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Abstract
We propose and investigate a new bond-additive structural invariant as a measure
of peripherality in graphs. We first determine its extremal values and characterize
extremal trees and unicyclic graphs. Then we show how it can be efficiently computed
for large classes of chemically interesting graphs using a variant of the cut method
introduced by Klavžar, Gutman and Mohar. Explicit formulas are presented for sev-
eral classes of benzenoid graphs and Cartesian products. At the end we state several
conjectures and list some open problems.
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1 Introduction

Graphs serve as models of vast number of systems whose structure and function are
dependent on the connectivity pattern of their constituent elements. In order to distill
and condense the information contained in connectivity patterns of graphs, a huge
number of numerical quantities, variously known as structural invariants, topological
descriptors, or topological indices, have been proposed and studied over the course
of last decades. This phenomenon can be best observed in mathematical chemistry, in
particular in the so called chemical graph theory. There the initial success of several
simple invariants, such as the Wiener index [27] and the two Zagreb indices [11],
motivated subsequent introduction of hundreds, if not thousands, of topological indices
and their application to various chemically relevant problems [22]. Another field of
successful applications of structural invariants has been the rapidly developing study
of complex networks. It is interesting to observe how some invariants defined and
developed within the context of chemical graph theory appear under different guises
in complex networks. A nice example is the appearance of partial Wiener numbers
of chemical graph theory [6] as vertex transmissions in complex networks and use of
Harary index to measure global efficiency of transport networks [18].

There are many ways to define a topological index. Any procedure that produces a
numerical value independent on a particular vertex labeling will result in a topological
invariant. One could reasonably expect, though, that most such procedures will result
in indices that are not well suited for study of interesting graph properties. Indeed,
this expectation is amply empirically confirmed. Hence, one could conclude that the
invariants with clear and strong structural motivation will have the best chances for
successful applications.

It is reasonable to expect that interaction (if any) of two constituent elements (ver-
tices) will be affected by their distance in the graph. This motivates introduction and
study of a wide class of distance-based topological indices. Another important class
is based on local properties of vertices, in particular on their degrees [4,5,10]. Yet
another class of indices strives to capture some relevant properties of whole graphs
by summing contributions of individual vertices and/or edges. Such indices are called
vertex- and bond-additive indices, respectively [23–25].

In this paperwe propose and investigate a bond-additive index thatmeasures periph-
erality of individual bonds (i.e., edges) and then sums the contributions of all edges
and produces a global measure of peripherality of a given graph. The basic idea is that
an edge is peripheral if there are many more vertices closer to one of its end-vertices
than to the other one. The most extreme case is when one of the end-vertices is a leaf,
i.e., a vertex of degree one. Our proposed invariant refines in a quantitative way the
idea of peripherality of edges incident with leaves. It is a bit surprising that this quan-
tity has not been studied so far, given that its definition closely resembles definition
of a common measure of graph irregularity and involves quantities that also appear in
definitions of Wiener and Szeged indices.

In the next section we give the necessary definitions and place our invariant in
context of previous research. In Sect. 3 we determine extremal trees and unicyclic
graphs. Section 4 shows how Mostar index can be effectively computed for several
classes of interesting graphs using a variant of the cut method based on Djoković–
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Winkler relation �. Explicit formulas for various classes of benzenoid graphs and for
Cartesian products of partial cubes illustrate the power of that approach. Finally, the
last section states several conjectures, list some open problems, and indicates possible
directions of future research.

2 Definitions and preliminary results

We first give our notation. For a given graph G, its vertex set is denoted by V (G) and
its edge set by E(G). All graphs in this paper are simple and connected. The degree of
a vertex u ∈ V (G) is the number of its neighbors; we denote it by du . The complete
graph, the path, and the star on n vertices are denoted by Kn , Pn , and Sn , respectively,
while Tn denotes a generic tree on n vertices. Km,n denotes the complete bipartite
graph with parts of sizes m and n. For terms and concepts not defined here, we refer
the reader to any of classical monographs on graph theory such as, e.g., [12] or [26].

TheWiener index of a graph G is defined as the sum of all distances between pairs
of vertices of G. Hence,

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where d(u, v) denotes the usual shortest-path distance in G. For trees, W (G) can be
alternatively defined as

W (G) =
∑

uv∈E(G)

nunv,

where nu denotes the number of vertices of G closer to u than to v, and nv is defined
analogously. (That was, in fact, the original definition from Ref. [27]). For general
graphs, the two definitions do not coincide. However, the quantities nunv remain well
defined for all edges of G, and their sum

Sz (G) =
∑

uv∈E(G)

nunv

was first studied byGutman [8]. Later it became known as the Szeged index ofG. It has
enjoyed a huge popularity among researchers in chemical graph theory and became
one of discipline’s success stories [9], both due to its non-trivial relationship to other
topological invariants and to its intrinsic chemical interest.

