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Abstract.  The Ritz method is known as very successful strategy for discretizing continuous problems, but it 

has never been used for solving systems of algebraic equations. The Iterated Ritz Method (IRM) is a novel 

iterative solver based on the discretized Ritz procedure applied at each iteration step. With an appropriate 

choice of coordinate vectors, the method may be efficient in linear, nonlinear and optimization problems. 

Additionally, some iterative methods can be explained as special cases of this approach, which helps to 

understand advantages and limitations of these methods and gives motivation for their improvement in sense 

of IRM. In this paper, some ideas for generation of efficient coordinate vectors are presented. The algorithm 

was developed and tested independently and then implemented into the open source program FEAP. Method 

has been successfully applied to displacement based (even ill-conditioned) models of structural engineering 

practice. With this original approach, a new iterative solution strategy has been opened. 

 

Keywords:  iterative methods; conjugate gradients; successive over-relaxation; preconditioning; 

Iterated Ritz Method 

 

 
1. Introduction 
 

Iterative solution methods are good alternative to direct solution strategies, especially for the 

extremely large, sparse, even not directly accessible system matrix. Diagonal dominance is 

preferable. It is possible to check intermediate results (at each step if needed) and use weaker 

stopping criterion to quickly obtain rough solution estimate. This is important for the preliminary 

product design phase, when many variants are analyzed until good final decision is made. After 

that, stronger criterion is applied, but solver may be started from the preliminary phase solution, 

not from the usually bad initial guess (commonly zero vector). Generally, available data about 

model or solution may be utilized. For example, if problem is slightly asymmetric, it is preferable 

to start from the symmetric solution, if possible. Furthermore, different compact matrix storages 

are easily adopted, because initial sparsity is retained during solution process. Finally, iterative 

                                                      

Corresponding author, Full Professor, E-mail: damir@grad.hr 
aProfessor Emeritus, E-mail: dvornik@grad.hr 
bAssistant Professor, E-mail: uros@grad.hr & msavor@grad.hr 



 

 

 

 

 

 

Josip Dvornik, Damir Lazarevic, Mario Uros and Marta Savor Novak 

methods are successfully applied in the nonlinear (optimization) fields, because such problems 

should be solved iteratively by definition. The main drawback is direct manipulation with the 

right-hand side vector, so every loading condition should be separately solved. Additionally, 

number of steps is not known in advance and user should be able to change some input parameters 

if process has trouble converging. Generally, overall reliability of iterative methods is not 

guaranteed.  

A linear equations system 

𝐊 𝐮 = 𝐟 (1) 

is given. Matrix K is symmetric and positive definite (SPD) of order n. If Eq. (1) represents a 

linearized displacement-based model of elastic body, K is the stiffness matrix, u and f are the 

displacement and the load vector, respectively. The solution of Eq. (1) is equivalent to 

minimization of the total potential energy (quadratic form) 

𝐺(𝐮) =
1

2
 𝐮T𝐊 𝐮 − 𝐮T𝐟 (2) 

Essentially, G is the discrete approximation of the Lagrange energy functional on the 

continuous model. The function 𝐺 = 𝐺0, where 𝐺0 is a constant, is the contour hypersurface of 

second degree in 𝑛-dimensional Euclidean space defined by 𝐮. For the SPD matrix this surface 

must be a hyper-ellipsoid. The point in the space where G reaches minimum lies in the center of 

ellipsoids. This is the solution point of Eq. (1). It can be considered as a degenerate ellipsoid, 

where all main axes vanish. Numerically, depending on the criterion adopted, it is however a very 

small ellipsoid with the energy level just a little higher than the minimum one. 

 

 

2. Approximate solution 
 

An approximate solution of Eq. (1) is based on an expansion of 𝐮 by discretized Ritz method 

𝐮 = ∑

𝑚

𝑖=1

𝑎𝑖𝛗𝑖 (3) 

In the standard approach, 𝛗𝑖  and 𝑎𝑖  are known as (linearly independent) Ritz vectors and 

coefficients, respectively. The number of vectors 𝑚  must satisfy the inequality: 1 ≤ 𝑚 ≤  𝑛 . 

Formula (3) can be expressed as (Ibrahimbegovic and Wilson 1990a, Ibrahimbegovic et al. 1990) 

𝐮 = 𝚽𝐚 (4) 

where 𝚽 = [𝛗1 𝛗2 ⋯  𝛗𝑚] and 𝐚 = [𝑎1 𝑎2 ⋯ 𝑎𝑚 ]T. After substituting Eq. (4) in Eq. 

(2), G is expressed as function of 𝐚 only 

𝐺(𝐮) ≈ 𝐺(𝐚) =
1

2
𝐚T𝚽T𝐊𝚽𝐚 − 𝐚T𝚽T𝐟 (5) 

The products  𝚽T𝐊𝚽 and 𝚽T𝐟 are new (SPD) generalized (Ritz) stiffness matrix �̅� and right-

hand side vector 𝐟,̅ both of order 𝑚. Now, the energy can be shortly written as 

𝐺(𝐚) =
1

2
𝐚T�̅� 𝐚 − 𝐚T𝐟 ̅ (6) 
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After minimization the system of 𝑚 linear equations 

�̅� 𝐚 = 𝐟 ̅ (7) 

is obtained. Once Eq. (7) is solved, the original unknowns are recovered from Eq. (4). This is only 

an approximate solution (because Eq. (3) is usually not exact expansion) and iterative 

improvement is needed. The procedure leads to gradient class solution method that combines 

iterative and direct solution strategies. 

