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Kristina Krulić Himmelreich 1,†, Josip Pečarić 2,†, Dora Pokaz 3,*,† and Marjan Praljak 4,†

1 Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovića 28a, 10000 Zagreb, Croatia
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1. Introduction

The area of mathematical inequalities is very large. There are many mathematicians
that study, improve, and generalize many inequalities such as the Hardy, the Hardy–Hilbert,
the Steffensen, the Opial, the Boas, etc. Here, we focus on the famous Hardy’s inequality;
see [1]. It states that

∞∫
0

 1
x

x∫
0

f (t) dt

p

dx ≤
(

p
p− 1

)p ∞∫
0

f p(x) dx, p > 1, (1)

holds for all non-negative functions f ∈ Lp(0, ∞), with the constant
(

p
p−1

)p
being sharp.

Inequality (1) has important applications in operator theory since it can be reinterpreted as

‖H f ‖p ≤
p

p− 1
‖ f ‖p

where H f (x) = 1
x

x∫
0

f (t) dt is the Hardy operator and ‖ · ‖p is the standard Lp norm.

For these reasons, Hardy’s inequality, both in discrete and continuous case, has attracted a
lot of interest of researchers, and there are many papers and monographs dedicated to its
development; here, we mention, e.g., [2–13].

We continue with Pólya–Knopp’s inequality,

∞∫
0

exp

 1
x

x∫
0

ln f (t) dt

 dx < e
∞∫

0

f (x) dx, (2)

which holds for positive functions f ∈ L1(R+). Pólya–Knopp’s inequality is a limiting case
of Hardy’s inequality, since it can can be obtained from (1) by rewriting it with the function

f replaced with f
1
p and then by letting p→ ∞.
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The starting point of our paper will be Hardy’s inequality in the general setting given
in [14] (see also [15]), and we will first introduce some notation. Let (Σi, Ωi, µi), i = 1, 2, be
measure spaces with positive σ-finite measures, k : Ω1 ×Ω2 → [0, ∞) a measurable and
non-negative kernel and

0 < K(x) =
∫

Ω2

k(x, t)dµ2(t), x ∈ Ω1. (3)

For a measurable f : Ω2 → R, let Ak denote the integral operator

Ak f (x) =
1

K(x)

∫
Ω2

k(x, t) f (t)dµ2(t), (4)

Theorem 1 ([14]). Let the weight u : Ω1 → [0, ∞) and kernel k : Ω1 ×Ω2 → [0, ∞) be such
that k(x,y)

K(x) u(x) is locally integrable on Ω1 for each y ∈ Ω2 and let v be given by

v(y) =
∫

Ω1

k(x, y)
K(x)

u(x)dµ1(x) < ∞. (5)

If φ is a convex function on an interval I ⊆ R, then the inequality∫
Ω1

φ(Ak f (x))u(x)dµ1(x) ≤
∫

Ω2

φ( f (y))v(y)dµ2(y) (6)

holds for all measurable functions f : Ω2 → I, where Ak is given by (4).

Inequality (6) is, indeed, a generalization of Hardy’s inequality. After taking

f (t) = g(t
p−1

p )t
−1
p and some straightforward calculation, we obtain that (1) is equivalent to

∞∫
0

 1
x

x∫
0

g(t) dt

p
dx
x
≤

∞∫
0

gp(x)
dx
x

. (7)

Applying (6) with Ω1 = Ω2 = (0, ∞), k(x, y) = 1 for 0 ≤ y ≤ x and k(x, y) = 0
otherwise, dµ1(x) = dµ2(x) = dx, u(x) = 1

x (which yields v(y) = 1
y ) and φ(u) = up

gives (7).
We will state our results for the class of n-convex functions, which is a more general

class of functions that contains convex functions as a special case. We will now recall some
basic definitions and properties of n-convex functions.

Definition 1. The n-th order divided difference, n ∈ N0, of a function φ : [α, β]→ R at mutually
distinct points x0, x1, . . . , xn ∈ [α, β] is defined recursively by

[xi; φ] = φ(xi), i = 0, . . . , n

[x0, . . . , xn; φ] =
[x1, . . . , xn; φ]− [x0, . . . , xn−1; φ]

xn − x0
.