Obviously, Szeged and Wiener indices coincide for trees. For graphs with cycles
one always has Sz (G) ≥ W (G), with equality if and only if each block of G is
complete. Among all graph on n vertices, the Szeged index attains its maximum value
for the balanced bipartite graph K�n/2�,�n/2�.

Szeged index belongs to the class of bond-additive indices. A general bond additive
index is computed as a sum over all edges e of edge contributions φ(e). In case of
Szeged index, φ(e) = nunv , where e = uv ∈ E(G) and nu, nv are defined above.
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There are many ways to define meaningful edge contributions, and there are many
bond-additive indices. Among the best known are, certainly, the first and the second
Zagreb indices [11], defined, respectively, by

M1(G) =
∑

uv∈E(G)

(du + dv) and M2(G) =
∑

uv∈E(G)

dudv.

For a general treatment of bond-additive indices we refer the reader to [23–25] and
references therein.

In theory, contributions φ(e) of edges can be defined in any way one chooses. In
practice, they are mostly given in terms of some simple functions of some quantitative
properties of the end-vertices of e. When φ(e) is defined in terms of difference of
some property of its end-vertices, then this contribution measures how much the end-
vertices are alike. (Often the difference is taken with its absolute value to make it
insensitive to the order of end-vertices.) For example, φ(e) = |du − dv| measures
how much the end-vertices differ in their degree. It is natural to think of the sum of
all such contributions over all e ∈ E(G) as a measure of how much G deviates from
regularity. Indeed, the quantity

irr(G) =
∑

uv∈E(G)

|du − dv|

has been for a long time known as the irregularity of G [2]. (See also [1] for a global
variant.)

But what if instead of their degrees we take some other quantitative property of end-
vertices of e and look at their difference? Such as, e.g., nu and nv? What (if anything)
would be measured or quantified by so defined invariant? If this quantity is small, or
even zero, it means that there are (almost) equally many vertices on both sides of e. If,
on the other hand, this difference is large, it means that most, if not all, vertices lie on
one side of e, and (almost) none on the other. Hence, a large value of φ(e) = |nu −nv|
seems to indicate a peripheral position of e in G.

It seems strange that no one has looked at this quantity given its simple definition and
its interpretation. (The only exceptions seem to be a fleetingmention of this quantity as
the transmission irregularity in a recent preprint concerned with transmission-based
topological indices [21] and a couple of papers concerned with distance-balanced
graphs, for which our invariant is equal to zero; see [13,14,17,19].) Is it, maybe,
because the peripherality in graphs is of no interest? Our answer is an emphatical no.
After all, various measures of centrality dominate the research of complex networks.
And anymeasure of peripherality could be also used tomeasure centrality, although the
relationship is by no means trivial. Peripherality is even more important in Chemistry.
It is exactly through their peripheral atoms and/or functional groups and through the
corresponding bonds that molecules interact with their surroundings. Hence, it is the
peripheral atoms, groups, and bonds that mostly determine their physico-chemical
properties. So, we believe that it would be of interest to have a well researched and
understood measure of a property that is important in several independent contexts.
To this aim, we introduce a new invariant and propose to call it theMostar index. The
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name is chosen to honor the place of a small tri-partite workshop held in the city of
Mostar in 2017 and attended by the authors. As “most” means “bridge” in both native
languages of the authors, Croatian andMacedonian, and also in many others, the name
also reflects the way of looking at the edge contributions: as there is no point crossing
a bridge to reach a place on the same shore, there is also no point traversing an edge
from one of its end-vertices to reach a vertex that is already on the same shore, i.e.,
closer to it than to the other end-vertex. Finally, it emphasizes the special role that
cut-edges, also called bridges, play in establishing some of our results.

The Mostar index of a graph G is defined as

Mo (G) =
∑

e=uv∈E(G)

|nu − nv|.

For the sake of simplicity, we will often work with contribution φ(e) of an edge e
defined as φ(e) = |nu − nv|. The following three observations are fundamental for
this measure.

Observation 1 φ(e) has maximum value n − 2, and it is attained if at least one of
end-vertices of e is a leaf.

Observation 2 Mo (G) ∈ O(n3) for a graph G on n vertices. Moreover, there are
graphs with Mo (G) ∈ �(n3).

The above claim follows easily from the fact that φ(e) ∈ O(n) and the number of
edges in the graph is O(n2). Notice that Mo (K�n/3�,�2n/3�) ∼ 2n3/27 ∈ �(n3).