 

 

3. Iterative improvement 
 

Iterative process is usually defined by 

𝐮(𝑖+1) = 𝐮(𝑖) + ∆𝐮(𝑖), (8) 

where now the solution increment ∆𝐮(𝑖) is approximated (Dvornik 1979, Lazarevic and Dvornik 

2017) in the sense of Eq. (4) 

∆𝐮(𝑖) = 𝚽(𝑖)𝐚(𝑖) (9) 

According to Eq. (2) the energy in the current iteration is 

𝐺(𝐮(𝑖)) =
1

2
 𝐮(𝑖)

T 𝐊 𝐮(𝑖) − 𝐮(𝑖)
T 𝐟 (10) 

and in the next iteration, using Eqs. (8) and (9) 

𝐺(𝐮(𝑖+1))  =  
1

2
 (𝐮(𝑖)

T + 𝐚(𝑖)
T 𝚽(𝑖)

T ) 𝐊 (𝐮(𝑖) + 𝚽(𝑖)𝐚(𝑖)) − (𝐮(𝑖)
T +  𝐚(𝑖)

T 𝚽(𝑖)
T ) 𝐟 (11) 

After rearrangement, with common definition of residual as 

𝐫(𝑖) = 𝐟 − 𝐊𝐮(𝑖) (12) 

a simple relation is obtained 

𝐺(𝐮(𝑖+1))  = 𝐺(𝐮(𝑖)) + 
1

2
𝐚(𝑖)

T �̅�(𝑖)𝐚(𝑖) − 𝐚(𝑖)
T �̅�(𝑖) (13) 

where �̅�(𝑖) = 𝚽(𝑖)
T 𝐫(𝑖) is the generalized (Ritz) residual vector of order 𝑚. Since 𝐺(𝐮(𝑖)) does not 

depend on 𝐚(𝑖), it vanishes during minimization process, i.e., it is sufficient to differentiate the 

remaining terms, energy decrease ∆𝐺(𝐚(𝑖)), and obtain 

�̅�(𝑖)𝐚(𝑖) = �̅�(𝑖) (14) 

At each step 𝚽(𝑖), �̅�(𝑖) and �̅�(𝑖) are generated. After Eq. (14) is solved, an approximate solution 

is updated using Eq. (9) and finally Eq. (8).  

 

3.1.1 System of equations within step 
The increment ∆𝐮(𝑖) , determined by 𝐚(𝑖)  in the given subspace, ensures the largest energy 

reduction within it. That is why Eq. (14) should be repeatedly solved. Usually, this is a very small 

system, because only several coordinate vectors are used (𝑚 ≪ 𝑛) . Thus, the solution of n-
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equation system is sought by solving the m-equation system multiple times. In one of our FEM 

benchmarks 𝑛 reached 1.9 ∙ 108, while 𝑚 was only 10 (Fig. 1). Only 168 iterations were needed to 

obtain the solution. 

 

 

 

Fig. 1 Behavior of IRM with ten coordinate vectors 

 

 

Such a small system (�̅�(𝑖) is usually full) can be solved by any direct method. In our case, 

Cholesky decomposition is used. If the iterative process is convergent, the sum of small-system 

solutions approaches large (original) system solution and the sum of small-system energies 

monotonically decreases and approaches the minimum of a large system. As in any iterative 

algorithm, the process is terminated when the convergence criterion is reached. 

 

3.1.2 Convergence criterion 
For the stopping criterion, the residual norm is usually use 

‖𝐫(𝑖)‖
2

< 𝛿‖𝐫(0)‖
2
 (15) 

where 𝛿 is a very small number (here 10−8). In practical implementation residual is updated as 

𝐫(𝑖+1) = 𝐫(𝑖) − 𝐊 ∆𝐮(𝑖) = 𝐫(𝑖) − 𝐊𝚽(𝑖)𝐚(𝑖) (16) 

This relation is faster than Eq. (12) because product 𝐊𝚽(𝑖)  is already calculated during 

definition of �̅�(𝑖), and 𝐮(𝑖) is needed only at the very end, after Eq. (15) is satisfied. But Eq. (16) is 

also recursive, and the residual should always be corrected after some number of steps (𝑖max) 

using the equilibrium relation Eq. (12), because of accumulated round-off errors. It should be also 

applied at the beginning of the process, to find 𝐫(0)  if 𝐮(0) ≠ 𝟎 . Finally, to avoid useless 

calculations (if the algorithm has trouble converging) the maximum number of steps (𝑛max) 

should also be defined. The convergence is not guaranteed if: the coordinate vectors are (exactly or 

nearly) linearly dependent (then subspace degenerates), the residual and the subspace are mutually 

orthogonal, and the stopping criterion is too strict (rounding errors affect the end of iterative 

process). 

 

3.1.3 Relaxation of displacement 
The search for the exact local minimum of G in each step is not needed nor necessarily optimal. 

number of iterations

n
u

m
b

er
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f 
u

n
k

n
o

w
n

s

IRM (10)

5(23, 3.9 10 )

6(38, 3.1 10 )

7(57, 10 )

7(67, 2.4 10 )

7(94, 4.7 10 )

7(123, 8.2 10 )

8(132, 1.3 10 )

8(168, 1.9 10 )

fixed base
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Motivated by the method of Successive Over-Relaxation (SOR), the process can often be 

accelerated by multiplying the step length with the relaxation factor 𝜔 ∈ 〈0,2〉. Although a formal 

mathematical proof about interval boundaries is known, a simple physical interpretation is possible 

(Lazarevic   and Dvornik 2017). By definition, G is a quadratic function of 𝐮 and a line-search 

along some direction 𝐩(𝑖), usually ∆𝐮(𝑖), can be expressed as a quadratic function of ω (Fig. 2) 

𝐺(𝜔) = 𝐺min + (𝐺0 − 𝐺min)(𝜔 − 1)2 (17) 

Here, 𝐺0 is the value at the tail of the vector  𝐩(𝑖) (beginning of the step) and 𝐺min is the local 

minimum along search direction. From the condition of monotone convergence 𝐺(𝜔) < 𝐺0, (𝜔 −
1)2 < 1 is obtained and accordingly  0 <  𝜔 < 2. Obviously, at the boundaries energy remains 

constant, i.e. 𝐺(0) = 𝐺(2), and outside of the boundaries it increases. In both cases the method 

does not converge.  