The value [x0, . . . , xn; φ] is independent of the order of the points x0, . . . , xn. A function
f : [α, β] → R is n-convex if all its n-th order divided differences are non-negative, i.e.,
[x0, . . . , xn; f ] ≥ 0 for all choices xi ∈ [α, β]. Thus, 0-convex functions are non-negative and
1-convex functions are non-decreasing, while 2-convex functions are convex in the classical
sense. An n times differentiable is n-convex if and only if its n-derivative is non-negative
(see [10]).
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In our presentation, we will also need the following generalization of the Montgomery
identity given in [16].

Theorem 2. Let n ∈ N, φ : I → R be such that φ(n−1) is absolutely continuous, where I is an
open interval in R and α, β ∈ I, α < β. Then

φ(t) =
1

β− α

∫ β

α
φ(s)ds +

n−2

∑
k=0

φ(k+1)(α)

k!(k + 2)
(t− α)k+2

β− α
−

n−2

∑
k=0

φ(k+1)(β)

k!(k + 2)
(t− β)k+2

β− α
+

1
(n− 1)!

∫ β

α
Tn(t, s)φ(n)(s)ds, (8)

where

Tn(t, s) =


− (t−s)n

n(β−α)
+ t−α

β−α (t− s)n−1, α ≤ s ≤ t,

− (t−s)n

n(β−α)
+ t−β

β−α (t− s)n−1, t < s ≤ β.

(9)

For n = 1, the sums
n−2
∑

k=0
are empty and identity (8) reduces to the well-known Montgomery identity

φ(t) =
1

β− α

∫ β

α
φ(s)ds +

∫ β

α
P(t, s)φ′(s)ds,

where P(t, s) is the Peano kernel, which is defined by

P(t, s) =


s−α
β−α , α ≤ s ≤ t,

s−β
β−α , t < s ≤ β.

Hardy-type inequalities obtained by similar methods as in this paper were given
in [15,17–20]. We also draw attention to two papers [21,22] about Sherman’s inequality and
Montgomery identity.

2. Main Results

Throughout the paper, Gω, ω = 1, 2, 3, 4, will denote the following Green functions
defined on [α, β]× [α, β] with

G1(t, s) =

{
α− s , α ≤ s ≤ t;
α− t, t ≤ s ≤ β.

(10)

G2(t, s) =

{
t− β , α ≤ s ≤ t;
s− β, t ≤ s ≤ β.

(11)

G3(t, s) =

{
t− α , α ≤ s ≤ t;
s− α, t ≤ s ≤ β.

(12)

G4(t, s) =

{
β− s , α ≤ s ≤ t;
β− t, t ≤ s ≤ β.

(13)

Note that all these functions are continuous and convex with respect to the first variable.

Lemma 1. For φ ∈ C2([α, β]), the following identities hold

φ(t) = φ(α) + (t− α)φ′(β) +
∫ β

α
G1(t, s)φ′′(s)ds, (14)
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φ(t) = φ(β) + (t− β)φ′(α) +
∫ β

α
G2(t, s)φ′′(s)ds, (15)

φ(t) = φ(β) + (t− α)φ′(α)− (β− α)φ′(β) +
∫ β

α
G3(t, s)φ′′(s)ds, (16)

φ(t) = φ(α)− (β− t)φ′(β) + (β− α)φ′(α) +
∫ β

α
G4(t, s)φ′′(s)ds, (17)

where the functions Gω, ω = 1, . . . , 4, are defined by (10)–(13).

The next theorem gives our first main result.

Theorem 3. Let Ak be as in (4), ω ∈ {1, 2, 3, 4}, Gω as in (10)–(13) and u a weight function with
v given by (5). Then, the following statements are equivalent:

(i) For every continuous convex function φ : [α, β]→ R, we have∫
Ω1

φ(Ak f (x))u(x)dµ1(x) ≤
∫

Ω2

φ( f (y))v(y)dµ2(y) (18)

(ii) For each s ∈ [α, β], we have∫
Ω1

Gω(Ak f (x), s)u(x)dµ1(x) ≤
∫

Ω2

Gω( f (y), s)v(y)dµ2(y) (19)

Proof. (i) ⇒ (ii): The functions Gω(·, s), s ∈ [α, β]. ω = 1, 2, 3, 4, are continuous and
convex, and applying these functions to (18), we obtain (19).