Observation 3 If G is a vertex-transitive graph, then Mo (G) = 0.

By the above observation, we have Mo (Kn) = Mo (Cn) = Mo (Kn,n) = 0. Also
Mo (G) = 0 for graphs of all Platonic and Archimedean solids, among them for
all prisms and antiprisms, and also for the unique fullerene on 60 vertices with full
icosahedral symmetry (the buckyball).

Notice, however, that Mo (G) = 0 is possible even when G is not vertex-transitive.
As an example, take C10 and blow-up every second vertex of it into a 3-cycle. More
generally, graphs with Mo (G) = 0 are exactly the distance-balanced graphs intro-
duced in [14]. A graph G is distance-balanced if for every edge uv the number of
vertices closer to u than to v is equal to the number of vertices closer to v than to u.
Such graphs seem to be well-researched; see, for example, [14] for their basic prop-
erties and some open problems. Further, their symmetry properties were investigated
in [17], and an interesting connection with Szeged index was explored in [13]. See
also [19] for some generalizations. Distance-balanced graphs of even order are also
known as equal opportunity graphs; see [3] for more details. Hence, the Mostar index
measures how far is a graph from being distance-balanced and can be thought of as a
quantitative refinement of the distance-non-balancedness of a graph.

We close this section by proving an auxiliary result on a transformation resulting
in strictly increased value of Mo (G). The transformation is called the bridge-to-leaf
transformation and illustrated in Fig. 1.
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Fig. 1 The bridge-to-leaf transformation

Let G be a connected graph. A set C ⊆ E(G) is called an edge-cut if removing
the edges of C from G results in a disconnected graph. An edge-cut consisting of one
edge is called a cut-edge or a bridge. A bridge e is trivial if one of components of
G − e is a single vertex.

Proposition 4 Let e = uv be a non-trivial bridge in G. Let G ′ be the graph obtained
from G by deleting e from G, identifying u and v into a new vertex w and adding a
leaf z connected to w. Let the edge connecting w and z in G ′ be again denoted by e.
Then

Mo (G ′) > Mo (G).

Proof Observe that after the modification of the graph, for every edge f , distinct from
e, the contribution φ( f ) stays unchanged. For edge e, we have that φG(e) ≤ n − 3 as
e is a non-leaf in G, and φG ′(e) = n−2 as it is a leaf in G ′. Thus, Mo (G ′) > Mo (G).
�

3 Extremal trees and unicyclic graphs

In this section we determine extremal graphs and the corresponding values of Mostar
index over trees and unicyclic graphs on a given number of vertices. The case of trees
is simpler and we treat it first.

3.1 Trees

It is intuitively clear and it follows easily from the fact that φ(e) is maximized for
edges incident with leaves, that for any tree Tn on n vertices we have

Mo (Tn) ≤ (n − 1)(n − 2) = Mo (Sn),

with equality if and only if Tn = Sn . It is also clear that the next largest value,
(n − 2)2 + n − 4 is achieved for (and only for) the broom B3,n−3 obtained by taking
a path on 3 vertices and attaching n − 3 leaves to one of its ends. As expected, the
smallest value is achieved for paths.
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Fig. 2 Mostar index decreasing
transformation on trees

Theorem 5 Let Tn be a tree on n vertices. Then

Mo (Pn) =
⌊

(n − 1)2

2

⌋
≤ Mo (Tn) ≤ (n − 1)(n − 2) = Mo (Sn),

with the left and the right inequality achieved if and only if Tn = Pn and Tn = Sn,
respectively.

Proof First, observe that formula Mo (Pn) = 2
⌊ n
2

⌋ ⌊ n−1
2

⌋ =
⌊

(n−1)2

2

⌋
is readily

verified by direct computation. The claim of the theorem obviously holds for n = 2,
so suppose that n ≥ 3. As we have already settled the upper bound, let us look at the
lower one. We have to show that the lower bound is achieved for, and only for, path on
n vertices. Let Tn be a tree on n ≥ 3 vertices that is not a path. Then it has a vertex w

of degree at least 3 such that at least two of components of Tn − w are paths. Let their
lengths be k and m, where 1 ≤ k ≤ m. The situation is shown in Fig. 2. Let T ′

n be the
tree obtained from Tn by detaching uk from the end of the shorter path and attaching
it as a leaf at vm , at the end-vertex of the longer path. Now consider the difference
M(Tn) − M(T ′

n). We have

M(Tn) − M(T ′
n) = (n − 2k) + (n − 2(k − 1)) + · · · + (n − 2) + (n − 2m)

+ · · · + (n − 2) − (n − 2(k − 1)) − · · · − (n − 2)

− (n − 2(m + 1)) − (n − 2m) − · · · − (n − 2)

