20].

All graphs considered in this paper are connected and simple, i.e., they do not have
loops and multiple edges.

For a graph G we denote by VG the set of its vertices and by EG the set of its edges.
The number of vertices of G is the order of G. The degree of a vertex v of G is the
number of edges of G incident to v. The maximum degree and the minimum degree of
a graph G is usually denoted by ∆ (or ∆G) and δ (or δG), respectively. A graph whose
vertices can be divided into two disjoint sets U and W such that each edge has one end
in U and the other in W is called bipartite. We denote the path and cycle of order n by
Pn and Cn, respectively. The cardinality of a set S is denoted by |S|.

Let G = (VG, EG) be a graph. A collection of edges MG ⊆ EG is called a matching of
G if no two edges of MG are adjacent. The vertices incident to the edges of a matching MG

are said to be saturated by MG (or MG-saturated); the others are said to be unsaturated
(or MG-unsaturated). A matching whose edges meet all vertices of G is called a perfect
matching of G. If there does not exist a matching M ′

G in G such that |MG| < |M ′
G|, then

MG is called a maximum matching of G. A matching MG is maximal if it cannot be
extended to a larger matching in G. The cardinality of any maximum matching, ν(G), and
the cardinality of any smallest maximal matching in G, s(G), are called the matching
number and the saturation number of G, respectively.

If all maximal matchings in G are also maximum matchings (i.e., if s(G) = ν(G)), then
the graph G is called equimatchable. If any maximal matching in G is also perfect,
then G is called randomly matchable. For any given even n ≥ 4, there are only two
randomly matchable graphs, Kn and Kn/2,n/2; equimatchable graphs are more numerous
and far more interesting.

As mentioned above, smallest maximal matchings have a wide range of applications.
For example, one can see [21] for application of smallest maximal matchings related to a
telephone switching network and see [8] for applications of smallest maximal matchings
related to the stable marriage problem which involves a set of institutions and applicants.
See also [12] for an enumeratively oriented approach to smallest maximal matchings in a
chemical context and [10] for some generalizations.
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Yannakakis and Gavril [21] proved that finding a smallest maximal matching is NP-hard
even for bipartite (or planar) graphs with maximum degree 3. Thirteen years later, Horton
and Kilakos [17] extended their results to planar bipartite graphs and planar cubic graphs.
After that, a similar work on the class of k-regular bipartite graphs was done by Demange
and T. Ekim [8]. The saturation number is, hence, difficult to compute. It can be, however,
easily approximated within a factor of two. This follows from bounds ν(G)

2 ≤ s(G) ≤ ν(G)
and the fact that ν(G) can be efficiently computed (see [18]). See [5,19,22] for more details
on the lower bound s(G) ≥ ν(G)

2 . Another lower bound, s(G) ≥ n−α(G)
2 , is easy to prove,

but not very useful, since it is not easy to compute the independence number α(G) for
general graphs.

The NP-hardness of finding smallest maximal matchings justifies efforts to study them
in particular classes of graphs. We concentrate here on the graphs that arise from simpler
graphs via lexicographic product.

Let G = (VG, EG) and H = (VH , EH) be two graphs. The lexicographic product of
G and H, denoted by G[H], is the graph whose vertex set is VG × VH and two vertices
(g, h) and (g′, h′) are adjacent when (gg′ is an edge of G) or (hh′ is an edge of H and g is
equal to g′), see Figs. 1 and 2 and also [16] for more details. The graph G[H] is sometimes
referred to as the composition of G and H.

Graph products play an important role in study of computer architecture, parallel
algorithms and also in other branches of science.

A set of pairwise non-adjacent vertices of a graph G is called the independent set.
The size of a largest independent set is called the independence number of G and
denoted by α(G).

For a graph G = (VG, EG), we say DG ⊆ VG is an independent dominating set
in G if DG is an independent set and each vertex of VG \ DG is adjacent to at least one
vertex in DG. The independent domination number of G, denoted by i(G), is the
minimum cardinality of an independent dominating set of G. If we drop the requirement of
independence, we obtain dominating sets, and the smallest cardinality of a dominating
set in G is the domination number of G, denoted by γ(G).

A vertex with degree zero is called an isolated vertex and a vertex with degree one is
called a pendent vertex.