(ii)⇒ (i): Let φ ∈ C2([α, β]). Identities (14)–(17) and some simple calculations yield∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

=
∫ β

α

∫
Ω2

Gω( f (y), s)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), s)u(x)dµ1(x)

φ′′(s)ds (20)

for ω = 1, 2, 3, 4. If, additionally, φ is convex, then φ′′(s) ≥ 0 for s ∈ [α, β]. Furthermore,
by assumption (19), the first factor under the integral on the right-hand side is also non-
negative. Therefore, the right-hand side of (20) is non-negative, so the left-hand side is as
well, i.e., (18) holds. Since each continuous convex function on a segment can be attained
as a uniform limit of C2 convex functions, the claim of the theorem follows.

In the next theorem, we will use the Montgomery identity to obtain general identities.
In turn, these identities will be used in derivation of Hardy-type inequalities.

Theorem 4. Let n ∈ N, n ≥ 4 and φ : I → R be such that φ(n−1) is absolutely continuous, where
I is an open interval in R and α, β ∈ I, α < β. Furthermore, let Ak be as in (4), ω ∈ {1, 2, 3, 4},
Gω as in (10)–(13), Tn as in (9) and u a weight function with v given by (5). Then
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(i)∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

=
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)


×

n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt

+
1

(n− 3)!

∫ β

α

∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

·
· T̃n−2(t, s)φ(n)(s)dsdt, (21)

where

T̃n−2(t, s) =


1

β−α

[
(t−s)n−2

n−2 + (t− α)(t− s)n−3
]

, α ≤ s ≤ t,

1
β−α

[
(t−s)n−2

n−2 + (t− β)(t− s)n−3
]

, t < s ≤ β.

(22)

(ii) ∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

=
1
2

φ′(β)− φ′(α)

β− α

∫
Ω2

v(y) f 2(y)dµ2(y)−
∫

Ω1

u(x)A2
k f (x)dµ1(x)


+
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

×
n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt

+
1

(n− 3)!

∫ β

α

∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

·
· Tn−2(t, s)φ(n)(s)dsdt. (23)

Proof.

(i) If we differentiate twice the Montgomery identity (8), we obtain

φ′′(t) =
n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)

+
1

(n− 3)!

∫ β

α
T̃n−2(t, s)φ(n)(s)ds. (24)

Inserting (24) in (20), we derive the first identity (21).
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(ii) Substituting φ with φ′′ and n with n− 2 in (8) gives

φ′′(t) =
1

β− α

∫ β

α
φ′′(t)dt +

n−4

∑
k=0

φ(k+3)(α)

k!(k + 2)
(t− α)k+2

β− α
−

n−4

∑
k=0

φ(k+3)(β)

k!(k + 2)
(t− β)k+2

β− α

+
1

(n− 3)!

∫ β

α
Tn−2(t, s)φ(n)(s)ds,

so

φ′′(t) =
φ′(β)− φ′(α)

β− α
+

n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)

+
1

(n− 3)!

∫ β

α
Tn−2(t, s)φ(n)(s)ds. (25)

Furthermore, Lemma 1 applied for φ(t) = 1
2 t2 shows that

∫ β

α
Gω(z, t)dt =

1
2

z2 + P(z, α, β)

for ω = 1, 2, 3, 4, where P is a linear polynomial in the variable z. This fact, after some
straightforward calculation, yields

∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

dt =

∫
Ω2

v(y)
f 2(y)

2
dµ2(y)−

∫
Ω1

u(x)
A2

k f (x)
2

dµ1(x) (26)

for ω = 1, 2, 3, 4. Finally, inserting (25) in (20) and taking into account (26) gives (23).

In the following theorem, new Hardy-type inequalities are derived from the above identities.