 

 

 

Fig. 2 Energy function 

 

 

Some optimal ω exists but varies for every unknown and solution step. The determination is 

usually more “expensive” than the benefit of possible improvement. Generally, ω may be guessed 

by intuition and experience, and kept constant during the solution process. According to Eq. (8), 

the accelerated solution is 

𝐮(𝑖+1) = 𝐮(𝑖) + 𝜔∆𝐮(𝑖) (18) 

 

3.1.4 Simple pseudocode 
This approach and interpretation of such generalized iteration is simple and natural but not fully 

recognized by researchers in the field of iterative methods for solving a linear (or nonlinear) 

equation systems. Weak similarity with subspace iteration strategies in structural dynamics exists, 

but in IRM sequence of subspaces has no property of convergence. Such property is not needed 

nor exists. Rather, coordinate vectors are very freely selected from step to step to efficiently reduce 

residual norm. Main elements of IRM are given by the simple pseudocode (Table 1). 

The generation of vectors should be fast and small system should be reasonably small. Actually, 

the efficiency of IRM is subject to some compromise. If a larger number of adequate vectors is 

used (spanning the subspace with an appropriate solution increment), the energy reduction per step 

is larger; hence less steps are needed to reach the solution, but each step requires more time. With 

1

=(0) (2)G G

min
G

0 2

2

( )G

( )G

0
= (0)G G (2)G

underrelaxation



overrelaxation
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less vectors, duration of the step is shorter, but subspace is not so effective, and more steps are 

required. In the limiting case, if the subspace dimension equals the number of unknowns (𝑚 = 𝑛), 

the energy is minimized, and the solution is theoretically reached after the first step, but at the 

“price” equal or larger than needed for the direct solution. 

 

 
Table 1 Pseudocode of IRM 

Algorithm 1 The Iterated Ritz Method 

Require: 𝐊, 𝐟, ω, 𝛿, 𝑖max, 𝑛max {stiffness matrix, load vector, relaxation factor, fraction of initial residual, 

steps to update, total steps} 

Ensure: 𝐮 {approximate solution vector} 

1. 𝑖 ← 0 {set iteration counter to zero} 

2. 𝐮(0) ← 𝟎 {initial guess: null-vector} 

3. 𝐫(0) ←  𝐟 {residual: load vector} 

4. while [(‖𝐫(𝑖)‖
2

> 𝛿‖𝐫(0)‖
2

 )  ⋀  (𝑖 < 𝑛max)] do {loop on 𝑖} 

5. 𝑖 ←  𝑖 +  1 {increment counter} 

6. 𝚽(𝑖) ← [𝛗(𝑖),1  ⋯ 𝛗(𝑖),𝑚] {generation of coordinate vectors matrix} 

7. 𝐀 ← 𝐊𝚽(𝑖) {used in lines 8 and 13} 

8. �̅�(𝑖) ← 𝚽(𝑖)
T 𝐀  {generation of Ritz stiffness matrix} 

9. �̅�(𝑖) ← 𝚽(𝑖)
T 𝐫(𝑖) {right-hand side} 

10. 𝐚(𝑖) ← �̅�(𝑖)
−1�̅�(𝑖) {solution of a small system} 

11. 𝐮(𝑖) ←  𝐮(𝑖) + ω𝚽(𝑖)𝐚(𝑖) {approximate solution} 

12. if 𝑖 mod 𝑖max ≠ 0 then {usual step} 

13. 𝐫(𝑖) ←  𝐫(𝑖) − 𝐀𝐚(𝑖) {update residual from previous vector} 

14. else {every 𝑖max steps} 

15. 𝐫(𝑖) ← 𝐟 − 𝐊𝐮(𝑖) {update residual from equilibrium equation} 

16. end if {end update residual} 

17. end while {end loop on 𝑖 } 

 

 

4. Special cases of IRM 
 

Depending on the choice of coordinate vectors, some basic iterative methods can be interpreted 

as special cases of IRM. Compared to traditional strategies (Saad 2003, Olshanskii 2014), such 

analogies are not used for faster implementation of these methods. Rather, another interpretation 

and properties useful for generation of coordinate vectors are emphasized. Also, popular 

acceleration of iterative methods by single or multiple preconditioning (Benzi 2002, Ferronato 

2012, Sun and Gu 2016) can be interpreted as additional (one or several) coordinate vectors. Any 

significant modification of Algorithm 1 is not needed. We believe that such analogy with other 

(preconditioned) iterative methods exists. For example, Krylov subspace methods may be 

considered as a special case of IRM, if coordinate vectors are properly defined (𝛗1 = 𝐫(0), 𝛗2 =

𝐊𝐫(0), 𝛗3 = 𝐊2𝐫(0), etc.). 

760



 

 

 

 

 

 

The Iterated Ritz Method: Basis, implementation and further development  

4.1 Cycling strategy: The methods of Gauss-Seidel and successive over-relaxation 
 

Traditionally, the Gauss-Seidel (GS) method is implemented through many steps over all 

degrees of freedom. During each step, only one equation of Eq. (1) is sequentially solved. Usually, 

this technique is called relaxation. Here, a single coordinate vector is defined at each step, and it is 

equal to the orth 

𝚽(𝑖) =  [𝛗(𝑖),1] = [𝐞(𝑖)] (19) 

Obviously, a small system degenerates to one equation which is repeatedly solved. In this way, 

the equilibrium of only corresponding unknown is satisfied, while others are treated as constants 

known from earlier steps. Therefore, the equilibrium of previous equations is simultaneously 

disturbed. However, during the convergent process disturbance (residuals) decreases (theoretically) 

to zero. Relaxation of all unknowns is called the cycle. At the end of each cycle only the last 

equation is equilibrated. It must be noted that cycle counter is not necessarily needed. It is defined 

only for better explanation of the relaxation process and to control maximum number of iterations 

if the algorithm has trouble converging. Generally, after 𝑛 steps a new cycle is started and the 

same coordinate vectors from Eq. (19) are repeated. The component equal to one moves from the 

first to the last place of 𝛗(𝑖),1. SOR is a modification of GS. The solution increment is extrapolated 

by 𝜔, disturbing even the equilibrium of current unknown. In standard block variant of GS and 

SOR, instead of only one, all node DOFs are relaxed at each step.  