= n − 2k − (n − 2(m + 1))

= 2m − 2k + 2,

which is always positive. Hence the described transformation strictly decreases the
value of Mostar index. Notice that a tree always has a branching vertex w unless it is a
path. So applying above operation over and over we must end at Pn as the graph with
the smallest Mostar index. �

3.2 Unicyclic graphs

Unicyclic graphs on n vertices consist of a cycle Ck of length k ≥ 3 and n− k vertices
in trees that are “planted” in vertices of the cycle. Let us denote by Sn,k the cycle
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Fig. 3 Extremal unicyclic graphs for Mostar index

of length k with remaining n − k vertices all attached as leaves to the same vertex
of the cycle. Graphs Sn,3 and Sn,4 are shown in Fig. 3. It will turn out that these
two graphs are extremal for the Mostar index. It is not very surprising in view of the
fact that large contributions of edges incident to leaves penalize longer cycles, thus
promoting unicyclic graphs with the shortest possible cycle C3 as natural candidates
for extremal graphs. However, odd cycles are also penalized by existence of edges
whose contribution is zero. The two effects cancel for n = 8.

Theorem 6 Let Un be a unicyclic graph on n ≥ 3 vertices. Then

0 = Mo (Cn) ≤ Mo (Un) ≤ Mo (Sn,k),

where k = 3 for 3 ≤ n ≤ 8 and k = 4 for k ≥ 8. The lower bound is achieved if and
only if Un = Cn.

Proof Since Cn is a vertex-transitive graph, Mo (Cn) = 0 for all n ≥ 3. Any unicyclic
graph different from Cn must have at least one leaf; since its contribution is equal to
n − 2, it follows Mo (Un) ≥ n − 2 for all Un �= Cn . Hence the cycle is the unique
unicyclic graph achieving the lower bound of zero.

Let us now look at the upper bound. Let Un be a unicyclic graph achieving the
maximum value of Mostar index. It contains a cycle Ck for some k ≥ 3. We may
assume, due to Proposition 4, that all its vertices not lying on the unique cycle Ck , are
leaves. (If there were edges between two non-leaves, each of them would be a bridge,
and by performing the bridge-to-leave transformation of Proposition 4we could obtain
a unicyclic graph U ′

n with larger value of Mostar index, a contradiction.)
So, we have m = n − k leaves incident to the same number of edges, each of them

contributing n − 2 to the Mostar index. We have to find the arrangement of the leaves
that maximizes collective contribution of the edges of Ck .

Let the unique cycle of Un be Ck = v0v1 · · · vk−1. Let ci be the number of leaves
attached at vi . Now, we consider two cases with respect to the parity of k and show
that all leaves must be adjacent to a same vertex of the cycle.

Suppose first k is even, say k = 2l. Notice that for any index i , it holds

φ(vivi+1) = |ci+1 + ci+2 + · · · + ci+l − ci+l+1 − ci+l+2 − · · · − ci | ≤ m.

Notice that this contribution attains its maximum value m if all the m leaves are either
attached at vertices of the segment vi+1vi+2 · · · vi+l of C or at vertices of the segment
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vi+l+1vi+l+2 · · · vi of C . Now it is easy to see that in order to assure that this holds
for every i , it must hold that all m leaves are attached to a same vertex from the cycle.

Now suppose that k is odd, say k = 2l + 1. Notice that for any index i , it holds

φ(vivi+1) = |ci+1 + ci+2 + · · · + ci+l − ci+l+2 − ci+l+3 − · · · − ci | ≤ m − ci+l+1.

By adding all these inequalities we obtain

∑

i

φ(vivi+1) ≤ (k − 1)m. (1)

We obtain equality in (1) if and only if φ(vivi+1) = m − ci+l+1 for every i . For a
particular i , this is attained, if all the m leaves are either attached at vertices of the
segment vi+1vi+2 · · · vi+l of C or at vertices of the segment vi+l+2vi+l+3 · · · vi of C .
Now again it easy to see that in order to assure that this holds for every i , it must hold
that all m leaves are attached to a same vertex from the cycle.