Theorem 5. Suppose that all the assumptions of Theorem 4 hold with the additional assumption
that n is even. If φ : I → R is n-convex, then:

(i) ∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

≥
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)


×

n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt, (27)
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(ii) ∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

≥ 1
2

φ′(β)− φ′(α)

β− α

∫
Ω2

v(y) f 2(y)dµ2(y)−
∫

Ω1

u(x)A2
k f (x)dµ1(x)


+
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

×
n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt. (28)

Proof. Since for each ω ∈ {1, 2, 3, 4} and t ∈ [α, β] the function Gω(·, s) is continuous and
convex, Theorem 1 yields∫

Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x) ≥ 0, for all t ∈ [α, β]. (29)

Furthermore, for even n, the function T̃n−2 given by (22) is obviously non-negative,
while the function Tn−2 is also non-negative since

Tn−2(t, s) =


(t−s)n−3

(β−α)

[
t− a− t−s

n
]
, α ≤ s ≤ t,

(s−t)n−3

(β−α)

[
β− t− s−t

n
]
, t < s ≤ β.

Furthermore, φ(n) ≥ 0 since φ is n-convex. Finally, from identities (21) and (23), due to
the positivity of φ(n), T̃n−2 and Tn−2 and inequality (29), we obtain inequalities (27) and
(28), respectively.

With additional convexity assumptions, the right-hand sides of inequalities (27) and (28)
can be further simplified.

Theorem 6. Suppose that all the assumptions of Theorem 5 hold and denote the functions

L1(z) =
∫ β

α
Gw(z, t)×

n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt (30)

and

L2(z) =
φ′(β)− φ′(α)

β− α

z2

2
+
∫ β

α
Gw(z, t)×

n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt. (31)

If φ is n-convex and L1 or L2 are convex, then∫
Ω1

φ(Ak f (x))u(x)dµ1(x) ≤
∫

Ω2

φ( f (y))v(y)dµ2(y).
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Proof. The right-hand side of inequality (27) can be rewritten as∫
Ω2

v(y)L1( f (y))dµ2(y)−
∫

Ω1

u(x)L1(Ak f (x))dµ1(x).

Since L1 is convex, by Theorem 1, the last expression is non-negative. Therefore, the stated
inequality follows from (27).

The claim for the function L2 follows from inequality (28) in an analogous way.

Remark 1. Differentiating twice the identities from Lemma 1, we can conclude

g′′(z) =
∂2

∂z2

∫ β

α
Gω(z, t)g′′(t)dt. (32)

Applying (32) for a function g such that

g′′(t) =
n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
(33)

we can conclude

L′′1 (z) =
∂2

∂z2

∫ β

α
Gω(z, t)g′′(t)dt = g′′(z).

Therefore, the convexity of the function L1 is equivalent to the non-negativity of the expres-
sion (33) for each t ∈ [α, β].

Similarly, taking also into account (26), one can show that the convexity of the function L2 is
equivalent to

φ′(β)− φ′(α)

β− α
+

n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
≥ 0

for each t ∈ [α, β].

3. Related Grüss and Ostrowski-Type Inequalities

Consider the Čebyšev functional

T(h, g) :=
1

β− α

∫ β

α
h(t)g(t)dt− 1

β− α

∫ β

α
h(t)dt · 1

β− α

∫ β

α
g(t)dt

for Lebesgue integrable functions h, g : [α, β] → R. The next two theorems from [23]
provide Grüss and Ostrowski-type inequalities involving the above functional.

Theorem 7. Let h, g : [α, β] → R be two absolutely continuous functions with (· − α)(β− ·)
(h′)2, (· − α)(β− ·)(g′)2 ∈ L([α, β]). Then

|T(h, g)| ≤ 1√
2
|T(h, h)|

1
2

1√
β− α

(∫ β

α
(s− α)(β− s)[g′(s)]2ds

) 1
2

. (34)

The constant 1√
2

is the best possible in (34).

Theorem 8. Assume that g : [α, β] → R is monotonic non-decreasing and h : [α, β] → R is
absolutely continuous with h′ ∈ L∞([α, β]). Then

|T(h, g)| ≤ 1
2(β− α)

∥∥h′
∥∥

∞

∫ β

α
(s− α)(β− s)dg(s). (35)
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The constant 1
2 is the best possible in (35).