 

4.1.1 Relaxation order: Motivation for better convergence 
The behavior of the iterative process strongly depends on the relaxation order (Duff and 

Meurant 1989). The most common are forward and backward orderings. For two-dimensional 

rectangular meshes relaxation is possible from right to left instead of traditionally left to right. The 

chessboard scheme is also recommended: the algorithm “visits” the “white” nodes in the first half-

cycle and the “black” ones in the second half-cycle. Also, columns and rows may interchange 

places. If diagonal connections between nodes are present, the number of relaxation paths 

increases. In three-dimensional rectangular meshes with planar and space diagonal connections 

new possibilities arise. Complex irregular meshes have a large number of meaningful nodal 

connections and hence numerous paths of load (residual) propagation. An interesting choice is to 

relax from the largest to the smallest residual (by absolute value). However, the change of residual 

in the current node and its topological neighbors requires sorting after each step, which affects the 

algorithm efficiency. In the case of two or more equal residuals the order between them is 

arbitrary. (For example, in the beginning of a numerical process, the residual vector coincides with 

the load vector and equal forces are very probable.). An order used in Cross and Southwell 

relaxation algorithms is also interesting: at each step the node with the largest residual component 

(unbalanced force or moment) is relaxed and residual vector is updated. Here, the cycle counter 

does not have real meaning at all. Usually some nodes are relaxed many times before the first visit 

to other nodes. 

4.2 Steepest descent (SD), jacobi (JAC) and conjugate gradient (CG) methods 
 

In SD a single coordinate vector equal to the current residual is defined 

𝚽(𝑖) =  [𝛗(𝑖),1] = [𝐫(𝑖)] (20) 
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Similarly, JAC is obtained as 

𝚽(𝑖) =  [𝛗(𝑖),1] = [𝐃−1𝐫(𝑖)] (21) 

where 𝐃 = diag(𝐊). Corresponding small systems also degenerate to one equation. If Eq. (20) and 

Eq. (21) are compared, JAC may be understood as extension of SD using diagonal entries. 

Strategies are not efficient but serve as good introductory examples for gradient methods. 

However, block JAC variants can be successfully used, especially in parallel computing. The first 

step of CG is identical to SD. In the following steps two coordinate vectors are used: 𝐫(𝑖) and 

∆𝐮(𝑖−1). The coordinate matrix is 

𝚽(𝑖) = [𝛗(𝑖),1    𝛗(𝑖),2] = [𝐫(𝑖) ∆𝐮(𝑖−1)] (22) 

and a small system reduces to two equations. Compared to SD or JAC, the second vector gives CG 

much faster convergence. In typical numerical implementation, the solution of two equations is 

sought by the equivalent recursive 𝐊-orthogonalization. Because of accumulation of round-off 

errors, orthogonality really exists only for few adjacent vectors and for large ill-conditioned 

systems convergence difficulties are present. Many restart (Dai et al. 2004) and preconditioning 

techniques (Adams 1985, Van der Vorst and Dekker 1988) improve convergence. If CG 

formulation according to Eq. (22) is used, error in 𝐊-orthogonality also exists, but it is not 

accumulated during iterative process. Therefore, inherited errors decrease, though non-exact 

arithmetic (as in every numerical process) causes new errors and affects the convergence. Because 

two approaches are equivalent, it is possible to interchange them. Each step may be executed by 

CG or IRM, no matter how earlier steps are performed. It is suggested that after some number of 

CG steps, before orthogonality error becomes too large, one equivalent IRM step is executed. 

Instead of “restart” it may be called “refresh”. 

 

 

5. On the generation of efficient coordinate vectors (step 6 of the Algorithm 1) 
 

Basic idea is to define the coordinate matrix 𝚽  so that IRM converges faster than other 

methods. Even though the number of vectors should be small, we believe that only one (as in GS, 

SOR, SD and JAC) or two (as in CG) are less than optimum. Because 𝑚 ≪ 𝑛, in the early phase of 

iterative process increment ∆𝐮(𝑖) can only accidentally hit the solution 𝐮. 

It would be natural to add the third vector to two CG vectors. The subspace is expanded, and 

compared to the smaller one, the larger energy reduction per step is expected. In the worst case, 

contribution of a new vector is equal to zero. In other words: the minimum of energy functional in 

higher dimensional subspace is less (in the worst case equal) than the minimum in lower 

dimensional subspace. Using this strategy further vectors can be added and even larger energy 

reduction per step may be expected. So, most of the static system energy should be exhausted in 

small number of steps and the system “damped” to the lowest energy point-solution. Obviously, 

the subspace expansion is attractive but, as mentioned before, only up to a certain point. 

 
5.1 Necessary conditions 

 

The matrix �̅�(𝑖)  is singular if two or more coordinate vectors are linearly dependent, i.e., 

relation 
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∑

𝑚

𝑖=1

𝑏𝑖𝛗𝑖 = 𝟎 ⇒   𝑏𝑖 = 0 (23) 

where 𝑏𝑖 are scalars, is not satisfied. In numerical implementation this condition must be modified-

vectors should not even be nearly linearly dependent, otherwise �̅�(𝑖) would be almost singular (ill-

conditioned) 

‖∑

𝑚

𝑖=1

𝑏𝑖𝛗𝑖‖ < 𝛿1  ⇒   |𝑏𝑖| < 𝛿2 (24) 

So, if (some) norm of independent vectors is less than a small number 𝛿1 , the linear 

independence implies that all 𝑏𝑖 must be (by absolute value) less than 𝛿2. Obviously, generation 

routines which prevent Eqs. (23) and (24) are preferred and therefore may even change between 

steps. Nevertheless, if dependence happens, during the decomposition of �̅�(𝑖) some pivots become 

equal (close to) zero. This can be recognized and used for discarding corresponding equations 

from the small system. The subspace dimension is reduced, but �̅�(𝑖) becomes regular and better 

conditioned. It is faster than orthogonalization, rejection or replacement of vectors. 