By above, Un is a graph on n = k + m vertices comprised of a cycle of length k
with attached m leaves at one particular point of this cycle. If k is even, then

Mo (Un) = m(n − 2) + km = m(k + n − 2) = n2 − 2n − k2 + 2k ≤ n2 − 2n − 8

and the upper bound is attained for k = 4. And, if k is odd, then

Mo (Un) = m(n − 2) + (k − 1)m = m(n + k − 3) = n2 − 3n − k2 + 3k ≤ n2 − 3n,

and the upper bound is attained for k = 3. Comparing these upper bounds we conclude
the statement. Observe that for n = 8 the two upper bounds coincide. �

4 Cut method

In this sectionwe showhowMostar index can be efficiently computed formany classes
of graphs using a variant of the so-called cut method, introduced back in 1995 by
Klavžar, Gutman andMohar [15]. It was first used to derive closed formulas forWiener
indices of various classes of benzenoid graphs. Indeed, benzenoid graphs are well
suited for application of this method since they are partial cubes and their orthogonal
cuts coincide with equivalence classes of Djoković–Winkler relation� [7,28]. Hence,
wewill also demonstrate the cut-method on benzenoid graphs. For a very useful survey
we refer the reader to [16].

4.1 Benzenoid graphs

Recall that benzenoid graphs canbe thought of as parts of an infinite lattice of congruent
regular hexagons bounded by a simple closed cycle in the lattice. This definition is
somewhat restrictive, but it will suffice for the purpose of demonstration of the cut
method. Let us take a benzenoid graph, for example the coronene shown in Fig. 4,
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Fig. 4 Coronene and its three
families of orthogonal cuts

and draw it in the plane so that some edges are vertical. Obviously, all vertical edges
in the same row of hexagons form an edge-cut. Since all of them are intersected at
the right angle by a line orthogonal to one of them, we call such a cut orthogonal
cut. The number of edges in an orthogonal cut is its size, and the two components
obtained by removing edges of an orthogonal edge-cut are its shores. An orthogonal
cut is balanced if its shores have the same number of vertices. The coronene shown
in Fig. 4 has three families of orthogonal cuts, indicated in Fig. 4 by three types of
horizontal, ascending, and descending lines intersecting them, respectively.

Following results are immediate consequences of the coincidence of orthogonal
cuts with Djoković–Winkler classes in benzenoid graphs.

Proposition 7 Let e1 and e2 be two edges of the same orthogonal cut of a benzenoid
graph B. Then their contributions to Mo (B) are equal, i.e., φ(e1) = φ(e2).

Proof Recall that two edges e = xy and f = uv of G are in Djoković–Winkler
relation if and only if

d(x, u) + d(y, v) �= d(x, v) + d(y, u).

It is clear that for every edge e in an orthogonal cut all vertices in one shore of an
orthogonal cut (and only those vertices) are closer to the end-vertex of e belonging
to the same shore than to the other one. Hence all edges of the same orthogonal cut
contribute equally to Mo (B). �
Corollary 8 Let F ⊂ E(B) be an orthogonal cut of a benzenoid graph B of size p.
If the shores of F have n1 and n2 vertices, respectively, then the total contribution of
edges from F to Mo (B) is equal to p|n1 − n2|.
Corollary 9 Balanced orthogonal cuts contribute zero to theMostar index of benzenoid
graphs.

Now we can formulate a general result for Mostar index of benzenoid graphs.

Theorem 10 Let B be a benzenoid graph on n vertices and let F1, . . . , Fq be all its
orthogonal cuts. Let pi denote the size of Fi , and ni1 and ni2 the number of vertices
in its shores. Then

Mo (B) =
q∑

i=1

pi |ni1 − ni2 |.
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Fig. 5 Polyacene (left) and zig-zag fibonacene (right) of length 7

Since the coronene has six different contributing orthogonal cuts (along with three
balanced ones), and since each of themhas 3 edges, each edge contributing 19−5 = 14
to its Mostar index, we obtain 6 · 3 · 14 = 252 as the value of Mostar index of the
coronene.

The cut-method allows us to derive closed formulas for Mostar indices of series of
benzenoid graphs of sufficiently high symmetry. We will start, however, with some
simpler examples. For the beginning, we compute theMostar index for two benzenoid
chains, a linear polyacene Aq and a zig-zag fibonacene Zq of the same length q. The
chains and their orthogonal cuts are shown in Fig. 5.

Proposition 11 Let Aq be linear polyacene of length q. Then

Mo (Aq) = 32
⌊q
2

⌋ ⌈q
2

⌉
.

Proof There are three families of orthogonal cuts. The only member of the horizontal
family is balanced and contributes zero. The other two families have equal contribu-
tions and it suffices to consider one of them. Let us look at the ascending cuts. There are
q of them, each one constituting of 2 edges. Each edge of the leftmost cut contributes
4q + 2− 3− 3 = 4(q − 1). Each following cut increases by 4 the number of vertices
on its left hand side and decreases by 4 the number of vertices on its right-hand side.
Hence, the contribution of an edge in kth ascending cut is given by 4(q − 2k + 1).
Depending on parity of q, the contributions will either hit 0 for an odd q, or skip it by
switching from 4 to −4 for an even q, and then become negative with the same trend.
Since we are interested only in their absolute value, we may just double the sum of
all contributions for 1 ≤ k ≤ ⌊ q

2

⌋
instead of summing over all 1 ≤ k ≤ q. Hence the

total contribution of all ascending cuts is given by

2 · 2 ·
�q/2�∑

k=1

4(q − 2k + 1) = 16

⎛

⎝(q + 1)
⌊q
2

⌋
− 2

�q/2�∑

k=1

k

⎞

⎠

= 16
⌊q
2

⌋ (
q + 1 − �q

2
� − 1

)
= 16

⌊q
2

⌋⌈q
2

⌉
.