To simplify notation, for ω ∈ {1, 2, 3, 4}, we introduce functions P1,ω, P2,ω : [α, β]→ R.
We assume that all the terms appearing in P1,ω and P2,ω satisfy the assumptions of
Theorem 4.

P1,w(s) =
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)


· T̃n−2(t, s)dt, (36)

P2,w(s) =
∫ β

α

∫
Ω2

Gω(φ( f (y), t))v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)


· Tn−2(t, s)dt, (37)

Theorem 9. Let n ∈ N, n ≥ 4, P1,ω and P2,ω be as in (36) and (37) and φ : [α, β] → R be such
that φ(n) is absolutely continuous with (· − α)(β− ·)(φ(n+1))2 ∈ L([α, β]). Then

(i) If (· − α)(β− ·)(P′1,ω)
2 ∈ L([α, β]), the remainder

κ1(φ; α, β) =
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

−
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)


×

n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt

− φ(n−1)(β)− φ(n−1)(α)

(n− 3)!(β− α)

∫ β

α
P1,ω(s)ds (38)

is bounded by

∣∣∣κ1(φ; α, β)
∣∣∣ ≤ √

β− α√
2(n− 3)!

|T(P1,ω, P1,ω)|
1
2

(∫ β

α
(s− α)(β− s)[φ(n+1)(s)]2ds

) 1
2

. (39)
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(ii) If (· − α)(β− ·)(P′2,ω)
2 ∈ L([α, β]), the remainder

κ2(φ; α, β) =
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

− 1
2

φ′(β)− φ′(α)

β− α

∫
Ω2

v(y) f 2(y)dµ2(y)−
∫

Ω1

u(x)A2
k f (x)dµ1(x)


−
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

×
n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt

− φ(n−1)(β)− φ(n−1)(α)

(n− 3)!(β− α)

∫ β

α
P2,ω(s)ds,

(40)

is bounded by

∣∣∣κ2(φ; α, β)
∣∣∣ ≤ √

β− α√
2(n− 3)!

|T(P2,ω, P2,ω)|
1
2

(∫ β

α
(s− α)(β− s)[φ(n+1)(s)]2ds

) 1
2

. (41)

Proof.

(i) From (21) and (38), we conclude

κ1(φ; α, β) =
1

(n− 3)!

∫ β

α
P1,ω(s)φ(n)(s)ds− φ(n−1)(β)− φ(n−1)(α)

(n− 3)!(β− α)

∫ β

α
P1,ω(s)ds. (42)

The assumptions of Theorem 7 are satisfied for h = P1,ω and g = φ(n), so∣∣∣∣ 1
β− α

∫ β

α
P1,ω(s)φ(n)(s)ds− 1

β− α

∫ β

α
P1,ω(s)ds · 1

β− α

∫ β

α
φ(n)(s)ds

∣∣∣∣
≤ 1√

2
|T(P1,ω, P1,ω)|

1
2

1√
β− α

(∫ β

α
(s− α)(β− s)[φ(n+1)(s)]2ds

) 1
2

. (43)

Therefore, from (42) and (43), we obtain (39).
(ii) Similarly as in part (i), we obtain (41).

Theorem 10. Let n ∈ N, n ≥ 4, P1,ω and P2,ω be as in (36) and (37) and φ : [α, β]→ R be such
that φ(n) is monotonic non-decreasing. Then

(i) If P1,ω is absolutely continuous with P′1,ω ∈ L∞([α, β]), then the remainder κ1(φ; α, β) given
by (38) is bounded by∣∣∣κ1(φ; α, β)
∣∣∣ ≤

‖P′1,ω‖∞

(n− 3)!

 (β− α)
(

φ(n−1)(β) + φ(n−1)(α)
)

2
−
{

φ(n−2)(β)− φ(n−2)(α)
}. (44)
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(ii) If P2,ω is absolutely continuous with P′2,ω ∈ L∞([α, β]), then the remainder κ2(φ; α, β) given
by (40) is bounded by∣∣∣κ2(φ; α, β)

∣∣∣
≤
‖P′2,ω‖∞

(n− 3)!