If coordinate vectors and the residual are mutually orthogonal, the subspace is not useful. Then 

�̅�(𝑖) = 𝚽(𝑖)
T 𝐫(𝑖) = 𝟎, 𝐚(𝑖) = 𝟎, hence the energy is not reduced, and IRM does not converge. To 

avoid this situation the inequality 

‖𝚽(𝑖)
T 𝐫(𝑖)‖

2

‖𝐫(𝑖)‖
2

< 𝛿3 (25) 

where 𝛿3 is not too small number, should be fulfilled. To achieve this, it is sufficient to choose one 

vector 𝑗 that is not (almost) orthogonal to residual (𝛗(𝑖),𝑗
T 𝐫(𝑖) > 0). Also, the subspace must change 

between steps as the new residual is orthogonal to the previous subspace ( 𝚽(𝑖)
T 𝐫(𝑖+1) = 𝟎 ). 

Generally, in IRM orthogonality only between successive (not distant) increments, residuals or 

subspaces exists. If 𝜔 ≠ 1, even successive orthogonality is lost. However, the convergence is 

often improved. 
 

5.2 Preferred properties 
 

Compared to continuous Ritz functions, in this discrete approach compatibility conditions (CC) 

and essential boundary conditions (EBC) are not defined. If only Eq. (1) is known (not the 

corresponding model), it can only be concluded that such properties are contained in K. However, 

coordinate vectors which approximate continuous functions that satisfy CC and EBC are better and 

produce more realistic (stiffness) elements of �̅�(𝑖).  If the residual is decomposed into the 

eigenvectors of 𝐊, such vectors give a residual with small proportion of high modes (eigenvectors 

with large eigenvalues). They are called “smooth” vectors and they ensure faster convergence rate. 

On the contrary, “coarse” vectors produce too stiff matrix elements and locking of the residual. If 

coordinate vector 𝛗𝑖 (iteration counter is omitted) is spanned by normalized eigenvectors 𝐯𝑗 

𝛗𝑖 = ∑

𝑛

𝑗=1

ℎ𝑗𝐯𝑗 (26) 
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the diagonal element of the Ritz matrix is equal 

�̅�𝑖,𝑖 = 𝛗𝑖
T𝐊 𝛗𝑖 = ∑

𝑛

𝑗=1

ℎ𝑗
2𝜆𝑗 (27) 

where 𝜆𝑗 is j-th eigenvalue of K. Coefficients ℎ𝑗
2 with larger 𝜆𝑗 contribute more to stiffness �̅�𝑖,𝑖. 

Also, “coarse” vectors have large Squared Residual Norm ‖𝐫(𝑖)‖
2

2
. 

During the solution process, the contribution of “smooth” vectors in the region of higher 

eigenvalues decreases and the convergence in the region of lower eigenvalues increases, i.e. such 

vectors effectively reduce the contribution of lower eigenvectors. Thus, the procedure behaves as 

if the influence of such vectors does not exist (the system matrix condition number is smaller), 

which speed up the convergence. If couple of such vectors are generated, IRM should be efficient 

and competitive. 

 

5.3 Present difficulties 
 

Although the above conditions reduce many possibilities, the number of promising coordinate 

vectors still remains large. Unfortunately, adequate criteria for the selection of generally efficient 

vectors is not known and the background theory is not well developed. For one group of models 

some vectors work fine but respond badly for another. Under such conditions, an efficient (small, 

fast and models independent) subspace would be of great significance (Arjmandi and Lotfi 2011).  

 

5.4 Generation strategies 
 

Two basic generation strategies will be described, but many mixed ideas are also possible 

(Eftekhari 2018). In the first approach only 𝐊 and 𝐟 are necessary. If vectors are properly defined, 

in most practical cases good convergence is obtained. In the second approach, some special data 

about the model are used. Then, very fast convergence is expected, but only for that particular 

model and eventually for similar ones. 

 

5.4.1 Generation of constant vectors 
The simplest idea is to choose coordinate vectors in advance for the whole numerical process. 

For example, in GS and SOR number of vectors in 𝑛-dimensional space is equal to 𝑛, and the 

same sequence is cyclically repeated until convergence (Section 4.1). 

 

5.4.2 Generation based on the current residual 
Here, many possibilities exist. Motivation is as follows. As the “expensive” calculation of the 

initial error 𝐊−1𝐫(0) immediately leads to the problem solution, it is natural to find some matrix 𝐏 

that “cheaply” approximates 𝐊−𝟏. The coordinate vector is simply 𝛗(𝑖) = 𝐏𝐫(𝑖). Use of 𝐫(𝑖) has an 

additional advantage, as it ensures non-orthogonality of the subspace to the residual itself, which is 

important for convergence (Section 5.1). Simply, if 𝐏  is positive definite then 𝛗(𝑖)
T 𝐫(𝑖) =

𝐫(𝑖)
T 𝐏𝐫(𝑖) > 0 unless 𝐫(𝑖) = 𝟎, which means that the solution is reached. Obviously, an adequate 

choice is to use one positive definite 𝐏, but for generation of other coordinate vectors it is not 

necessarily needed, and it can be non-symmetric, ill-conditioned, even singular, as in all cases �̅�(𝑖) 

764



 

 

 

 

 

 

The Iterated Ritz Method: Basis, implementation and further development  

remains invertible. Obviously, it is not acceptable to generate all vectors with matrices of the same 

singularity. It is not an imperative that a single vector approximates 𝐊−1𝐫(𝑖) well. It is sufficient 

that the approximation of this product inside the subspace is as good as possible. 

For example, if 𝐊 is approximated by identity matrix (𝐏 = 𝐈), then 𝛗(𝑖) = 𝐫(𝑖), which gives SD. 

If 𝐏 = 𝐃−1, 𝛗(𝑖) = 𝐃−1𝐫(𝑖) and JAC is obtained (Section 4.2). Methods are obviously inefficient 

because 𝐏 is crude approximation (contains insufficient data) of 𝐊−1. 