The claim now follows by doubling the result in order to account also for the contri-
butions of descending cuts. �

Alternatively, we may express Mo (Aq) of linear polyacenes as Mo (Aq) = 8q2 for
even q and Mo (Aq) = 8(q2 − 1) for odd q.
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Table 1 The values of Mostar
index for the first eight zig-zag
fibonacenes and their second
differences

q 1 2 3 4 5 6 7 8

Mo (Zq ) 0 32 88 160 256 368 504 656

�2 24 16 24 16 24 16

Fig. 6 Benzenoid parallelogram
Bp,q and its three families of
orthogonal cuts

Proposition 12 Let Zq be the zig-zag fibonacene of length q. Then

Mo (Zq) = 10q2 + 4q − 15 − (−1)q .

Proof Wecould proceed in the sameway as in the previous example, but the things here
depend on the parity of q in a more complicated way. Instead of analyzing different
cases, we notice that both the number of orthogonal cuts and their contributions are
linear functions of q. Hence, Mo (Zq) will be quadratic in q (and in the number
of vertices, since it is equal to 4q + 2). By computing the second differences of
the sequence of Mo (Zq) for 1 ≤ n ≤ 8, (shown in Table 1) we observe that they
alternate between 24 and 16, depending, as expected, on parity of q. Hence we have
two quadratic polynomials giving the values for Mo (Zq) for even and odd q; by
fitting the tabulated values, we obtain Mo (Zq) = 10q2 + 4q − 14 for odd q and
Mo (Zq) = 10q2 + 4q − 16 for even q. �

As amore complicated example, consider the benzenoid parallelogram Bp,q shown
in Fig. 6.

Theorem 13

Mo (Bp,q) = 4

[
(p + 1)2

(⌊q
2

⌋ ⌈q
2

⌉
+

⌊
q − p + 1

2

⌋ ⌈
q − p + 1

2

⌉)

+ (q + 1)2
⌊ p

2

⌋ ⌈ p

2

⌉]

+ 2(p − 1)(p + 2)

[
pq + p + q −

(
p + 1

2

)]
.

Proof Due to symmetry, it suffices to consider the case p ≤ q. We start by observing
that Bp,q has 2(pq+ p+q) vertices arranged into p+1 rows. There are three families
of cuts. For two of them, the horizontal and the ascending ones, we can apply the same
reasoning, while the descending ones require different treatment. We look first at the
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horizontal cuts. Each of them consists of q + 1 vertical edges. Let us look at the
horizontal cut containing all vertical edges in kth row. Its total contribution is given
by 2(q + 1)2|p + 1− 2k|, and the total contribution of all horizontal cuts is obtained
by summing over all 1 ≤ k ≤ p as

V = 4(q + 1)2
⌊ p

2

⌋ ⌈ p

2

⌉
.

The total contribution of all ascending cuts is obtained by switching the roles of p and
q,

U = 4(p + 1)2
⌊q
2

⌋ ⌈q
2

⌉
.

Let us now look at the descending cuts. There are 2(p−1)+q− p+1 = p+q−1 of
them.We look at the leftmost p−1 cuts first. Let their total contribution be denoted by
S1. The number of edges in them increases by one from 2 in the leftmost one to p in the
rightmost one. Hence, the kth cut contains k + 1 edges. The number of vertices on the
left-hand side of the kth cut is equal to 3+5+· · ·+2k+1 = (k+1)2−1 = k(k+2), and
contribution of each edge is obtained by subtracting 2k(k + 2) from the total number
of vertices. By summing over all 1 ≤ q ≤ p − 1 we obtain the total contribution of
the first p − 1 descending cuts as

S1 =
p−1∑

k=1

(k + 1) |2(pq + p + q) − 2k(k + 2)|

= (p − 1)(p + 2)

[
pq + p + q −

(
p + 1

2

)]
.