For a nonempty set X of edges of a graph G, the subgraph G(X) induced by X has
X as its edge set and a vertex v belongs to G(X) if v is incident with at least one edge in
X. Also, for a nonempty set Y of vertices of a graph G, the subgraph G(Y ) induced by
Y is the subgraph of G whose vertex set is Y and whose edge set consists of all edges of
G which have both ends in Y . (This definition is taken from [7], and the original notation
G[X] is slightly modified in order to avoid confusion with the lexicographic product.)

3. Lexicographic product
In this section we present upper bounds on the saturation number of the lexicographic

product of two graphs in terms of independence, matching and saturation numbers of the
factors.

[ [ =
g1 g2 g3

h1

h2

(g1,h1) (g2,h1) (g3,h1)

(g2,h2) (g3,h2)(g1,h2)

Figure 1. P3[P2].
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Let G and H be two graphs with V (G) = {g1, . . . , gn} and V (H) = {h1, . . . , hm}.
Clearly there are n copies of H in G[H]. Now we investigate copies of G in G[H]. For con-
sidering i-th vertex of a copy of G, there are m possible cases (gi, h1), (gi, h2), . . . , (gi, hm)
and so G[H] contains mn copies of G. Now suppose that Gi = G[H](Vi), i ∈ {1, . . . , m},
where Vi = (g1, hi) . . . (gn, hi). Clearly Gis are m copies of G without common vertices in
G[H]. Let G1j , . . . , Glj be a sequence of copies of G in G[H] where lj > m. All of these
copies have a vertex in {(g1, h1), (g1, h2), . . . , (g1, hm)}. Then the number of these copies,
lj , is more than the number of the vertices of {(g1, h1), (g1, h2), . . . , (g1, hm)}; hence by
the pigeonhole principle we can conclude that there are not more than m copies of G with
distinct vertices in G[H].
For more illustration, consider graphs P3 := g1g2g3 and P2 := h1h2 and set

G1 = P 1
3 := (g1, h1)(g2, h1)(g3, h1), P 2

3 := (g1, h1)(g2, h1)(g3, h2),
P 3

3 := (g1, h1)(g2, h2)(g3, h1), P 4
3 := (g1, h1)(g2, h2)(g3, h2),

G2 = P 5
3 := (g1, h2)(g2, h2)(g3, h2), P 6

3 := (g1, h2)(g2, h2)(g3, h1),
P 7

3 := (g1, h2)(g2, h1)(g3, h1), P 8
3 := (g1, h2)(g2, h1)(g3, h2).

One can check that P 1
3 , . . . , P 8

3 are copies of P3, and G1 and G2 are copies of P3 with
distinct vertices in P3[P2].

Note that, in the following, we will work with m copies of G with distinct vertices.
As a warm-up, we establish a best possible lower bound on the saturation number of

G[H].

Theorem 3.1. Let G and H be two graphs with n and m vertices, respectively. Then

s(G[H]) ≥ 1
2

(mn − α(G)α(H)) .

Proof follows immediately by noting that α(G[H]) = α(G)α(H) ([13]) and s(G) ≥
(V (G)−α(G))/2 for any graph G. The above bound is sharp if the maximum independent
set I constructed by choosing α(H) independent vertices in each of α(G) copies of H
corresponding to the vertices of any maximum independent set of G is nice, i.e., if the
graph induced by V (G[H])\I has a perfect matching. That happens, for example, for
P5[C4], but not for K1,3[C4].

Let M be a matching in a graph G. An M -augmenting path in G is a path whose edges
are alternately in M and EG \ M such that neither its origin nor its terminus is covered
by M .

Theorem 3.2 (Berge’s theorem [6]). A matching M in a graph G is a maximum matching
if and only if G contains no M -augmenting path.

In the rest of this section we employ the same idea to construct upper bounds on the
saturation number of G[H].