Better coordinate vectors are generated using one or several cycles of GS or SOR. It may be 

useful to “visit” nodes in various ways (Section 4.1). However, to save computing time, 

uncomplete strategies are preferred: prevent return to the already relaxed nodes. For example, 

nodes could be sorted in the first cycle (according to the absolute values of the residual) and 

corrected only occasionally. Between cycles (even steps maybe) a local relaxation factor Ω , 

different from global 𝜔, can be introduced, but the optimal value is subject to research. If only first 

cycle of the forward SOR is used, coordinate vector is 𝛗(𝑖) = 𝐋Ω
−1𝐫(𝑖), so 𝐏 = 𝐋Ω

−1, where 𝐋Ω is 

lower triangular of 𝐊 with diagonal elements multiplied by Ω. If backward order is applied, 𝐋Ω is 

replaced by upper triangular 𝐔Ω. We reversely called this method the ROS. If Ω = 1, matrices are 

replaced by standard 𝐋 and 𝐔 matrices and the first cycle of forward and backward GS is obtained. 

Notice that such coordinate vectors are quickly generated during the step. Various alternate 

approaches (at additional cost) are also possible. For motivation, three relatively successful 

examples are given below. Matrix 𝐏 is easily recognized 

𝛗(𝑖) = 𝐋Ω
−1( 𝐈 − 𝐊 𝐔Ω

−1)(𝐈 − 𝐊 𝐋Ω
−1)( 𝐈 − 𝐊 𝐔Ω

−1) … 𝐫(𝑖) (28) 

𝛗(𝑖) = 𝐋Ω
−1𝐔Ω

−1𝐋Ω
−1𝐔Ω

−1 … 𝐫(𝑖) (29) 

𝛗(𝑖)  =  (𝐋Ω
−1  +  𝐔Ω

−1) (𝐋Ω
−1  + 𝐔Ω

−1) … 𝐫(𝑖) (30) 

In the last equation, K can be placed between parentheses. Using Eqs. (28)-(30) independently, 

smaller Ω makes convergence slower, but faster “smoothing” is ensured. Therefore, it would be 

efficient to use them with other vectors. Similarly, if number of cycles (successive changes of 

𝐋Ω
−1and 𝐔Ω

−1) is increased, “smoother” vector is obtained. 

Inspired by previous comments, adequate coordinate vectors can be generated by direct 

smoothening of 𝐫(𝑖). This is called “filtering”. A component of such vector is equal to sum of 

residual components in the neighboring nodes, multiplied by the weighting factors. This approach 

was efficient in models with very large residual jumps. They occur due to the poor prediction of 

displacement in some steps, which often appears in the vicinity of supports and free boundaries. 

In preconditioning (Wathen 2015), some matrix 𝐌  is used to produce better conditioned 

system, equivalent to (1). Then 𝐌 −1𝐊𝐮 = 𝐌 −1𝐟 is indirectly solved. Of course, 𝐌 should be 

rapidly inverted. From the IRM strategy, 𝐏 = 𝐌 −1and the coordinate vector is accordingly given. 

For smoothing purposes, forward and backward techniques are also preferred. If couple of vectors 

are generated, several preconditioning techniques (matrices 𝐏) can be simultaneously used. This is 

analogous to multiple preconditioning. For the IRM, matrix transformations used for 

preconditioning are not needed. The preconditioning is just another way of generating coordinate 

vector(s). During the generation process, they can also become (exactly or approximately) linearly 

dependent and one or several should be excluded. 

In this paper, coordinate vectors are generated using one cycle of the Symmetric Successive 
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Over-Relaxation Method (SSOR), with Ω = 1. The first vector is obtained as 

𝛗(𝑖),1 = 𝐋Ω
−1𝐃 𝐔Ω

−1𝐫(𝑖) (31) 

and others are recursively formed 

𝛗(𝑖),𝑗  =  𝐋Ω
−1𝐃 𝐔Ω

−1(𝐊 𝛗(𝑖),𝑗−1),        𝑗 =  2, … , 𝑚 − 1 (32) 

At the end, the previous increment is also added 𝛗(𝑖),𝑚 = ∆𝐮(𝑖−1). Calculations are performed 

with two, four, six and ten vectors, using ω = 1. Let’s explain the expression (32). As one step in 

the direction of 𝛗(𝑖),1 gives the current increment 𝛼𝛗(𝑖),1, where 𝛼 is a scalar, according to Eq. 

(16) the residual is 𝐫(𝑖) −  𝛼𝐊𝛗(𝑖),1. Inserting it in Eq. (31) the second vector is 𝛗(𝑖),2 = 𝛗(𝑖),1 −

𝛼𝐋Ω
−1𝐃 𝐔Ω

−1(𝐊𝛗(𝑖),1). The vector 𝛗(𝑖),1 already spans the subspace and can be omitted, while 𝛼 

affects only the vector length, but not the subspace dimension. Therefore, 𝛼 = 1 is used and Eq. 

(32) is obtained. An interesting, but more “expensive” variation of this procedure is to use 𝐊 

instead of 𝐃. 

 

Some remarks. Strategies of this subsection are generally valid. Coordinate vectors can be 

generated using (𝐫(𝑖) and) 𝐏 obtained by any iterative method. Furthermore, every vector (matrix 

𝐏) may be generated with a different method. For example, first vector is generated by JAC, 

second by SOR, third by SSOR, and further vectors by the Incomplete Cholesky Factorization 

(ICC), the Algebraic Multigrid (AMG), the Sparse Approximate Inverse (SAI), etc. (Higham 2009, 

Stüben 2001, Xu and Zikatanov 2017, Huckle 1998, Ferronato et al. 2015). All methods can be 

used forward and backward, or in any promising order of the unknowns. It is even possible to use 

algorithms that are not useful as standalone solvers, as they are neither convergent nor numerically 

stable. Thus, Ω need not lie between limits of 𝜔 (Section 3.1.3). 

Generally, two or three coordinate vectors that smoothen the lower part of the residual 

spectrum, and next two or three for the upper part should be considered. Increment ∆𝐮(𝑖−1), the 

essence of the CG success, is also preferable. Similar to the described effect of one vector, here the 

whole subspace is smoothened by vectors used. In other words, the residual is smoother with the 

increase of both, vectors and (or) cycles used for the generation of single vector. This contributes 

to faster convergence. 