Now we look at the q − p + 1 descending cuts of the same length p + 1. They are, in
fact, the horizontal cuts in Bp,q−p+1 obtained by discarding the hexagons affected by
the cuts contributing to S1 and their symmetric counterparts in the upper right corner,
and rotating the remaining figure counterclockwise by π/3. Hence, their contribution
is given by

S2 = 4(p + 1)2
⌊
q − p + 1

2

⌋ ⌈
q − p + 1

2

⌉
.

The claim now follows by expressing the total contribution of the descending cuts as
S = 2S1 + S2 and Mo (Bp,q) = V +U + S. �

Note that for p = 1 we recover the formula for the Mostar index of a linear
polyacene Aq of length q.

As our final benzenoid example, we consider the circumcoronene series whose first
three members are shown in Fig. 7. In general, Hm has 6m2 vertices and 6(m − 1)
unbalanced orthogonal cuts besides 3 balanced ones.

123

Author's personal copy



3008 Journal of Mathematical Chemistry (2018) 56:2995–3013

Fig. 7 The first three members in circumcoronene series

Theorem 14

Mo (Hm) = 9m2(m − 1)(3m + 1).

Proof Due to symmetry, it suffices to consider m − 1 horizontal cuts affecting the
upper half of Hm . If we denote the uppermost orthogonal cut as the first, then the
number of edges in the kth cut is equal to m + k, with the contribution of each edge
given as 6m2 −4km−2k2. The claim now follows by summing all contributions from
1 to m − 1 and multiplying the result by 6:

Mo (Hm) = 6
m−1∑

k=1

(m + k)(6m2 − 4km − 2k2) = 9m2(m − 1)(3m + 1).

�
The cut-method can be successfully applied also to non-benzenoid graphs whose

orthogonal cuts are easy to find. As an example, we compute the Mostar index of a
rectangular grid graph Rm,n obtained as the Cartesian product of two paths on m and
n vertices, respectively.

Theorem 15

Mo (Rm,n) = m2
⌊

(n − 1)2

2

⌋
+ n2

⌊
(m − 1)2

2

⌋
.

4.2 Cartesian products

The Cartesian product G�H of two graphs G and H is defined as the graph on the
vertex set that is the Cartesian product of vertex sets of G and H , with the edge set
consisting of pairs (u, v)(u′, v′) where either u = u′ and vv′ ∈ E(H), or v = v′ and
uu′ ∈ E(G). The last result of the previous subsection can be now reformulated as

Mo (Pm�Pn) = m2Mo (Pm) + n2Mo (Pn).
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Fig. 8 Computing Mostar index of G�Pn

This is not accidental; it can be shown that results of this type are valid for Cartesian
products of partial cubes. (A partial cube is a graph that is an isometric subgraph of a
hypercube. See [16] for a more thorough treatment. We just mention here that partial
cubes encompass all trees, even cycles, benzenoid graphs, phenylenes, hence many
graphs of chemical interest. Also, Cartesian products of partial cubes are again partial
cubes.) We illustrate the claim on the case of G�Pn shown in Fig. 8.

Proposition 16 Let G be a partial cube. Then

Mo (G�Pn) = |V (G)|2Mo (Pn) + n2Mo (G).

Proof Look at the situation shown in Fig. 8. There are two kinds of orthogonal cuts.
One kind, denoted by F in Fig. 8, cuts across the edges between different copies of G.
There are |V (G)| edges in one such cut, and their contributions are given in terms of
multiples of |V (G)|. By summing over all such cuts and factoring out |V (G)| twice,
one is left with Mo (Pn), hence the total contribution of all cuts of this type accounts
for the first term on the right-hand side of the stated formula.

The other kind of cuts is generated by cuts in G. Let C be one such cut consisting
of k edges. Then C�Pn is an orthogonal cut in the whole graph. It has nk edges, and
its total contribution is obtained by multiplying by n the total contribution of C to
Mo (G), since there are n copies of the corresponding shore ofG on each of its shores.
This gives the total contribution of all such cuts as n2Mo (G), and the claim follows.

�
By completely analogous reasoning one could prove the corresponding result for

Cartesian product of general partial cubes. We leave out the details.

Theorem 17 Let G and H be two partial cubes. Then

Mo (G�H) = |V (G)|2Mo (H) + |V (H)|2Mo (G).

5 Open problems and concluding remarks

Wehave introduced and investigated a newgraph-theoretic invariant, theMostar index,
with aim of quantifying the idea of edge peripherality andmeasuring the graph content
of peripheral edges.After introducing some transformations that increase anddecrease,
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Fig. 9 The conjectured extremal bicyclic graphs

respectively, the value of Mostar index for graphs on the same number of vertices,
we have managed to determine the extremal values and graphs for trees and unicyclic
graphs. Thenwe have demonstrated howMostar index of benzenoids can be efficiently
computed by use of a variant of the cut-method applied before to computing various
Wiener index-related invariants and showed that the method can be extended to wider
classes of graphs. In particular, we have obtained explicit formulas for Cartesian
products of partial cubes. There are, however, still many open problems. We start
with the case of bicyclic graphs.