Theorem 3.3. Suppose G and H are two graphs with n and m vertices, respectively. If
at least one of them has a perfect matching, then

s(G[H]) ≤ min{α(G)s(H) + (m − 2ν(H))ν(G) + (n − α(G))ν(H),
α(H)s(G) + (n − 2ν(G))s(H) + (m − α(H))ν(G)}.
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Proof. Suppose G and H are two graphs. Set

A = {(g, h)(g, h′) | (g ∈ X and hh′ ∈ MH)},

B = {(g, h)(g, h′) | (g ∈ Xc and hh′ ∈ M ′
H)},

C =
{
(g, h)(g′, h′) | gg′ ∈ M ′

G and
(
(g, g′ ∈ Xc & h = h′ ∈ VH \ VH(M ′

H))

or (g ∈ X, g′ ∈ Xc & (h, h′) ∈ W
)}

,

M = A ∪ B ∪ C,

where X is a largest independent set of G, Xc = VG \ X, MH is a smallest maximal
matching of H, M ′

G and M ′
H are maximum matchings of G and H, respectively, and W

is a largest subset of (VH \ VH(MH)) × (VH \ VH(M ′
H)) with this property that h ̸= h′′ and

h′ ̸= h′′′ for each (h, h′), (h′′, h′′′) ∈ W . (Our strategy to define A, B and C is that edges
of A ∪ B are in copies of H and edges of C are in copies of G. Each vertex (g, h) such
that g ∈ X and h ∈ VH \ VH(MH) is unsaturated by A. Also each vertex (g, h) such that
g ∈ Xc and h ∈ VH \ VH(M ′

H) is unsaturated by B. Thus two ends of each edge of C are
unsaturated by A ∪ B. Note that if there exist (h, h′), (h′′, h′′′) ∈ W such that h = h′′ or
h′ = h′′′, then we have two edges (g, h)(g′, h′) and (g, h′′)(g′, h′′′) with a common vertex
which is not suitable for this aim that M be a matching in G[H].)

Set A ∪ B is formed by different copies of MH and M ′
H and so no two edges of A ∪ B

are adjacent. Also, set C is constructed by different copies of M ′
G and consequently no

two edges of C are adjacent. Moreover, edges of C saturate vertices of G[H] which are not
saturated by edges of A∪B. Therefore, M = A∪B ∪C is a matching in G[H]. It remains
to show that it is maximal. We consider first the case when H has a perfect matching.
In that case, since M ′

H is perfect, all vertices (g, h) such that g ∈ Xc are saturated by
B. Furthermore, since all vertices (g, h) such that g ∈ Xc are saturated, C = ∅ and all
vertices unsaturated by A∪B are in the copies of H corresponding to the vertices from X.
On ther other hand, MH is a maximal matching in H and consequently no edge of G[H]
exists between vertices unsaturated by A. Hence no edge of G[H] exists between vertices
unsaturated by M = A ∪ B and M cannot be extended to a larger matching in G[H].

Now, if H does not have a perfect matching, then G must have one. Again, it suffices
to show that M saturates all vertices in the copies of H corresponding to the vertices in
Xc.
Let VH \VH(MH) = {hi1 , . . . , hit} and VH \VH(M ′

H) = {hk1 , . . . , hkl
}. Since M ′

H is maximum
matching of H, then t ≥ l. Set Mj = {(g, h)(g′, h′) | gg′ ∈ M ′

G & h = hij if g ∈
X otherwise h = hkj

& h′ = hij if g′ ∈ X otherwise h′ = hkj
} for j ∈ {1, . . . , l}. It is not

difficult to see that Mj is a copy of M ′
G in G[H]. Also, according to this fact that M ′

G is
perfect and definition of Mjs, it is clear that ∪l

j=1Mj saturates all vertices in the copies
of H corresponding to the vertices in Xc. On the other hand, since ∪l

j=1Mj ⊆ M , then
M saturates all vertices in the copies of H corresponding to the vertices in Xc. In other
words, all vertices of G[H] not saturated by M remain isolated in the copies of H indexed
by X and no edge between them can be added to M . Hence, M is a maximal matching
in G[H].

The first expression in the theorem statement now follows by noting that |A ∪ B| =
α(G)s(H) + (n − α(G))ν(H) and |C| = (m − 2ν(H))ν(G). Therefore,

s(G[H]) ≤ α(G)s(H) + (m − 2ν(H))ν(G) + (n − α(G))ν(H).
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To establish the remaining claim, take

A′ = {(g, h)(g′, h) | (h ∈ X ′ and gg′ ∈ MG) or (h ∈ VH \ X ′ and gg′ ∈ M ′
G)}

B′ = {(g, h)(g, h′) | hh′ ∈ MH and g ∈ VG \ VG(M ′
G)},

M ′ = A′ ∪ B′,

where X ′ is a largest independent set of H, M ′
G is a maximum matching of G, and MG

and MH are smallest maximal matchings of G and H, respectively. We investigate M ′ in
two cases:

Case 1: G has a perfect matching. Then M ′
G is perfect and consequently each vertex

(g, h) such that h ∈ VH\X ′ is saturated by A′. This concludes that no edge between
the vertices of G[H] not saturated by A′ in the copies of H can be added to M ′

and this means B′ = ∅. Further, no edge between the vertices (g1, h) and (g2, h)
such that h ∈ X ′ can be added to M ′ because of {(g, h)(g′, h) | h ∈ X ′ and gg′ ∈
MG} ⊆ A′. Moreover, if (g1, h1) and (g2, h2) are unsaturated vertices by M ′, then
(g1, h1) and (g2, h2) are not adjacent in G[H] because otherwise g1g2 are in E(G)
and so g1 or g2 is saturated by MG and consequently (g1, h1) or (g2, h2) is saturated
by {h ∈ VH \ X ′ and gg′ ∈ M ′

G} ⊆ A′. Hence all vertices of G[H] not saturated by
M ′ remain isolated in the copies of H indexed by X. Therefore, in this case, M ′

is a maximal matching of G[H].
Case 2: G does not have a perfect matching. Thus H has a perfect matching. In

this case, we need to prove (VG \ VG(M ′
G)) ⊆ (VG \ VG(MG)).

Consider a smallest maximal matching MG in G. By using argument applied in the
proof of Berge’s theorem [6], we reach to a maximum matching M ′

G of G with this
property that (VG \ VG(M ′

G)) ⊆ (VG \ VG(MG)). If G contains no MG-augmenting
path, then set M ′

G := MG. Otherwise, consider a longest MG-augmenting path P
in G and set M1 := MG∆E(P ). If G contains no M1-augmenting path, then set
M ′

G := M1. By repeating this construction as long as necessary, we arrive at a
maximum matching M ′

G such that (VG \ VG(M ′
G)) ⊆ (VG \ VG(MG)).

Now we prove M ′ is a maximal matching in G[H]. According to the structure
of MG ang M ′

G, it is not difficult to check that M ′ is matching. It remains to
prove M ′ is maximal. Since MG and M ′

G are smallest maximal matching and a
maximum matching in G, respectively, then no edge between the vertices (g, h)
and (g′, h) can be added to M ′. Also, according to structure of MG and M ′

G and
the fact that MH is perfect, no edge between the vertices (g, h) and (g′, h′) such
that h ̸= h′ can be added to M ′. Moreover, no edge between the vertices (g, h)
and (g′, h) such that h ∈ X ′ can be added to M ′ because of B′. Therefore, M ′ is
maximal matching in G[H].

Hence, in each case, M ′ is a maximal matching in G[H] and

s(G[H]) ≤ α(H)s(G) + (n − 2ν(G))s(H) + (m − α(H))ν(G).

This completes our proof. □

We illustrate our result with some examples. In our first example, we look at a compo-
sition of two trees, P4[K1,3], shown in Fig 2. Here one component, K1,3, is equimatchable,
while the other, P4, is not. This asymmetry will be reflected in different sizes of M and
M ′. The sets X, Xc, MH , M ′

H , MG, A, B, W , X ′, M ′
G, A′, and B′, are as follows:

X = {g1, g3}, Xc = {g2, g4}, MH = {h1h2}, M ′
H = {h1h3}, MG = {g2g3},
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W = {(h3, h2)(h4, h4)}, X ′ = {h2, h3, h4}, M ′
G = {g1g2, g3g4}. Hence,

A = {(g1, h1)(g1, h2), (g3, h1)(g3, h2)},

B = {(g2, h1)(g2, h3), (g4, h1)(g4, h3)},

C = {(g1, h3)(g2, h2), (g3, h3)(g4, h2), (g1, h4)(g2, h4), (g3, h4)(g4, h4)},

A′ = {(g2, h2)(g3, h2), (g2, h3)(g3, h3), (g2, h4)(g3, h4), (g1, h1)(g2, h1), (g3, h1)(g4, h1)},

B′ = ∅.