 

5.4.3 Generation using data from the previous step 
Coordinate vectors may be obtained by “history recycling”, i.e., use of the increment 𝛗(𝑖) =

∆𝐮(𝑖−1). It accelerates the convergence of CG and enables inclusion of 𝜔. This vector is generally 

efficient for IRM, although recursive orthogonality to earlier vectors is lost (Section 5.1). 

Additional vectors can be generated with some matrices 𝐒𝑗 as 𝛗(𝑖),𝑗 = 𝐒𝑗∆𝐮(𝑖−1). Adding earlier 

increments ∆𝐮(𝑖−2) , ∆𝐮(𝑖−3) , etc., is not efficient, especially in non-smooth (e.g. contact) 

problems. The solution 𝐮(𝑖) can be similarly used, particularly in a nonlinear environment. The 

recycling of this vector makes sense, because of just mentioned overall orthogonality loss, which 

in nonlinear models exists by definition. Finally, it should be emphasized that this group of vectors 

is not independently used. 

 

5.4.4 Generation using model data 
The second strategy for the generation of vectors is to use additional data model (e.g., 
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Ibrahimbegovic and Wilson 1990b, Ibrahimbegovic and Wilson 1992). The approximate geometry, 

simplified properties (stiffness distribution) or a simpler model of a similar problem (less 

important DOFs are omitted) are exploited. Generally, the displacement of such models loaded by 

the residual can be used as the coordinate vector. They are crude, but efficient at the early stage of 

iterative process. Later, the solution needs to be smoothed by more accurate approaches from 

previous sections. Nevertheless, such vectors can ensure a very fast solution, but the main 

drawback of this strategy is the lack of generality.  

For example, the substitute model for a thick beam can be a thin beam, and a membrane could 

be used instead of a shell. If the solution 𝐮s of the substitute model is known, the vector is 𝛗𝑗 =

𝐍𝐮s, where 𝐍 is the interpolation matrix that connects degrees of freedom of the substitute and the 

original model. In the clamped thick beam case, the original model is defined by planar elements 

and the substitute model may be based on line elements. Even pinned supports could be used (Fig. 

3). The third-degree polynomials connect the nodes of both models on the axis, while the nodes (of 

the original model) outside the axis are connected to the substitute model by the beam kinematic 

hypothesis. Columns of 𝐍 are defined by polynomials and hypothesis. Such a matrix is singular, as 

displacements between models are linearly dependent, but the coordinate vector is correct and 

leads to the solution of a thin beam. Obviously, this is not a solution to the original problem. 

Therefore, the residual (or some other “corrector”) must be added as an additional vector to 

weaken the kinematic hypothesis and to ensure an adequate solution for a thick beam. 

 

 

 

Fig. 3 Original and substitute deep beam model 

 

 

The iterative procedure based on the stiffness hierarchy of a complex model can also be used as 

a generator of the coordinate vector. Such vector is defined as a solution after only several steps 

between parts of the model with different stiffnesses. It is only a crude approximation of the 

complex model result, but it is suitable for the fast vector definition.  

Vectors can also be generated using coarse FE mesh, various multigrid methods (Wilson and 

Naff 2010), or analytically defined (continuous) coordinate functions which satisfy EBC over the 

approximate model domain. Notable examples are Ritz functions, and an interesting extension are 

R-functions (Shapiro 1988, Rvachev et al. 1999). Both can be multiplied by polynomials. Even 

more freely selected smooth functions (polynomials) that do not satisfy BC can be used as vectors. 

Details, for example openings, may be omitted. In such cases vector components are equal to the 

function nodal values. Such vectors are “rough” and the corresponding elements of �̅�(𝑖) are “too 

stiff” but are useful at the beginning of the iterative process. If they are kept, the solution will be 

smoothened in later steps, though the convergence will not be impressive. A better idea is to 

somehow smooth such vectors in advance. For example, for each vector one or two SOR and then 

ROS relaxation cycles with small Ω may be beneficial. 

original
substitute
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Coordinate vectors can also be generated using analogies. For a slab problem, the solution of a 

magnetic or electric field, membrane or grid can be considered. The solution of differently loaded 

slab or even roughly sketched displacement field can also be applied. Measuring from the sketch, 

displacements as vector components are determined. 

Kinematic constraints (beam kinematic hypothesis is an example) can be efficiently defined by 

coordinate vectors. If they are expressed as 𝐓𝐮 = 𝐟, where 𝐓 is a constraint matrix, then the initial 

guess 𝐮(0)  should satisfy nonhomogeneous constraints, 𝐓𝐮(0) = 𝐟, and vectors must satisfy the 

homogenous one, 𝐓𝚽(𝑖) = 𝟎. 

A mixed approach to the generation of vectors may also be interesting. For example, it may be 

tried to utilize products of ∆𝐮(𝑖) or 𝐮(𝑖) with some functions of coordinates (polynomials). The 

number of possible strategies for numerical experiments is enormous (Markovic et al. 2006, 

Markovic et al. 2009).  

 

5.4.5 Coordinate vectors as input data 
Because of numerous possibilities, it is reasonable to consider coordinate vectors as the input 

data. So, if an appropriate set of vectors is found, the matrix 𝚽(𝑖) is easily formed. In this way 

IRM can be considered as an iterative method where, in addition to common data used by most 

iterative algorithms, coordinate vectors should also be given. 

 
 

6. Briefly about implementation 
 

The pseudocode 1 was implemented by GFORTRAN programming language (The 

GFORTRAN team). UBUNTU version 5.3.1 and OS X version 6.1.0 (both 64-bit) were used. The 

program was first verified on small examples and then on larger number of planar and space 

trusses. Also, to make condition number 𝜅(𝐊) much larger, bars with huge stiffness differences are 

randomly connected to distant nodes. Hence, illogical forms that cannot be regarded as structures 

are created. Thus, program is tested on both, well and ill-conditioned models. 𝐊 is stored in a 

compressed sparse column (CSC) format, but a row format was also tried (Nour-Omid and Taylor 

1984). Both strategies exist in the open-source FEA program FEAP (Taylor 2014). Thus, the 

connection with this package is easily obtained. The version 8.4.1 was used. Compiling and 

linking with the FEAP was also made with the GFORTRAN.  
 