5.1 Bicyclic graphs

Let Cn,2 be the graph obtained from Cn−1 by duplicating just one of it vertices (this
new vertex has the same neighbors as it original one). Let Ca

n be the graph obtained
by identifying the central vertex of the star Sn−6 with a vertex of two 4-cycles. Let Cb

n
be the graph obtained by identifying the central vertex of the star Sn−4 with a 2-vertex
of a copy of K2,3. Note that both graphs Ca

n and Cb
n have n vertices (Fig. 9).

Conjecture 18 Among all bicyclic graphs on a sufficiently large number of vertices n,
Cn,2 has the smallest and Ca

n and Cb
n have the largest Mostar index.

It is easy to see that the bicyclic graphs with the smallest possible value of Mostar
index cannot contain bridges. Hence, such a graph must be either a splice of two
cycles (i.e., a graph obtained by taking two cycles Ca and Cb with a + b = n + 1
and identifying one vertex from the first one with one vertex of the second one), or
a �-graph �(a, b, c) with a + b + c = n + 2, where by �(a, b, c) we denote the
graph obtained by taking two vertices and connecting them by three paths of lengths
a, b, and c that do not have other vertices in common. Numerical evidence for small
n seems to rule out the first option and to favor �(n − 2, 2, 2) = Cn,2 as the optimal
choice with Mo (Cn,2) = n.

On the other hand, all bridges of a bicyclic graph with the largest value of Mostar
index must be incident with leaves. That again means that the two cycles must be
either spliced at a single vertex or form a�-graph. After some irregularity for small n,
numerical evidence suggests both Ca

n and Cb
n as the graphs attaining the largest value

of Mostar index with Mo (Ca
n ) = Mo (Cb

n ) = n2 − n − 18. We have not, however,
worked out all details.
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Fig. 10 Split graph Sa,b

Besides the extremal bicyclic graphs, there are also other interesting questions.
With some of them we close the paper.

5.2 Conjectures and open problems

For the beginning, it would be interesting to investigate how the results of papers
concerned with distance-balanced graphs extend to the case Mo (G) �= 0.

Wehave alreadymentioned thatMo (K�n/3�,�2n/3�) ∼ 2n3/27 ∈ �(n3).Webelieve
that this is the extremal graph among all bipartite graphs on the same number of
vertices.

Conjecture 19 Among bipartite graphs on n vertices Kn/3,2n/3 has the maximal
Mostar index.

For general graphs, the extremal graph is most likely the split graph with the same
parameters. The split graph Sm,n is obtained by taking a complete graph Km on m
vertices and n isolated vertices Kn and connecting every isolated vertex to all vertices
of Km . A split graph is a join of a complete graph and the complement of another
complete graph.

Conjecture 20 Among all graphs on n vertices the split graph Sn/3,2n/3 has the max-
imal Mostar index.

In order to see that the above two conjectures are at least asymptotically valid, it
suffices to consider the case of split graph Sa,b shown in Fig. 10. The edges of Ka

contribute zero to Mo (Sa,b), while each of ab edges between Ka and Kb contributes
b − 1. Since a = n − b, we have Mo (Sa,b) = Mo (b) = b(b − 1)(n − b). By
considering the continuous relaxation and solving the quadratic equation dMo(b)

db , one
readily obtains bmax ∼ 2n

3 .
We have not investigated how different restrictions (e.g., on the degree, diameter,

etc.) affect the extremal graphs for Mostar index. Of particular interest would be to
understand behavior of chemically most relevant graphs and trees, those with degree
at most four.
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Problem 21 Find chemical graphs and chemical trees onn verticeswith largestMostar
index.

Mostar index of all benzenoid graphs is quadratic in the number of vertices. It is not
clear, however, what are the extremal benzenoids. We are inclined to believe that, at
least asymptotically, large circumcoronene have the smallest Mostar index among all
benzenoids on the same number of vertices. Potential candidates for the largest values
could include various fully-leafed and/or snowflake-shaped benzenoids.

Problem 22 Find extremal benzenoid chains, catacondensed benzenoids and general
benzenoid graphs with respect to the Mostar index.

Our final open problem is concerned with fullerenes. It is well known that the
dodecahedron and the buckminsterfullerene are the only twovertex-transitive fullerene
graphs. Hence, Mo (C20) = Mo (C60 : Ih) = 0.

Problem 23 Are there other fullerene graphs G such that Mo (G) = 0? What are the
extremal values and the corresponding graphs?
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