Maximal matchings M = A∪B ∪C and M ′ = A′ ∪B′ constructed from the above sets are
shown in Fig. 2 (a) and (b), respectively. The size of M ′ attains the bound of Theorem 3.3.
It can be easily seen that no smaller maximal matching exists in P4[K1,3]: Any matching
N of size 4 would leave 8 vertices unsaturated. As at most three of them can belong to the
same copy of K1,3, at least two adjacent copies of K1,3 must contain unsaturated vertices.
But then they could be saturated by the edge connecting them, and hence, N cannot be
maximal. So, the upper bound of Theorem 3.3 is again sharp.

(g1,h1)

(g1,h3) (g1,h4)

(g1,h2) (g2,h2) (g3,h2) (g4,h2)

(g2,h1) (g3,h1) (g4,h1)

(g2,h3) (g2,h4) (g3,h3) (g3,h4) (g4,h3) (g4,h4)

(g1,h1)

(g1,h3) (g1,h4)

(g1,h2) (g2,h2) (g3,h2) (g4,h2)

(g2,h1) (g3,h1) (g4,h1)

(g2,h3)

(g2,h4)

(g3,h3)

(g3,h4) (g4,h3) (g4,h4)

(a)

(b)

Figure 2. a) Maximal matching M in P4[K1,3]. b) A smaller (and also smallest)
maximal matching M ′ in P4[K1,3]. The edges between neighboring copies of K4
not participating in the matching are omitted.

This example could serve as a starting point toward more general results and maybe
even explicit formulas for the saturation number of Pn[G] for more general classes of G,
but we leave the details to the interested reader.

As another example we take the lexicographic product of two (even) complete graphs
Kn[Km]. The resulting graph is again complete, Kmn, and its saturation number is equal
to mn

2 , exactly the value obtained by plugging the corresponding values in Theorem 3.3.
Our final example shows that the difference between the upper bounds of Theorem

3.3 and actual s(G[H]) can be arbitrarily large. Take G = Pn and H = K4. Then
α(Pn) =

⌈
n
2

⌉
, ν(Pn) =

⌊
n
2

⌋
, s(Pn) =

⌈
n−1

3

⌉
, α(K4) = 1, and ν(K4) = s(K4) = 2. By

plugging these values into the formula of Theorem 3.3 one obtains

s(Pn[K4]) ≤ min{2n,

⌈
n − 1

3

⌉
+ 2β + 3

⌊
n

2

⌋
}

Here β = n − 2ν(Pn) is equal to either 0 or 1, depending on the parity of n. One can
see that the second term is approximately of the order of 11n

6 , again depending on the
combination of residues of n modulo 2 and 3. On the other hand, it is easy to construct
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a maximal matching in Pn[K4] of size (again approximately) at most 7n
4 (an example is

shown in Fig. 3). By denoting the number of vertices of Pn[K4] by N = 4n, one can see

Figure 3. A maximal matching in Pn[K4] of size 7n
4 . The edges between neigh-

boring copies of K4 not participating in the matching are omitted.

that the difference between the size of the constructed maximal matching and the upper
bound of Theorem 3.3 is (roughly) n

12 and can be made arbitrarily large by choosing large
enough n.

The expressions from Theorem 3.3 simplify when both factors have a perfect matching.

Corollary 3.4. Let G and H be two graphs of order n and m, respectively, with perfect
matchings. Then

s(G[H]) ≤ min
{

mn

2
− α(G)

(
m

2
− s(H)

)
,
mn

2
− α(H)

(
n

2
− s(G)

)}
.

It would be interesting to characterize graphs for which the upper bound of Theorem
3.3 is sharp.

4. Saturation number as the independent edge domination number
For a graph G, the line graph of G, denoted L(G), is a graph whose vertices are edges

of G and two vertices are adjacent in L(G) if and only if their corresponding edges are
adjacent in G. It is clear that matchings in G correspond to independent sets in L(G).

It can be easily shown that smallest maximal matchings in a graph G are in a one-to-
one correspondence with smallest independent dominating sets in L(G). Indeed, if V ′ is a
smallest independent dominating set in L(G), then the edges corresponding to the vertices
of V ′ form a matching M ′ in G. This matching is maximal, since all remaining edges of
G are adjacent to (i.e., dominated by) edges from M ′. If there was a maximal matching
M ′′ of smaller size in G, the corresponding vertices in L(G) would form an independent
dominating set V ′′ of cardinality smaller than |V ′|, a contradiction.