 

7. Practical results 
 

After fundamental tests, several models from the structural engineering practice were analyzed 

(Figs. 4-10). Vertical loads and supports are not drawn. Models comprise beam, shell and volume 

FE with displacements and rotations as unknowns. Large axial stiffness of stocky RC elements and 

small bending stiffness of slender steel elements are mixed. Uniformly distributed eigenvalues and 

larger 𝜅(𝐊) were preferred. This is common in fine-tuned structures as eigenvalue clusters amplify 

the dynamic and the stability response. The basic data are given in the Table 2. Various tests of 

iterative methods were necessary as their problem dependence is fairly known, not only on the 

stiffness (the spectrum and the condition number), but also on loading and support conditions. 

Notice simple benchmark in Fig. 4 with relatively small 𝜅(𝐊).  
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Table 2 Basic data about numerical models 

Figure Nodes Elements Unknowns CSC storage Fill-in ≈ 𝜅(𝐊) 

4 132 651 125 000 397 947 15 692 116 9,90 ⋅ 10−5 103 

5 10 329 16 104 61 776 1 434 447 3,76 ⋅ 10−4 109 

6 21 420 27 441 117 936 3 133 980 2,25 ⋅ 10−4 1011 

7 71 307 278 499 206 527 3 826 156 8,97 ⋅ 10−5 106 

8 43 815 43 072 258 954 7 053 951 1,10 ⋅ 10−4 106 

9 79 162 74 247 289 986 10 251 174 1,22 ⋅ 10−4 108 

10 276 244 1 461 134 820 446 17 723 235 2,63 ⋅ 10−5 108 

 

 

Calculations were performed using SD, JAC, CG without and with the diagonal (CGD) and 

block-nodal (CGBN) preconditioners, and finally with IRM (∙).  CGD and CGBN are FEAP 

iterative solvers. IRM argument denotes the number of coordinate vectors used. Acronyms and 

corresponding full names of methods used are listed in the Table 3. The distribution of vertical 

displacements (in meters), and the logarithm of the ‖𝐫(𝑖)‖
2

/‖𝐫(0)‖
2
 vs number of steps are given.  

 

 
Table 3 List of acronyms and full names of the used iterative methods 

SD Steepest Descent 

JAC Jacobi 

CG Conjugate Gradient 

CGD Conjugate Gradient with Nodal Preconditioner 

CGBN Conjugate Gradient with Block Nodal Preconditioner 

IRM(2) Iterated Ritz Method with two coordinate vectors 

IRM(4) Iterated Ritz Method with four coordinate vectors 

IRM(6) Iterated Ritz Method with six coordinate vectors 

IRM(10) Iterated Ritz Method with ten coordinate vectors 

 

 

In Fig. 4, the energy ratio (G(𝐮(0)) − Σ𝑖G(∆𝐮(𝑖)))/G(𝐮(0)) is also added. For this example, SD 

and JAC, also CGD and CGBN have almost the same energy curves, so only SD and CGD are 

added.  

Generally, SD, JAC and CG respond badly, as is expected for such examples. The 

preconditioned CG versions are better, although not impressive. Even for two vectors, IRM 

converges faster than other methods considered. With the subspace increase, the step “price” rises, 

but the residual and the energy reduction per step are larger, so that the number of steps further 

decreases (Table 4). However, it should be mentioned that the better CG preconditioners for the 

SPD systems exist, such as (not always robust) ICC with different fill-ins (Van’t Wout et al. 2010), 

then AMG (Iwamura et al. 2003, Pereira et al. 2006) and SAI (Benzi et al. 1996) methods.  

But a better subspace for IRM is also possible. As it was already mentioned, IRM vectors can 

always be based on any of methods considered and robustness is not necessary. Thus, refined 

algorithms of such methods are not imperative. Relatively crude vectors that complement each  
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Table 4 Behavior of some methods according to number of steps 

Figure 
Steps until convergence (𝛿 = 10−8) 

CGD CGBN IRM(2) IRM(4) IRM(6) IRM(10) 

4 1 396 1 394 456 305 233 159 

5 2 049 757 704 235 141 79 

6 4 155 3 114 1 303 502 324 167 

7 52 433 49 040 17 086 5 703 3 422 1 925 

8 4 682 4 040 1 509 501 300 166 

9 5 708 5 155 1 559 565 313 191 

10 5 076 4 931 1 915 827 486 270 

 

  

Fig. 4 Simple benchmark 

 

  

Fig. 5 Large steel reticulated dome with cover 

 

 

other (in sense of the residual reduction at different parts of the spectrum) are important. 
 

 

8. Conclusions 
 

The explanation of IRM is close to engineering interpretations. The method should not be 

worse than (preconditioned) CG. Additionally, various standard iterative methods may be 

simultaneously used to generate different coordinate vectors. Thus, if appropriate vectors are  

IRM 

JAC

step

IRM 

step

IRM 

JAC

step
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Fig. 6 RC building with a large steel appendage 

 

  

Fig. 7 Ancient atrium with stone columns, groin vaults and fill material 

 

  

Fig. 8 Standard RC building 

 

 

selected, the convergence should be faster than using any single method considered. The 

preconditioning is not necessary here, but such algorithms can successfully be applied for the 

generation process. The restart known from the standard CG (due to 𝐊-orthogonality loss) is not 

needed. From the previous step, only the displacement increment is inherited, which improves the  
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JAC

step

IRM 

JAC

step

IRM 

JAC

step
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Fig. 9 Turbo generator with horizontal steel frame and RC foundation (half-model shown) 

 

 
 

Fig. 10 RC powerhouse of hydropower plant (half-model shown) 

 

 

convergence. As the various orthogonalities between steps (favored by CG) are not required, the 

method may also be competitive in nonlinear (Carvalho et al. 2013) and optimization (Guerra and 

Kiousis 2006) problems. Obviously, the parallel approach is essential for solving large systems 

(Reed and Patrick 1985, Da Cunha and Hopkins 1995) and the possibility of assigning one 

processor per coordinate vector is challenging. As IRM is still being investigated, the overall 

performance of the method is not measured and the comparison with other direct and iterative 

solvers is not given.  
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