 (β− α)
(

φ(n−1)(β) + φ(n−1)(α)
)

2
−
{

φ(n−2)(β)− φ(n−2)(α)
}. (45)

Proof.

(i) Assumptions of Theorem 8 are satisfied for h = P1,ω and g = φ(n), so, taking into
account (42), we have∣∣∣∣ 1

β− α

∫ β

α
P1,ω(s)φ(n)(s)ds− 1

β− α

∫ β

α
P1,ω(s)ds · 1

β− α

∫ β

α
φ(n)(s)ds

∣∣∣∣
≤ 1

2(β− α)

∥∥P′1,ω
∥∥

∞

∫ β

α
(s− α)(β− s)φ(n+1)(s)ds. (46)

Simple calculation yields∫ β

α
(s− α)(β− s)φ(n+1)(s)ds =

∫ β

α
[2s− (α + β)]φ(n)(s)ds

= (β− α)
[
φ(n−1)(β) + φ(n−1)(α)

]
− 2
[
φ(n−2)(β)− φ(n−2)(α)

]
.

Finally, inserting the last expression in (46) and taking into account (42), we obtain
(44).

(i) Similarly as in part (i), we obtain (45).

The last theorem gives an Ostrowki-type bound for the generalized Hardy’s inequality.
The symbol ‖ · ‖p denotes the standard Lp([α, β]) norm of a function, i.e.,

‖ g ‖p=

(∫ β

α
|g(s)|pds

) 1
p

for 1 ≤ p < ∞, while ‖g‖∞ is the essential supremum of g.

Theorem 11. Let n ∈ N, n ≥ 4, P1,ω and P2,ω be as in (36) and (37), 1 ≤ p, q ≤ ∞,
1/p + 1/q = 1 and φ : [α, β]→ R be such that ‖φ(n)‖p < ∞. Then

(i) ∣∣∣∣∣
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

−
∫ β

α

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

×
n−1

∑
k=1

k
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt

∣∣∣∣∣
≤ 1

(n− 3)!

∥∥∥φ(n)
∥∥∥

p
‖P1,ω‖q.

The constant ‖P1,ω‖q/(n− 3)! is sharp when 1 < p ≤ ∞ and the best possible when p = 1.
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(ii) ∣∣∣∣∣
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

− 1
2

φ′(β)− φ′(α)

β− α

∫
Ω2

v(y) f 2(y)dµ2(y)−
∫

Ω1

u(x)A2
k f (x)dµ1(x)


−

∫
Ω2

Gω( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gω(Ak f (x), t)u(x)dµ1(x)

×
n−1

∑
k=3

k− 2
(k− 1)!

(
φ(k)(α)(t− α)k−1 − φ(k)(β)(t− β)k−1

β− α

)
dt

≤ 1
(n− 3)!

∥∥∥φ(n)
∥∥∥

p
‖P2,ω‖q

The constant ‖P2,ω‖q/(n− 3)! is sharp when 1 < p ≤ ∞ and the best possible when p = 1.

Proof. The proof is similar to the proof of Theorem 12 in [21].

4. Discussion

We have presented new results regarding Hardy’s inequality in a general setting. The
main results involve Hardy-type inequalities and four new Green functions. We were
motivated by the results given in papers [15–17]. These papers contain results involving the
Hardy inequality and Taylor’s formula and also results involving the Hardy inequality and
Abel–Gontscharoff’s interpolating polynomial. We have also derived related Grüss and
Ostrowski-type inequalities. In our next papers, we plan to present new results involving
Hardy’s inequality and Hermite’s and Lidstone’s interpolating polynomials. The results
presented here are of theoretical nature, and any suggestions for possible applications and
further research are welcome.
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21. Khan, M.A.; Khan, J.; Pečarić, J. Generaliztion of Sherman’s inequality by Montgomery identity and Green function. Electron. J.

Math. Anal. Appl. 2017, 5, 1–17 .
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