Hence, we have established that s(G) = i(L(G)) for any graph G. We can, in fact,
dispense with the requirement of independence, since line graphs are claw-free (i.e., they
cannot have K1,3 as an induced subgraph), and for claw-free graphs we have i(G) = γ(G)
[1]. This is actually an improvement of the above result, since γ(G) ≤ i(G) ≤ α(G) for all
graphs. We refer the reader to a survey by Goddard and Henning for the proof of this fact
and for more detail on independent domination number [14]. Hence we have the following
result.

Theorem 4.1.
s(G) = γ(L(G)).

Now we can use another classical result, cited below, to answer an open problem posed
by Biedl et al. in [5].

Proposition 4.2 ([4]). For a graph G with n vertices and maximum degree ∆,⌈
n

∆ + 1

⌉
≤ i(G) ≤ n − ∆.
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In [5], a lower bound for the saturation number of graph G with n edges and maximum
degree ∆ was given as s(G) ≥ n

2∆ − 1
. Now, by combining Theorem 4.1 and Proposition

4 and using the fact that ∆L(G) ≤ 2∆G − 2, we can improve this bound.

Theorem 4.3. If G is a graph with n edges and ∆ is the maximum degree of L(G), then⌈
n

∆ + 1

⌉
≤ s(G) ≤ n − ∆.

This answers an open question by Biedl et al.: “What can be said about the size of
maximum matchings in graphs with maximum degree ∆, for some fixed ∆ ≥ 4? Can we
obtain a bound better than n

2∆ − 1
?”

By combining Theorem 4.3 and the fact that s(G) ≤ ν(G), we can answer that
⌈

n

∆L(G) + 1

⌉
is a better bound than n

2∆ − 1
.

We illustrate the power of Theorem 4.3 by establishing lower bounds on the saturation
number of two classes of chemically relevant graphs used for modeling fullerenes and
benzenoid compounds.

A fullerene graph is a planar 3-connected cubic graph twelve of whose faces are
pentagons and any remaining faces are hexagons.

Proposition 4.4. Let Fn be a fullerene graph with n vertices. Then

s(Fn) ≥ 3n

10
.

Proof. By definition of fullerene graphs, it is clear that they have 3n/2 edges if original
fullerene graph has n vertices. Further, their line graphs are 4-regular. The claim now
follows by plugging these numbers into Theorem 4.3. □

The established lower bound is sharp; there are exactly 11 fullerene graphs for which it
is achieved. However, it is never sharp for fullerene graphs on more than 60 vertices. It
was shown in [3] that s(Fn) ∼ n

3 , improving thus upper bounds of [9] and [2].
A benzenoid graph B is obtained by taking a cycle with simply connected interior in

the regular hexagonal tiling of plane. All vertices of the tiling lying on the cycle and (if
any) in its interior are taken as vertices of the graph, and edges of tiling between those
vertices are the edges of B. If B has no internal vertices, we say that B is catacondensed.
(The terminology is almost completely borrowed from the theory of polycyclic aromatic
hydrocarbons, a vast and important class of organic chemical compounds. We refer the
reader to a classical monograph by Gutman and Cyvin [15] for a thorough introduction.)

It can be easily shown that a catacondensed benzenoid graph Bh with h hexagons has
4h + 2 vertices and 5h + 1 edges. It is also clear that, as soon as h > 1, the largest degree
of a vertex in L(Bh) is equal to 4. By plugging those values into Theorem 4.3 we obtain
the following lower bound.

Proposition 4.5. Let Bh be a catacondensed benzenoid graph with h hexagons. Then
s(Bh) ≥ h + 1.

This bound is also sharp; it is achieved for any h ≥ 1 by the linear polyacene of length
h, i.e., by the straight linear chain of h hexagons. See also [11] and [19] for more on
saturation numbers of benzenoid graphs.

5. Concluding remarks
Saturation number of a graph is an invariant that is difficult to compute and that

frequently arises in applications. In this paper we have investigated its behavior under
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lexicographic product. We have obtained (sharp) bounds. It would be of interest to fur-
ther investigate the quality of the obtained bounds and to characterize the graphs that
satisfy them with equality. Another interesting thing would be to investigate how the
bounds are affected when one of the components of G[H] is equimatchable.
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